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This paper is concerned with the mathematical modeling of complex systems characterized by particles refuge. Specifically the
paper focuses on the derivation andmoments analysis of thermostatted kinetic frameworks with conservative and nonconservative
interactions for closed and open complex systems at nonequilibrium. Applications and future research perspectives are discussed
in the last section of the paper.

1. Introduction

The development of nonlinear analysis methods and the
strengthening of modern computers have allowed a more
accurate description of complex systems in the applied
sciences.

The difficulty inmodeling complex systems hails from the
unexpected behaviors that stem from interactions between
the inner elements and the outer environment [1, 2]. These
behaviors are not themere sum of the whole interactions (the
system is more than the sum of its component parts) and
collective behaviors are also consequence of self-organization
[3, 4].

The global collective behaviors that emerge in most
complex systems in the applied sciences, such as self-
organized biological systems, vehicular traffic, crowd and
swarm dynamics, and social and economic systems, are usu-
ally in response to external actions. Indeed the environmental
action or external agents can affect the whole dynamics and
abrupt changes can occur; for example, the behavior pattern
carried out by animal swarms can be disturbed by the attack
of a predator; tumor growth can be controlled and avoided
by the action of an external vaccine at the cellular scale. The
interested reader in a deeper understanding of these topics is
referred to papers [5–15] and the references cited therein.

In particular complexity arises in biology systems at
different levels of organization that range from individ-
ual organisms to whole populations; see [16, 17]. Indeed

amutation occurring in particularly fortuitous circumstances
can be amplified to the extent that it changes the course of
evolution. Moreover the outer environment exerts an action
that can influence the whole dynamics far more rapidly than
what can be perceived.

Although the environmental action has an outstanding
role in the whole dynamics of the system, only a few
mathematical models and methods have been developed and
used to model open complex systems of the biological and, in
general, of the applied sciences systems.

Recently thermostatted kinetic theory for active particles
methods have been proposed in [18] for the modeling of
complex behaviors occurring in living systems; see also the
review paper [19] and the analysis developed in [20, 21]. How-
ever, the above-mentioned thermostatted kinetic frameworks
seem not suitable for the modeling of proliferative, destruc-
tive, and mutative events that occur in biological systems
as consequence of the interactions among the constituent
elements of the system.

This paper is concerned with a further generalization
of the thermostatted kinetic frameworks proposed in paper
[22]; the paper deals with the modeling of nonequilibrium
complex systems characterized by conservative and non-
conservative interactions (including mutative interactions,
whose importance has been stressed by most scientists; see
[23]) and particles refuge, namely, the capability of some par-
ticles to escape the interactions. Moreover the role of external
actions or agents at the microscopic scale is taken into
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account, generating a more suitable thermostatted kinetic
framework for the active particles, which can be proposed
for the mathematical modeling of the time evolution of the
inner system in the presence of the outer environment (open
system).

To the best of our knowledge, the role of particles refuge
has not been yet taken into account in thermostatted models;
particles refuge is a prerogative of predator-prey models.

In the last three decades, the introduction of prey refuge
in predator-prey models has gained much attention; see,
among others, themathematical analysis developed in papers
[24–35] and the review paper [36]. In the pertinent literature,
prey refuge has been incorporated in predator-prey interac-
tions for considering two types of events: those that protect
a constant fraction of prey and those that protect a constant
number of prey. The introduction of prey refuge is inserted
for modeling the strategies that decrease the predation ability
(spatial or temporal refuges, prey aggregations, or reduced
search activity by prey).Thepresence of refugesmay affect the
coexistence of predators and prey, the stability of equilibrium
solutions and could imply the existence of Hopf bifurcations.

The contents of the present paper are outlined as follows.
After this introduction, Section 2 presents the mathematical
setting of the thermostatted kinetic framework (TKF) for
active particles, for the modeling of complex systems with
conservative interactions and particles refuge; the systems are
composed of a large number of active particles grouped into
functional subsystems; the time evolution of each subsystem
occurs in the absence of microscopic external actions (closed
systems) and is depicted by a distribution function. The
derivation of differential equations for the time evolution
of the moments and the existence and uniqueness theorem
of the mild solution are also performed in this section.
Section 3 introduces the TKF for systems with prolifera-
tive/destructive andmutative interactions.This section shows
how the moments evolution is influenced by these noncon-
servative interactions. Further generalizations are discussed
in Section 4. The derivation of the thermostatted kinetic
framework for open systems is presented and discussed
in Section 5. Finally, Section 6 concludes the paper with
applications and research perspective on the mathematical
structures derived in the present paper.

2. The TKF with Conservative Interactions and
Particles Refuge

This section is meant to derive the thermostatted kinetic
framework for the modeling of complex systems subjected
to external force fields such that some particles are able to
refuge. Specifically the whole system is decomposed into a
finite large number 𝑛 ∈ N of particle subsystems such that
each subsystem is composed of active particles, which are
able to perform the same strategy (functional subsystems).
Particles are able to interact with one another and with the
particles of the other subsystems. The strategy expressed by
the particles is modeled by inserting, into the microscopic
state of the particles, a scalar variable 𝑢 ∈ 𝐷

𝑢
⊆ R,

called activity variable.The time evolution of each functional

subsystem is depicted by statistical representation, specifi-
cally by a distribution function 𝑓

𝑖
= 𝑓
𝑖
(𝑡, 𝑢) : [0,∞) × 𝐷

𝑢
→

R+, for 𝑖 ∈ {1, 2, . . . , 𝑛}.
Let f(𝑡, 𝑢) = (𝑓

1
(𝑡, 𝑢), 𝑓

2
(𝑡, 𝑢), . . . , 𝑓

𝑛
(𝑡, 𝑢)) be the vector

function whose 𝑖th component is the distribution function of
the 𝑖th functional subsystem, and ̃

𝑓(𝑡, 𝑢) the function defined
as follows:

̃
𝑓 (𝑡, 𝑢) =

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢. (1)

Assuming that 𝑢𝑝𝑓
𝑖
(𝑡, 𝑢) ∈ 𝐿

1

(𝐷
𝑢
), the 𝑝th-order moment of

each functional subsystem 𝑓
𝑖
reads

E
𝑝
[𝑓
𝑖
] (𝑡) = ∫

𝐷
𝑢

𝑢
𝑝

𝑓
𝑖
(𝑡, 𝑢) , 𝑝 ∈ N. (2)

In general E
0
[𝑓
𝑖
] represents the particles density of the

𝑖th functional subsystem and E
2
[𝑓
𝑖
] the related activation

energy. In particular the 𝑝th-order moment of the whole
system is obtained by summing the 𝑝th-order moment of the
subsystems:

E
𝑝
[f] (𝑡) =

𝑛

∑

𝑖=1

E
𝑝
[𝑓
𝑖
] (𝑡) = ∫

𝐷
𝑢

𝑢
𝑝 ̃
𝑓 (𝑡, 𝑢) , 𝑝 ∈ N. (3)

In what follows we assume that the domain 𝐷
𝑢
is a

compact set ofRwith respect to the usual topology.Moreover
some particles of one or more functional subsystems are
able to refuge during the interactions. In particular, for
explanation convenience, we assume that some particles of
the subsystem with distribution function 𝑓

1
(𝑡, 𝑢) escape the

interaction; namely, no refuging particles have microscopic
state 𝑢 ∈ 𝑅

𝑢
⊂ 𝐷
𝑢
.

For deriving the time evolution equation of each distribu-
tion function 𝑓

𝑖
, we need to define the types of interactions.

Mutual interactions refer to test particles, whose distribution
function is denoted by 𝑓

𝑖
(𝑡, 𝑢), candidate particles (with

distribution function denoted by𝑓
𝑖
(𝑡, 𝑢
∗
)), and field particles

(with distribution function denoted by 𝑓
𝑖
(𝑡, 𝑢
∗

)). Candidate
particles can acquire in probability the microscopic state of
the test particle after interactions with field particles. The
possibility of interactions among the particles is measured
by introducing the nonnegative function 𝜂

𝑖𝑗
(𝑢
∗
, 𝑢
∗

) : 𝐷
𝑢
×

𝐷
𝑢
→ R+, which represents the interaction rate between

the 𝑢
∗
-particle of the subsystem 𝑓

𝑖
and the 𝑢∗-particle of the

subsystem 𝑓
𝑗
. In particular we model the particles refuge of

the functional subsystem 𝑓
1
by choosing the interaction rate

as follows:

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)

=

{
{
{
{

{
{
{
{

{

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑢

(𝑢
∗
) 𝜒
𝑅
𝑢

(𝑢
∗

) if 𝑖 = 1, 𝑗 = 1,
𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑢

(𝑢
∗
) if 𝑖 = 1, 𝑗 ̸= 1,

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑢

(𝑢
∗

) if 𝑖 ̸= 1, 𝑗 = 1,

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) otherwise,

(4)

where 𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) : 𝐷
𝑢
× 𝐷
𝑢
→ R+ and 𝜒

𝑅
𝑢

: 𝑅
𝑢
→ {0, 1} is

the characteristic (indicator) function of 𝑅
𝑢
. The probability
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that, after the interaction, the candidate particle undergoes
a change in its microscopic state (that of test particle) is
measured by introducing the following nonnegative function:

A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) : 𝐷
𝑢
× 𝐷
𝑢
× 𝐷
𝑢
→ R

+

, (5)

which is assumed to be a probability density with respect to
𝑢 and then the following condition holds:

∫

𝐷
𝑢

A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑑𝑢 = 1, ∀𝑢
∗
, 𝑢
∗

∈ 𝐷
𝑢
. (6)

Setting

Γ
𝑖𝑗
= Γ
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) = 𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) , (7)

bearing all the above in mind and summing up with respect
to all candidate and field particles we obtain the following
operator G

𝑖
[f] = G

𝑖
[f](𝑡, 𝑢) which models the gain of test

particles into the 𝑖th functional subsystem:

G
𝑖
[f] =

𝑛

∑

𝑗=1

∫

𝐷
𝑢
×𝐷
𝑢

Γ
𝑖𝑗
𝑓
𝑖
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

= ∫

𝐷
𝑢
×𝑅
𝑢

𝜂
𝑖1
(𝑢
∗
, 𝑢
∗

)A
𝑖1
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑓
𝑖
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+

𝑛

∑

𝑗=2

∫

𝐷
𝑢
×𝐷
𝑢

Γ
𝑖𝑗
𝑓
𝑖
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

.

(8)

Similarly, the loss of test cells into the 𝑖th functional subsys-
tem ismodeled by the operatorL

𝑖
[f] =L

𝑖
[f](𝑡, 𝑢) that reads

L
𝑖
[f] = 𝑓

𝑖
(𝑡, 𝑢)

𝑛

∑

𝑗=1

∫

𝐷
𝑢

𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

= 𝑓
𝑖
(𝑡, 𝑢)(∫

𝑅
𝑢

𝜂
𝑖1
(𝑢, 𝑢
∗

) 𝑓
1
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

+

𝑛

∑

𝑗=2

∫

𝐷
𝑢

𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

) .

(9)

We now assume that the system is closed from the
microscopic point of view and in nonequilibrium conditions;
namely, there is an external force field𝐹

𝑖
= 𝐹
𝑖
(𝑢) : 𝐷

𝑢
→ R+,

for 𝑖 ∈ {1, 2, . . . , 𝑛}, at macroscopic scale. Bearing all the
above in mind, the thermostatted kinetic framework with
particles refuge for closed systems is obtained by balancing
the inlet and the outlet flow of particles into the volume of
themicroscopic states.The framework is a system of 𝑛 kinetic
equations coupled with the Gaussian isokinetic thermostat,
whose 𝑖th equation reads

𝜕
𝑡
𝑓
𝑖
+ 𝜕
𝑢
(𝐹
𝑖
𝑓
𝑖
) −T

𝑖
[𝐹
𝑖
, f] = J

𝑖
[f] = G

𝑖
[f] −L

𝑖
[f] ,

(10)

where T
𝑖
[𝐹
𝑖
, f] = T

𝑖
[𝐹
𝑖
, f](𝑡, 𝑢) is the thermostatted term,

which reads

T
𝑖
[𝐹
𝑖
, f] (𝑡, 𝑢) = 𝜕

𝑢
(𝑢𝐹
𝑖
(𝑢) (∫

𝐷
𝑢

𝑢
̃
𝑓 (𝑡, 𝑢) 𝑑𝑢)𝑓

𝑖
(𝑡, 𝑢)) .

(11)

The thermostatted term is a damping operator that is adjusted
so as to control the evolution of lower 𝑝th order moments (in
general the 𝑝 = 1 and 𝑝 = 2moments).This term is based on
Gauss principle of the least constrain; see [37–41].

Remark 1. It is worth stressing that the thermostatted term
(11) can be written as function of the 𝑝 = 1st-order moment as
follows:

T
𝑖
[𝐹
𝑖
, f] (𝑡, 𝑢) = 𝜕

𝑢
(𝑢𝐹
𝑖
(𝑢)E
1
[f] (𝑡) 𝑓

𝑖
(𝑡, 𝑢)) . (12)

This is a further source of nonlinearities.

The depicted thermostatted kinetic framework (10) is
quite general and can be exploited to originate specificmodels
for complex systems with particles refuge by acting on the
specific forms of the interaction rate 𝜂

𝑖𝑗
, the probability

densityA
𝑖𝑗
, and the external force 𝐹

𝑖
.

It is worth stressing that particles refuge defined in the
present paper can also be introduced in the thermostatted
frameworks developed and analyzed in the paper [22] and in
the 𝑝-thermostatted framework proposed in the paper [42].
In the latter case the thermostatted term reads

T
𝑖
[𝐹
𝑖
, f] (𝑡, 𝑢) = 𝜕

𝑢
(𝑢𝐹
𝑖
(𝑢)E
𝑝−1

[f] (𝑡) 𝑓
𝑖
(𝑡, 𝑢)) . (13)

2.1. Preliminary Investigations. This section deals with analyt-
ical results on themathematical framework (10) related to the
moment evolutions.

Definition 2. Let 𝐹
𝑖
= 𝐹
𝑖
(𝑢), 𝑢 ∈ 𝐷

𝑢
, be an external force

field differentiable with respect to 𝑢; 𝜂
𝑖𝑗
(𝑢
1
, 𝑢
2
) : 𝐷
𝑢
× 𝐷
𝑢
→

R+ the interaction rate between the 𝑖th and 𝑗th functional
subsystems; Γ

𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢

→ R+, for
𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, the function defined in (7);A

𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) :

𝐷
𝑢
× 𝐷
𝑢
× 𝐷
𝑢
→ R+ the probability density satisfying the

property (6). A vector function f(𝑡, 𝑢), whose 𝑖th component
is the distribution function of the 𝑖th functional subsystem
𝑓
𝑖
= 𝑓
𝑖
(𝑡, 𝑢) : [0,∞)×𝐷

𝑢
→ R+, is said to be solution of the

model (10) if

(i) 𝑓
𝑖
(𝑡, 𝑢) ∈ 𝐶([0,∞), 𝐿

1

(𝐷
𝑢
));

(ii) 𝑓
𝑖
(𝑡, 𝑢) is differentiable with respect to the variables 𝑡

and 𝑢;
(iii) 𝑢𝑓

𝑖
(𝑡, 𝑢) is an integrable function with respect to the

elementary measure 𝑑𝑢;
(iv) Γ
𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢)𝑓
𝑖
(𝑡, 𝑢
1
)𝑓
𝑗
(𝑡, 𝑢
2
) is an integrable function

with respect to the elementary measure 𝑑𝑢
1
𝑑𝑢
2
;

(v) 𝜂
𝑖𝑗
(𝑢
1
, 𝑢
2
)𝑓
𝑗
(𝑡, 𝑢
2
) is an integrable function with

respect to the elementary measure 𝑑𝑢
2
;
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(vi) 𝑓
𝑖
(𝑡, 𝑢) = 0 as (𝑡, 𝑢) ∈ [0,∞) × 𝜕𝐷

𝑢
;

(vii) 𝑓
𝑖
satisfies (10) for all (𝑡, 𝑢) ∈ [0,∞) × 𝐷

𝑢
.

Assumption 3. We assume that 𝐹
𝑖
(𝑢) = 𝐹 and 𝜂

𝑖𝑗
(𝑢
∗
, 𝑢
∗

) = 𝜂

are nonnegative constants.

Assumption 4. We assume that A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) : 𝐷
𝑢
× 𝐷
𝑢
×

𝐷
𝑢
→ R+ is an even nonnegative function on 𝐷

𝑢
= [−𝑎, 𝑎],

with 𝑎 > 0.

Assumption 5. We assume that A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) : 𝐷
𝑢
× 𝐷
𝑢
×

𝐷
𝑢
→ R+ satisfies the following property:

∫

𝐷
𝑢

𝑢
2

A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑑𝑢 = 𝑢
2

∗
, ∀𝑢

∗
, 𝑢
∗

∈ 𝐷
𝑢
. (14)

The following result holds true.

Lemma 6. Let 𝑝 be an odd number and assume that Assump-
tions 3 and 4 hold. Let f be a nonnegative solution of the
thermostatted kinetic framework with particles refuge (10).
Then the 𝑝th-order moment E

𝑝
[f] = E

𝑝
[f](𝑡) of f satisfies the

following ordinary differential equation:

𝑑

𝑑𝑡

E
𝑝
[f] = −E

𝑝
[f] (𝑝𝐹E

1
[f] + 𝜂R

0
[f]) + 𝑝𝐹E

𝑝−1
[f] ,

(15)

where

R
0
[f] = R

0
[f] (𝑡) = ∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢) 𝑑𝑢 +

𝑛

∑

𝑗=2

E
0
[𝑓
𝑗
] . (16)

Moreover if E
𝑝
[f] is initially bounded, it remains bounded for

all 𝑡 > 0.

Proof. The interaction operator J
𝑖
[f] can be written as

follows:

J
𝑖
[f] (𝑡, 𝑢) = G

𝑖
[f] (𝑡, 𝑢) − 𝜂𝑓

𝑖
(𝑡, 𝑢)R

0
[f] , (17)

where R
0
[f] is given by formula (16).

Multiplying both sides of (10) by 𝑢𝑝 and integrating over
𝐷
𝑢
, we have

∫

𝐷
𝑢

𝑢
𝑝

J
𝑖
[f] (𝑡, 𝑢) 𝑑𝑢 = 0 − 𝜂R

0
[f]E
𝑝
[𝑓
𝑖
] . (18)

Summing up with respect to 𝑖, we obtain
𝑛

∑

𝑖=1

∫

𝐷
𝑢

𝑢
𝑝

J
𝑖
[f] (𝑡, 𝑢) 𝑑𝑢 = −𝜂R

0
[f]E
𝑝
[f] . (19)

Performing integration by parts on the second and third
terms of the left hand side of (10) and summing up with
respect to 𝑖, we have

𝑛

∑

𝑖=1

∫

𝐷
𝑢

𝑢
𝑝

𝜕
𝑢
((1 − 𝑢 E

1
[f] (𝑡)) 𝑓

𝑖
(𝑡, 𝑢)) 𝑑𝑢

= E
1
[f] (𝑡)E

𝑝
[f] (𝑡) − E

𝑝−1
[f] (𝑡) ,

(20)

and the proof is gained.

Remark 7. Setting 𝑝 = 1 in formula (15), the 1st-order
moment E

1
[f] = E

1
[f](𝑡), which is part of the thermostat

operator (11), is solution of the following Riccati nonlinear
ordinary differential equation:

𝑑

𝑑𝑡

E
1
[f] = 𝐹 [E

0
[f] − (E

1
[f])2] − 𝜂R

0
[f]E
1
[f] . (21)

Equation (21) admits a unique solution when an initial
condition is assigned; then it is possible to obtain an explicit
formula for E

1
[f](𝑡); see [20].

2.2. Existence of Mild Solutions. The possibility to obtain an
explicit formula for E

1
[f](𝑡) allows introducing the notion

of mild solution for the relative abstract Cauchy problem of
the thermostatted kinetic framework with particles refuge
(10) and performing the mathematical analysis developed in
paper [43] regarding the existence and uniqueness of themild
solution.

Let f
0
(𝑢) : 𝐷

𝑢
→ (R+)

𝑛 be a 𝐿1-integrable vector
function on𝐷

𝑢
such that ‖f

0
‖
𝐿
1
(𝐷
𝑢
)
∈ R.TheCauchy problem

for the thermostatted framework (10) reads

ΨF [f] (𝑡, 𝑢) = J [f] (𝑡, 𝑢) ,

f (0, 𝑢) = f
0
(𝑢) ,

(22)

where ΨF[f] is the following operator:

ΨF [f] (𝑡, 𝑢)

= 𝜕
𝑡
f (𝑡, 𝑢) + 𝜕

𝑢
(F(1 − 𝑢 ∫

𝐷
𝑢

𝑢
̃
𝑓 (𝑡, 𝑢) 𝑑𝑢) f (𝑡, 𝑢)) ,

(23)

with J[f] = (J
1
[f],J

2
[f], . . . ,J

𝑛
[f]) and F = (𝐹, 𝐹, . . . , 𝐹) ∈

R𝑛. Bearing all the above in mind, the thermostatted frame-
work in vectorial form can be rewritten as follows:

𝜕
𝑡
f (𝑡, 𝑢) + F (1 − 𝑢E

1
[f]) 𝜕
𝑢
f (𝑡, 𝑢)

+ (𝜂E
0
[f] − FE

1
[f]) f (𝑡, 𝑢) = G [f] (𝑡, 𝑢) ,

(24)

where G[f] = (G
1
[f],G

2
[f], . . . ,G

𝑛
[f]). By applying the

following transformations:

c
𝑡
(𝑢) = 𝑢𝑒

−a(𝑡)
+ F𝑒−a(𝑡) ∫

𝑡

0

𝑒
a(V)
𝑑V,

a (𝑡) = F∫
𝑡

0

E
1
[f] (V) 𝑑V,

(25)

we have

𝜕
𝑡
fc (𝑡, 𝑢) + (𝜂E0 [f] − FE

1
[f]) fc (𝑡, 𝑢) = Gc [f] (𝑡, 𝑢) ,

(26)

with fc(𝑡, 𝑢) = f(𝑡, c
𝑡
(𝑢)) and Gc[f](𝑡) = G[f](𝑡, c

𝑡
(𝑢)). Set

s (𝑡) = ∫
𝑡

0

(𝜂 E
0
[f] − FE

1
[f] (𝑢)) 𝑑𝑢. (27)
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Let𝑇 > 0 be fixed.The integral form of (24) for 𝑡 ∈ [0, 𝑇] and
𝑢 ∈ 𝐷

𝑢
reads

fc (𝑡, 𝑢) = 𝑒
−s(𝑢) fc (0, 𝑢) + 𝑒

−s(𝑢)
∫

𝑡

0

𝑒
s(𝜏) Gc [f] (𝜏, 𝑢) 𝑑𝜏

(28)

and then

f (𝑡, 𝑢) = 𝑒−s(𝑢)f
0
(c−1
𝑡
(𝑢))

+ 𝑒
−s(𝑢)

∫

𝑡

0

𝑒
s(𝜏)G [f] (𝜏, c

𝜏
∘ c−1
𝑡
(𝑢)) 𝑑𝜏.

(29)

Definition 8. Let f
0
(𝑢) : 𝐷

𝑢
→ (R+)

𝑛 be a 𝐿1-integrable
function on 𝐷

𝑢
such that E

0
[f
0
] = 1. A nonnegative vector

function f is said to be amild solution to the Cauchy problem
(22) if f(𝑡, 𝑢) ∈ [𝐶([0,∞), 𝐿

1

(𝐷
𝑢
))]
𝑛 and f satisfies (29).

The following result holds true.

Theorem 9. Assume that Assumptions 3, 4, and 5 hold. Let
f
0
(𝑢) be the initial vector function such that E

0
[f
0
] = 1. Then

the Cauchy problem (22) admits a unique globally in time mild
solution. Furthermore E

0
[f] = E

2
[f] = 1.

Proof. The proof of the theorem follows by integration along
the characteristic curves and the definition and analysis of
successive approximations sequences; see [20].

Remark 10. Theorem 9 states that the introduction of the
thermostatted term guarantees the conservation of the E

0
[f]

and E
2
[f] moments, namely, the density and the activation

energy of the system.

3. The TKF with Nonconservative Interactions
and Particles Refuge

This section deals with the derivation and analysis of the
TKF with particles refuge and nonconservative interactions,
namely, interactions that modify the number of particles.
Nonconservative interactions include proliferative, destruc-
tive, and mutative events. These interactions are typical of
the biological systems; indeed proliferative/destructive events
occur when cells start to duplicate or are eliminated/inhibited
by the immune system; mutative events are the result of
genetic mutations.

Following [17, 44] and references cited therein, the role of
proliferative and/or destructive interactions during particle
refuge is modeled by the following operator:

N
𝑖
[f] = 𝑓

𝑖
(𝑡, 𝑢)

𝑛

∑

𝑗=1

∫

𝐷
𝑢

𝛼
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

, (30)

where

𝛼
𝑖𝑗
(𝑢, 𝑢
∗

) = 𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝜇
𝑖𝑗
(𝑢, 𝑢
∗

) , (31)

with 𝜇
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) being the net proliferation rate. In particular
for the particles refuge case, the operator (30) reads

N
𝑖
[f] = 𝑓

𝑖
(𝑡, 𝑢)(∫

𝑅
𝑢

𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝜇
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
1
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

+

𝑛

∑

𝑗=2

∫

𝐷
𝑢

𝛼
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

) .

(32)

Moreover the role of mutative events is modeled by the
following operator:

M
𝑖
[f] =

𝑛

∑

ℎ=1

𝑛

∑

𝑘=1

∫

𝐷
𝑢
×𝐷
𝑢

𝛽
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢)

× 𝑓
ℎ
(𝑡, 𝑢
∗
) 𝑓
𝑘
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

,

(33)

where

𝛽
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) = 𝜂
ℎ𝑘
(𝑢
∗
, 𝑢
∗

) 𝜑
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) , (34)

with 𝜑𝑖
ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) being the net proliferation rate into the 𝑖th
functional subsystem, due to interactions that occur with rate
𝜂
ℎ𝑘
, of the candidate ℎ-particle, with state 𝑢

∗
, and the field 𝑘-

particle, with state 𝑢∗. In particular in the case of particles
refuge, the operator (33) reads

M
𝑖
[f] = ∫

𝑅
𝑢
×𝑅
𝑢

𝜂
11
(𝑢
∗
, 𝑢
∗

) 𝜑
𝑖

11
(𝑢
∗
, 𝑢
∗

, 𝑢)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
1
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+

𝑛

∑

𝑘=2

∫

𝑅
𝑢
×𝐷
𝑢

𝜂
1𝑘
(𝑢
∗
, 𝑢
∗

) 𝜑
𝑖

1𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
𝑘
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+

𝑛

∑

ℎ=2

∫

𝐷
𝑢
×𝑅
𝑢

𝜂
ℎ1
(𝑢
∗
, 𝑢
∗

) 𝜑
𝑖

ℎ1
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑓
ℎ
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+

𝑛

∑

ℎ=2

𝑛

∑

𝑘=2

∫

𝐷
𝑢
×𝐷
𝑢

𝛽
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑓
ℎ
(𝑡, 𝑢
∗
)

× 𝑓
𝑘
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

.

(35)

Assuming that the system is closed and in nonequilibrium
conditions, the 𝑖th equation of the thermostatted kinetic
framework with particles refuge for closed systems and with
nonconservative interactions thus reads

𝜕
𝑡
𝑓
𝑖
+ 𝜕
𝑢
(𝐹
𝑖
𝑓
𝑖
) −T

𝑖
[𝐹
𝑖
, f] = 𝐽

𝑖
[f]

= G
𝑖
[f] −L

𝑖
[f] +N

𝑖
[f] +M

𝑖
[f] ,

(36)

where the meaning of each operator can be recovered from
the previous section.
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3.1. Evolution of Moments. This section is concerned with a
preliminary analysis of the thermostatted framework (36).

Definition 11. Let 𝐹
𝑖
= 𝐹
𝑖
(𝑢), 𝑢 ∈ 𝐷

𝑢
, be an external force

field differentiable with respect to 𝑢; 𝜂
𝑖𝑗
(𝑢
1
, 𝑢
2
) : 𝐷

𝑢
×

𝐷
𝑢

→ R+ the interaction rate among the subsystems;
Γ
𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢
→ R+, for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛},

the function defined in (7); 𝛼
𝑖𝑗
(𝑢
1
, 𝑢
2
) : 𝐷
𝑢
× 𝐷
𝑢
→ R+ the

function defined in (31); 𝛽𝑖
ℎ𝑘
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢
→

R+ the function defined in (34), for 𝑖, ℎ, 𝑘 ∈ {1, 2, . . . , 𝑛};
A
𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢

→ R+ the probability
density. A vector function f(𝑡, 𝑢), whose 𝑖th component is the
distribution function of the 𝑖th functional subsystem 𝑓

𝑖
=

𝑓
𝑖
(𝑡, 𝑢) : [0,∞) × 𝐷

𝑢
→ R+, is said to be solution of model

(36) if the conditions (i), (ii), (iii), (iv), and (v) of Definition 2
and the following further conditions hold:

(vi) 𝛼
𝑖𝑗
(𝑢
1
, 𝑢
2
) 𝑓
𝑗
(𝑡, 𝑢
2
) is an integrable function with

respect to the elementary measure 𝑑𝑢
2
;

(vii) 𝛽𝑖
ℎ𝑘
(𝑢
1
, 𝑢
2
, 𝑢)𝑓
ℎ
(𝑡, 𝑢
1
)𝑓
𝑘
(𝑡, 𝑢
2
) is an integrable func-

tion with respect to the elementary measure 𝑑𝑢
1
𝑑𝑢
2
;

(viii) 𝑓
𝑖
(𝑡, 𝑢) = 0 as (𝑡, 𝑢) ∈ [0,∞) × 𝜕𝐷

𝑢
;

(ix) 𝑓
𝑖
satisfies (36) for all (𝑡, 𝑢) ∈ [0,∞) × 𝐷

𝑢
.

Assumption 12. In what follows we assume that 𝐹
𝑖
= 𝐹, 𝜂

𝑖𝑗
=

𝜂, 𝜇
𝑖𝑗
= 𝜇, and 𝜑𝑖

ℎ𝑘
= 𝜑 are constants and A

𝑖𝑗
is an even

function with respect to 𝑢 ∈ 𝐷
𝑢
, where 𝐷

𝑢
= [−𝑎, 𝑎] with

𝑎 > 0.

Remark 13. Under Assumption 12, if we also assume for
computational convenience that 𝐹

𝑖
= 0, integrating the left

and right hand sides of (36) with respect to 𝑢, we obtain the
following equation:

𝜕
𝑡
(E
0
[𝑓
𝑖
]) = 𝜂𝜇E

0
[𝑓
𝑖
]
[

[

∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢) 𝑑𝑢 +

𝑛

∑

𝑗=2

E
0
[𝑓
𝑗
]
]

]

+ 2𝑎𝛽

𝑛

∑

ℎ=1

𝑛

∑

𝑘=1

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] ,

(37)

which shows that the evolution of the densityE
0
[𝑓
𝑖
] of the 𝑖th

functional subsystem depends on the distribution function
𝑓
1
(𝑡, 𝑢) of the nonrefuging particles. In particular the above

equation can be rewritten as follows:

𝜕
𝑡
(E
0
[𝑓
𝑖
]) = 𝜂𝜇E

0
[𝑓
𝑖
]
[

[

(E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
]) +

𝑛

∑

𝑗=2

E
0
[𝑓
𝑗
]
]

]

+ 2𝑎𝛽

𝑛

∑

ℎ=1

𝑛

∑

𝑘=1

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] ,

(38)

where

Ẽ
0
[𝑓
1
] = ∫

𝐷
𝑢
\𝑅
𝑢

𝑓
1
(𝑡, 𝑢) 𝑑𝑢 (39)

is the density of the particles of the functional subsystem 𝑓
1

that have refuged. Moreover

𝑛

∑

ℎ=1

𝑛

∑

𝑘=1

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
]

= (E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
])

× ((E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
]) + 2

𝑛

∑

𝑘=2

E
0
[𝑓
𝑘
])

+

𝑛

∑

ℎ=2

𝑛

∑

𝑘=2

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] .

(40)

Therefore the differential equation for the density E
0
[𝑓
𝑖
] of

the 𝑖th functional subsystem reads

𝜕
𝑡
(E
0
[𝑓
𝑖
]) = 𝜂𝜇E

0
[𝑓
𝑖
]
[

[

(E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
]) +

𝑛

∑

𝑗=2

E
0
[𝑓
𝑗
]
]

]

+ 2𝑎𝛽 (E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
])

× ((E
0
[𝑓
1
] − Ẽ
0
[𝑓
1
]) + 2

𝑛

∑

𝑘=2

E
0
[𝑓
𝑘
])

+ 2𝑎𝛽

𝑛

∑

ℎ=2

𝑛

∑

𝑘=2

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] .

(41)

The following result holds true.

Theorem 14. Let 𝑝 be an odd number and assume that
Assumption 12 holds. If there exists a nonnegative solution f
of the thermostatted kinetic framework with particles refuge
and nonconservative interactions (36), then the 𝑝th-order
moment E

𝑝
[f] = E

𝑝
[f](𝑡) is solution of the following ordinary

differential equation:

𝑑

𝑑𝑡

E
𝑝
[f]

= −E
𝑝
[f] (𝑝𝐹E

1
[f] + 𝜂 (1 − 𝜇)R

0
[f]) + 𝑝𝐹E

𝑝−1
[f] ,
(42)

where R
0
[f] is given by formula (16).

Proof. The interaction operator 𝐽
𝑖
[f] can bewritten as follows:

𝐽
𝑖
[f] (𝑡, 𝑢)

= G
𝑖
[f] (𝑡, 𝑢) − 𝜂 (1 − 𝜇) 𝑓

𝑖
(𝑡, 𝑢)R

0
[f] + 𝜂𝜑𝑚 (𝑡) ,

(43)
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where

𝑚(𝑡) = (∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
)

2

+ 2(∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
)

𝑛

∑

𝑘=2

E
0
[𝑓
𝑘
]

+

𝑛

∑

ℎ=2

𝑛

∑

𝑘=2

E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] .

(44)

Multiplying both sides of 𝐽
𝑖
[f] by 𝑢𝑝 and integrating over𝐷

𝑢
,

we have

∫

𝐷
𝑢

𝑢𝐽
𝑖
[f] (𝑡, 𝑢) 𝑑𝑢

= 0 − 𝜂 (1 − 𝜇)R
0
[f] ∫
𝐷
𝑢

𝑢𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢 + 0.

(45)

Summing up with respect to 𝑖, we obtain

𝑛

∑

𝑖=1

∫

𝐷
𝑢

𝑢
𝑝

J
𝑖
[f] (𝑡, 𝑢) 𝑑𝑢 = −𝜂 (1 − 𝜇)R

0
[f]E
𝑝
[f] , (46)

and bearing Lemma 6 in mind, we obtain the proof.

Remark 15. Setting𝑝 = 1 in the differential equation (42), the
1st-order moment E

1
[f] = E

1
[f](𝑡) of f satisfies the following

Riccati nonlinear ordinary differential equation:

𝑑

𝑑𝑡

E
1
[f]

= 𝐹 [E
0
[f] − (E

1
[f])2] − 𝜂 (1 − 𝜇)R

0
[f]E
1
[f] .

(47)

As (47) states, the time evolution ofE
1
[f]does not depend

on the mutative interactions when 𝜑𝑖
ℎ𝑘

is constant. If 𝜑𝑖
ℎ𝑘
=

𝜑
𝑖

ℎ𝑘
(𝑢) (namely, it does not depend on 𝑢

∗
and 𝑢

∗), the
evolution equation of E

1
[f] reads

𝑑

𝑑𝑡

E
1
[f] = 𝐹 [E

0
[f] − (E

1
[f])2]

− 𝜂 (1 − 𝜇)R
0
[f]E
1
[f] + 𝜂𝜑𝑠 (𝑡) ,

(48)

where

𝑠 (𝑡) = (∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
)

2

×

𝑛

∑

𝑖=1

𝜁
𝑖

11
+ 2∫

𝑅
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

𝑛

∑

𝑖=1

𝑛

∑

𝑘=2

𝜁
𝑖

1𝑘
E
0
[𝑓
𝑘
]

+

𝑛

∑

𝑖=1

𝑛

∑

ℎ=2

𝑛

∑

𝑘=2

𝜁
𝑖

ℎ𝑘
E
0
[𝑓
ℎ
]E
0
[𝑓
𝑘
] ,

(49)

𝜁
𝑖

ℎ𝑘
= ∫

𝐷
𝑢

𝑢𝜑
𝑖

ℎ𝑘
(𝑢) 𝑑𝑢. (50)

Obviously, if𝜑𝑖
ℎ𝑘
(𝑢) is an even functionwith respect to 𝑢, then

𝑠(𝑡) = 0 and (48) does not depend on themutative term again.
It is worth stressing that, in the general case 𝜑𝑖

ℎ𝑘
=

𝜑
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢), the differential equation fulfilled by E
𝑝
[f](𝑡)

depends on the following quantity:

𝑛

∑

𝑖=1

∫

𝐷
𝑢

𝑢
𝑝

𝜑
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑑𝑢, (51)

for which, in general, is not possible to give an explicit
formula.

As alreadymentioned, the possibility to obtain an explicit
formula for E

1
[f](𝑡) solution of the differential equation (47)

allows defining the mild solution of the relative abstract
Cauchy problem. However, in the nonconservative interac-
tions case, global existencemay not occur and the proof of the
global existence depends casewise. This is a work in progress
and results will be reported in due course.

4. Particles Refuge in Functional Subsystems

For concluding the discussion on the introduction of par-
ticles refuge in thermostatted kinetic models for closed
systems, this section is concerned with the derivation of
the thermostatted kinetic framework that generalizes the
thermostatted kinetic framework (36) when more than one
functional subsystem contains particles refuge. Specifically
we define the following sets:

R = {𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑓
𝑗
(𝑡, 𝑢)

has particles refuge in 𝐷
𝑢
} ,

S = {𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑓
𝑗
(𝑡, 𝑢)

has not particles refuge in 𝐷
𝑢
} .

(52)

Therefore the relative interaction rate 𝜂
𝑖𝑗
defined in (4) now

reads

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)

=

{
{
{
{
{

{
{
{
{
{

{

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑖

𝑢

(𝑢
∗
) 𝜒
𝑅
𝑗

𝑢

(𝑢
∗

) if 𝑖 ∈R, 𝑗 ∈R,

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑗

𝑢

(𝑢
∗
) if 𝑖 ∈R, 𝑗 ∈ S,

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜒
𝑅
𝑖

𝑢

(𝑢
∗

) if 𝑖 ∈ S, 𝑗 ∈R,

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) otherwise,
(53)

where 𝑅ℎ
𝑢
denotes the domain of the nonrefuging particles of

the ℎth functional subsystem.
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Bearing all the above in mind, we can split the operators
in the right hand side of (36) as follows: the gain particles
operator reads

G
𝑖
[f]

= ∑

𝑗∈R

∫

�̃�
𝑖

𝑢
×𝑅
𝑗

𝑢

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢)

× 𝑓
𝑖
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∑

𝑗∈S

∫

𝐷
𝑢
×𝐷
𝑢

Γ
𝑖𝑗
𝑓
𝑖
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

,

(54)

where

𝐷
𝑖

𝑢
= {

𝐷
𝑢

if the 𝑖th subsystem has no particles refuge,
𝑅
𝑖

𝑢
if the 𝑖th subsystem has particles refuge.

(55)

The lost particles operator is splitted as follows:

L
𝑖
[f] = 𝑓

𝑖
(𝑡, 𝑢)(∑

𝑗∈R

∫

𝑅
𝑗

𝑢

𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

+ ∑

𝑗∈S

∫

𝐷
𝑢

𝜂
𝑖𝑗
(𝑢, 𝑢
∗

) 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗

) .

(56)

The proliferative operator reads

N
𝑖
[f] = 𝑓

𝑖
(𝑡, 𝑢) ∑

𝑗∈R

∫

𝐷
𝑢
×𝑅
𝑗

𝑢

𝜂
𝑖𝑗
(𝑢
∗
, 𝑢
∗

) 𝜇
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)

× 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

+ 𝑓
𝑖
(𝑡, 𝑢) ∑

𝑗∈S

∫

𝐷
𝑢
×𝐷
𝑢

𝛼
𝑖𝑗
(𝑢
∗
, 𝑢
∗

)

× 𝑓
𝑗
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

,

(57)

and finally the mutative operator is written as follows:

M
𝑖
[f] =

𝑛

∑

ℎ=1

𝑚

∑

𝑘=1

∫

�̃�
ℎ

𝑢
×�̃�
𝑘

𝑢

𝛽
𝑖

ℎ𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑓
ℎ
(𝑡, 𝑢
∗
)

× 𝑓
𝑘
(𝑡, 𝑢
∗

) 𝑑𝑢
∗
𝑑𝑢
∗

.

(58)

5. The TKF for Open Systems with
Particles Refuge

Themathematical structures dealt with the previous sections
are meaningful for complex biological systems with particles
refuge subjected to external force fields at the macroscopic
scale but in the absence of interactions with the outer
environment at the microscopic scale. Modeling external
actions at the microscopic scale means representing the outer
system as functional subsystems with distribution function

denoted by 𝑔
𝑖𝑟
= 𝑔
𝑖𝑟
(𝑡, V) : [0,∞[×𝐷

𝑢
→ R+; see [45].

Specifically the 𝑖th functional subsystem interactswith the 𝑟th
external agent, for 𝑟 ∈ {1, 2, . . . , 𝑚}. Therefore, the external
agent is regarded as a specific functional subsystem with the
ability to interact with active particles of the inner system
and has the ability to modify the state 𝑢 of the system by a
particular action related to the variable V ∈ 𝐷

𝑢
. This system

is known as open system.

Assumption 16. It is assumed that the action 𝑔
𝑖𝑟
(𝑡, V) is

factorized as follows:

𝑔
𝑖𝑟
(𝑡, V) = 𝜖

𝑖𝑟
(𝑡) 
𝑟
(V) , V ∈ 𝐷

𝑢
, (59)

where the term 𝜖
𝑖𝑟
= 𝜖
𝑖𝑟
(𝑡) is the intensity that depends on

time, by which the agent acts on the system, and 
𝑟
(V) is the

probability function associated with the variable V.

Let  = {
1
, 
2
, . . . , 

𝑚
} be the vector whose components

are the 𝑚 distribution functions associated with the external
agents. Thus the 𝑖th equation of the thermostatted mathe-
matical framework, with particle refuge and nonconservative
interactions, for open systems reads

𝜕
𝑡
𝑓
𝑖
(𝑡, 𝑢) + 𝜕

𝑢
(𝐹
𝑖
(𝑢) (1 − 𝑢∫

𝐷
𝑢

𝑢
̃
𝑓 (𝑡, 𝑢) 𝑑𝑢)𝑓

𝑖
(𝑡, 𝑢))

=Z
𝑖
[f , ] (𝑡, 𝑢) ,

(60)

with

Z
𝑖
[f , ] (𝑡, 𝑢) = 𝐽

𝑖
[f] (𝑡, 𝑢) + 𝑄

𝑖
[f , ] (𝑡, 𝑢) , (61)

where the operator 𝐽
𝑖
[f](𝑡, 𝑢) reads

𝐽
𝑖
[f] (𝑡, 𝑢) = G

𝑖
[f] (𝑡, 𝑢) −L

𝑖
[f] (𝑡, 𝑢)

+N
𝑖
[f] (𝑡, 𝑢) +M

𝑖
[f] (𝑡, 𝑢) ,

(62)

and the meaning of each operator can be recovered by the
previous sections, and consider

𝑄
𝑖
[f , ] (𝑡, 𝑢)

=

𝑚

∑

𝑟=1

𝜖
𝑖𝑟
(𝑡) ∫

�̃�
𝑖

𝑢
×𝐷
𝑢

𝜂
𝑒

𝑖𝑟
(𝑢
∗
, V∗)B

𝑖𝑟
(𝑢
∗
, V∗, 𝑢)

× 𝑓
𝑖
(𝑡, 𝑢
∗
) 
𝑟
(V∗) 𝑑𝑢

∗
𝑑V∗

− 𝑓
𝑖
(𝑡, 𝑢)

𝑚

∑

𝑟=1

𝜖
𝑖𝑟
(𝑡) ∫

𝐷
𝑢

𝜂
𝑒

𝑖𝑟
(𝑢, V∗) 

𝑟
(V∗) 𝑑V∗.

(63)

The terms of the operator 𝑄
𝑖
[f , ](𝑡, 𝑢) have the following

meanings:

(i) 𝜂𝑒
𝑖𝑟
(𝑢
∗
, V∗) is the inner-outer encounter rate between

the 𝑟th external agent, with state V∗, and the active
(candidate) particle of the 𝑖th population, with state
𝑢
∗
. According to the role of particles refuge, the inner-

outer encounter rate reads

𝜂
𝑒

𝑖𝑟
(𝑢
∗
, V∗) = {

𝜂
𝑒

𝑖𝑟
(𝑢
∗
, V∗) 𝜒

𝑅
𝑖

𝑢

(𝑢
∗
) if 𝑖 ∈R,

𝜂
𝑒

𝑖𝑟
(𝑢
∗
, V∗) otherwise.

(64)
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(ii) B
𝑖𝑟
(𝑢
∗
, V∗, 𝑢) is the inner-outer transition probability

density which describes the probability density that a
candidate particle of the 𝑖th population, with state 𝑢

∗
,

falls into the state 𝑢 after an interaction with the 𝑟th
external agent whose state is V∗.

The density B
𝑖𝑟
satisfies, for all 𝑟 ∈ {1, 2, . . . , 𝑚} and 𝑖 ∈

{1, 2, . . . , 𝑛}, the following condition:

∫

𝐷
𝑢

B
𝑖𝑟
(𝑢
∗
, V∗, 𝑢) 𝑑𝑢 = 1, ∀𝑢

∗
, V∗ ∈ 𝐷

𝑢
. (65)

It is worth noting that the thermostatted framework (60)
is not autonomous; indeed the time variable is explicitly
inserted by the intensity function 𝜖

𝑖𝑟
= 𝜖
𝑖𝑟
(𝑡).

5.1. On the Evolution of Moments. This section is meant to
derive evolution equations for the moments of the solution
of the thermostatted framework (60).

Definition 17. Let 𝐹
𝑖
= 𝐹
𝑖
(𝑢), 𝑢 ∈ 𝐷

𝑢
, be an external force

field differentiable with respect to 𝑢; 𝜂
𝑖𝑗
(𝑢
1
, 𝑢
2
), 𝜂𝑒
𝑖𝑟
(𝑢
1
, 𝑢
2
) :

𝐷
𝑢
× 𝐷
𝑢
→ R+ the inner-inner and inner-outer interaction

rate among the subsystems, for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑟 ∈

{1, 2, . . . , 𝑚}; Γ
𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢

→ R+, for
𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, the function defined in (7); 𝛼

𝑖𝑗
(𝑢
1
, 𝑢
2
) :

𝐷
𝑢
× 𝐷
𝑢
→ R+ the function defined in (31); 𝛽𝑖

ℎ𝑘
(𝑢
1
, 𝑢
2
, 𝑢) :

𝐷
𝑢
× 𝐷
𝑢
× 𝐷
𝑢

→ R+ the function defined in (34), for
𝑖, ℎ, 𝑘 ∈ {1, 2, . . . , 𝑛}; A

𝑖𝑗
(𝑢
1
, 𝑢
2
, 𝑢) : 𝐷

𝑢
× 𝐷
𝑢
× 𝐷
𝑢
→ R+

the inner-inner probability density; B
𝑖𝑟
(𝑢
1
, 𝑢
2
, 𝑢) the inner-

outer probability density; 𝑔
𝑖𝑟

= 𝑔
𝑖𝑟
(𝑡, V) = 𝜖

𝑖𝑟
(𝑡)
𝑟
(V) :

[0,∞[ ×𝐷
𝑢
→ R+ the distribution function of the external

actions.
A vector function f(𝑡, 𝑢), whose 𝑖th component is the

distribution function of the 𝑖th functional subsystem 𝑓
𝑖
=

𝑓
𝑖
(𝑡, 𝑢) : [0,∞) × 𝐷

𝑢
→ R+, is said to be solution of model

(60) if the conditions (i), (ii), (iii), (iv), and (v) of Definition 2
and the conditions (vi), (vii), (viii), and (ix) of Definition 11
hold, and

(x) 𝜂𝑒
𝑖𝑟
(𝑢, 𝑢
2
)
𝑟
(𝑢
2
) is an integrable function with respect

to the elementary measure 𝑑𝑢
2
;

(xi) 𝑓
𝑖
satisfies (60) for all (𝑡, 𝑢) ∈ [0,∞) × 𝐷

𝑢
.

Assumption 18. In what follows we assume that 𝐹
𝑖
= 𝐹, 𝜂

𝑖𝑗
=

𝜂, 𝜇
𝑖𝑗
= 𝜇, 𝜑𝑖

ℎ𝑘
= 𝜑, and 𝜂𝑒

𝑖𝑟
= 𝜂
𝑒 are constants andA

𝑖𝑗
andB

𝑖𝑟

are even functionswith respect to𝑢 ∈ 𝐷
𝑢
, where𝐷

𝑢
= [−𝑎, 𝑎]

with 𝑎 > 0. The following result holds true.

Theorem 19. Assume that Assumption 18 holds. If there exists
a nonnegative solution f of the thermostatted kinetic frame-
work with particles refuge and nonconservative interactions
(60), then the 1st-order moment E

1
[f] = E

1
[f](𝑡) is solution of

the following Riccati nonlinear ordinary differential equation:

𝑑

𝑑𝑡

E
1
[f] = 𝐹 [E

0
[f] − (E

1
[f])2]

+ [𝜂 (𝜇 − 1)R
0
[f] − 𝜂𝑒𝛿

𝑖
(𝑡)]E
1
[f] ,

(66)

where

𝛿
𝑖
(𝑡) =

𝑚

∑

𝑟=1

𝜖
𝑖𝑟
(𝑡) ∫

𝐷
𝑢


𝑟
(V∗) 𝑑V∗. (67)

Proof. The interaction operator Z
𝑖
[f , ](𝑡, 𝑢) can be written

as follows:

Z
𝑖
[f , ] (𝑡, 𝑢) = G

𝑖
[f] (𝑡, 𝑢) − 𝜂 (1 − 𝜇) 𝑓

𝑖
(𝑡, 𝑢)R

0
[f]

+ 𝜂𝜑𝑚 (𝑡) +G
𝑒

𝑖
[f] (𝑡, 𝑢) − 𝜂𝑒𝑓

𝑖
(𝑡, 𝑢) 𝛿

𝑖
(𝑡) ,

(68)

where

G
𝑒

𝑖
[f] (𝑡, 𝑢) = 𝜂𝑒

𝑚

∑

𝑟=1

𝜖
𝑖𝑟
(𝑡) ∫

𝐷
𝑢
×𝐷
𝑢

B
𝑖𝑟
(𝑢
∗
, V∗, 𝑢)

× 𝑓
𝑖
(𝑡, 𝑢
∗
) 
𝑟
(V∗) 𝑑𝑢

∗
𝑑V∗,

𝛿
𝑖
(𝑡) =

𝑚

∑

𝑟=1

𝜖
𝑖𝑟
(𝑡) ∫

𝐷
𝑢


𝑟
(V∗) 𝑑V∗.

(69)

Multiplying both sides of Z
𝑖
[f , ] by 𝑢 and integrating over

𝐷
𝑢
, we have

∫

𝐷
𝑢

𝑢Z
𝑖
[f , ] (𝑡, 𝑢) 𝑑𝑢 = 0 − 𝜂 (1 − 𝜇)R

0
[f]

× ∫

𝐷
𝑢

𝑢𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢 + 0 + 0 − 𝜂

𝑒

𝛿
𝑖
(𝑡)

× ∫

𝐷
𝑢

𝑢𝑓
𝑖
(𝑡, 𝑢) 𝑑𝑢.

(70)

Summing up with respect to 𝑖, we obtain

𝑛

∑

𝑖=1

∫

𝐷
𝑢

𝑢 Z
𝑖
[f , ] (𝑡, 𝑢) 𝑑𝑢

= [𝜂 (𝜇 − 1)R
0
[f] − 𝜂𝑒𝛿

𝑖
(𝑡)]E
1
[f] ,

(71)

and the proof is gained.

It is worth stressing that, as in the previous sections, if
𝑝 is an odd number, we are able to obtain the differential
equation for the E

𝑝
[f] = E

𝑝
[f](𝑡) moment. Specifically for

open systems, the moment E
𝑝
[f] is solution of the following

ordinary differential equation:

𝑑

𝑑𝑡

E
𝑝
[f] = −E

𝑝
[f] (𝑝𝐹E

1
[f] + 𝜂 (𝜇 − 1)R

0
[f]

−𝜂
𝑒

𝛿
𝑖
(𝑡)) + 𝑝𝐹E

𝑝−1
[f] .

(72)

It is easy to show that, if E
𝑝
[f] is initially bounded, it remains

bounded for all 𝑡 > 0.
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6. Concluding Remarks and Applications

The goal of this paper is the derivation of mathematical
frameworks for the modeling of complex biological system
with particles refuge and characterization of proliferative and
mutative interactions. Moreover the roles of external actions
acting on the system at the macroscopic and microscopic
scales have been taken into account. These actions can refer
to the action of the external environment or agents. The
mathematical frameworks proposed in the present paper also
refer to complex systems characterized by nonequilibrium
circumstances (due to the actions of external macroscopic
force fields) and particles that escape from interactions
(particle refuge).

The evolution equation satisfied by moments of the
solution belongs to the class of linear differential equations
(for 𝑝 ̸= 1 odd number) and Riccati differential equations (for
𝑝 = 1). As known, the general form of the Riccati differential
equation reads

𝑦


(𝑡) + 𝑎 (𝑡) 𝑦 (𝑡) + 𝑏 (𝑡) 𝑦
2

(𝑡) + 𝑐 (𝑡) = 0, (73)

which is a nonlinear ordinary differential equation, where
𝑎(𝑡), 𝑏(𝑡), and 𝑐(𝑡) are continuous functions defined on a
subset of R+. The analytical method for solving Riccati
equations of the form (73) is based on the knowledge of a
particular solution. Indeed, let 𝑦(𝑡) be a known solution of
(73); then the general integral of (73) can be obtained as
follows:

𝑦 (𝑡) = 𝑦 (𝑡) +

1

𝑧 (𝑡)

, (74)

with 𝑧(𝑡) being the general integral of the following first-order
linear ordinary differential equation:

𝑧


(𝑡) − [𝑎 (𝑡) + 2𝑏 (𝑡) 𝑦 (𝑡)] 𝑧 (𝑡) = 𝑏 (𝑡) , (75)

whose general integral reads

𝑧 (𝑡) = exp(∫ [𝑎 (𝑡) + 2𝑏 (𝑡) 𝑦 (𝑡)] 𝑑𝑡)

× (𝑘 + ∫ 𝑏 (𝑡) exp(−∫ [𝑎 (𝑡) + 2𝑏 (𝑡) 𝑦 (𝑡)] 𝑑𝑡) 𝑑𝑡) .
(76)

Therefore we are able to obtain an explicit formula of
the moments when a specific complex system is modeled,
considering, as particular solution can be taken, the critical
point of the framework, which is in particular a constant
solution; see [21].

Differential equations fulfilled by moments with order
of an even number 𝑝 have not been derived in the present
paper. Indeed, following the same strategy performed in the
whole paper, we are not able to give an explicit formula to the
following integrals:

∫

𝐷
𝑢

𝑢
𝑝

A
𝑖𝑗
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑑𝑢, ∫

𝐷
𝑢

𝑢
𝑝

B
𝑖𝑘
(𝑢
∗
, 𝑢
∗

, 𝑢) 𝑑𝑢,

(77)

without adding further assumptions on the terms of the
thermostatted framework.

As alreadymentioned, applications of the particles refuge
introduction refer to the modeling of complex biological sys-
tems, especially to the tumor escape during tumor-immune
system competition; see, among others, papers [46–51]. As
known, tumor escape occurs when the immune system
response completely fails to control the tumor progression;
the process results in the selection of tumor cell variants that
are able to resist, avoid, or suppress the antitumor immune
response, leading to the escape phase. During the escape
phase, the immune system is no longer able to contain tumor
progression, and a progressively growing tumor results; see,
among others, papers [52, 53] and the references cited therein.

Research perspectives include the modeling of space
dynamics [54] and the introduction of stochastic terms that
model jump processes in the activity and/or in the velocity
variable. Specifically in velocity-jump processes discontin-
uous changes in the speed or direction of an individual
are generated by a Poisson process; see paper [55] and the
references section. In particular the resulting thermostatted
kinetic framework for each functional subsystem reads

𝜕
𝑡
𝑓
𝑖
+ 𝜕
𝑢
(𝐹
𝑖
(𝑢) (1 − 𝑢∫

𝐷
𝑢

𝑢
̃
𝑓 (𝑡, 𝑢) 𝑑𝑢)𝑓

𝑖
(𝑡, 𝑢))

=Z
𝑖
[f , ] +U

𝑖
[𝑓
𝑖
] ,

(78)

where the operator U
𝑖
[𝑓
𝑖
], which is responsible for the

modeling by an activity-jump process, is written as follows:

U
𝑖
[𝑓
𝑖
] (𝑡, 𝑢)

= 𝜛
𝑖
∫

𝐷
𝑢

[𝑈
𝑖
(𝑢
∗

, 𝑢) 𝑓
𝑖
(𝑡, 𝑢
∗

) − 𝑈
𝑖
(𝑢, 𝑢
∗

) 𝑓
𝑖
(𝑡, 𝑢)] 𝑑𝑢

∗

,

(79)

with 𝜛
𝑖
being turning time and 𝑈

𝑖
(𝑢
∗

, 𝑢) the turning kernel
which gives, for each functional subsystem, the probability
that the activity 𝑢∗ ∈ 𝐷

𝑢
jumps into the activity 𝑢 ∈ 𝐷

𝑢
if a

jump occurs; the interaction frequency is defined as follows:

]
𝑖
(𝑢) = ∫

𝐷
𝑢

𝑈
𝑖
(𝑢
∗

, 𝑢) 𝑑V∗. (80)

A further research perspective consists in the formal deriva-
tion of macroscopic equations by means of asymptotic limits.
Specifically these limits are obtained by employing the math-
ematical methods developed in papers [8, 56–59] that use
parabolic and/or hyperbolic scaling; see also the book [17].
Macroscopic equations are of great interest for themathemat-
ical modeling at tissue scale. Indeed, they allow a complete
micro/macrodescription [60]. This is part of the multiscale
problem, which consists in linking the mathematical models
derived at different scales; the interested reader is referred to
the book [17].

The mathematical frameworks proposed in this paper
established also interesting future research directions regard-
ing the derivation of theoretical results. Indeed it is missing
the proof of the existence and uniqueness of mild solution
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for the nonconservative thermostatted Cauchy problems.
Moreover the existence of solutions to the stationary problem
ismissing. Stationary solutions𝑓 = 𝑓(𝑢) satisfy the following
system of thermostatted kinetic equations:

𝜕
𝑢
(𝐹
𝑖
(𝑢) 𝑓
𝑖
(𝑢)) −T

𝑖
[𝐹
𝑖
, f] (𝑢) =Z

𝑖
[f , ] (𝑢) , (81)

where the meaning of each term can be recovered by the
previous sections.

In this context, stationary solutions model nonequilib-
rium steady states. A nonequilibrium steady state is reached
when the system is driven by external forces in a stationary
nonequilibrium state where its properties do not change with
time. The interested reader is referred to papers [19, 61–63]
and the references cited therein.

It is worth stressing that most of the complex biological
systems are such that the interaction rate, the prolifera-
tive/destructive rate, the mutative rate, and the probability
density are conditioned by the distribution functions of the
functional subsystems and/or low-order moments. This is
the case of the nonlinear interactions. However, the analysis
of thermostatted kinetic models which include nonlinear
interactions is still a hard open problem and a few number
of contributions can be found in the pertinent literature; see
[64].
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