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Abstract 

 

This paper focuses on dynamics of productive and demanding nodes for Scattered Manufacturing Networks within 

3D Printings contexts. The various nodes issue orders or sell production slots in order to achieve their own aims. 

An orchestrator coordinates the dynamics along the network according to principles of sustainability, equated 

shared resources and transparency by managing communication activities among nodes. In particular, suitable 

tradeoffs occur by a unique framework that, with the aim of optimizing the overall costs, suggests either logistics 

paths along the network or negotiation policies among nodes in order to reallocate resources. Numerical examples 

present the proposed approach.  
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1. INTRODUCTION 

 

Nowadays, international markets are facing an increasing need for individualized products. Moreover, mass 

customization creates a growing competition that requires high agility, rapid changes in the customized production 

style and fast reconfiguration of manufacturing systems.  

This is also the result of the emerging Industrial Revolution, namely Industry 4.0 (I40), which is realizing a 

suitable interconnection among different fields of action within and between organizations (MacDougall, 2014) 

through the achievement of resource efficiency (Hauder et al. 2017). By connecting organizational units, various 

and new synergy effects should be detected and used (MacDougall, 2014). Therefore, the approach of I40 indicates 

a possible focus on the holistic consideration of different issues and problem models of organizations (Hauder et 

al. 2017).  

The realization of I40 is possible due to the implementations of Internet of Things (IoT) and Cyber-Physical 

Systems (CPSs) (Wan et al. 2016), useful to bridge either the virtual world or the physical one. In particular, 

following the original idea by Mark Weiser about ubiquitous computing (Weiser, 1993) and its reworking in the 

concept of Agile Factory, created by Constantin Scheuermann et. al. (Scheuermann et al. 2015), for the domain 

of manufacturing, we deal with the context of Advanced Manufacturing Technologies (AMTs) in terms of 

Scattered Manufacturing (SM).  

SM allows production everywhere in anytime inside the domains of the networks. Factories can rely on on-demand 

manufacturing services by shared resource pools in a geographical distributed network. 

AMT aims at improving value chains and value-added networks in industry to ensure industrial competitiveness 

(Durão et al. 2017). Key challenges are the integration of seamless digital workflows throughout the product 

lifecycle, the development of highly flexible and adaptive manufacturing processes, and the capabilities to 

manufacture individualized products at the price of mass production (Anderl, 2015).  

Production sites are becoming rapidly adaptive while remaining economically productive (Anderl, 2015). This 

situation enables to decentralize production through autonomous tasks based on Cyber-Physical Systems (Brettel 

et al. 2014), improved quality control (Ariss et al. 2000, Schroder and Sohal, 1999), and reduced inventories 

(Jonsson, 2000). It is foreseen that smart factories are networked in cross-company collaboration, sharing relevant 

resources and information, and thus creating a dynamic production environment. Possible advantages are evident, 

such as an increased product variety, reduced lifecycle times and geographically distributed markets brought by 

a dynamic environment (Durão et al. 2017).  

In order to raise the perception of the value for the customer, one strategy that can be adopted is the geographically 

distributed manufacturing, transferring the production closer to the client and reducing the time to deliver products 

(Khajavi et al. 2014). However, SM by adoption of AMTs is still in its early research phase. Key challenges are 

represented by improvement and standardization of the information flow, communication, and control among 

production nodes, changing the overall work organization structures (Schroder and Sohal, 1999).  

Much of the shift towards I40, indeed, is driven by the emergence of ‘Big-Data’ and the issues, connected to the 

ways by which industrial operations collect, manage and interpret their data, remain prevalent (Chen et al. 2015). 

Considerations about Big Data and the treatment of large datasets are an intrinsic challenge of each system 

operating in an I40 environment. In fact, traditional statistical processing methods are often useless due to the 

complexity and the sheer size of large datasets (Oliff and Liu, 2017). Current implementations have demonstrated 

an adaptive scheduling, a real-time modelling of processes, and Decision Support Systems, used to refine 

processes and component design (Oliff and Liu, 2017). 



 

2523-6547 - Copyright: © 2017 The Authors. This is an open access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 

are credited. 
442 

 

For the optimization of issues within the context of production and logistics, a typical aim is gaining quantitative 

improvements, which also correspond to an increase of resource efficiency (Hauder et al. 2017). Sometimes new 

manufacturing models arise as such a situation leads to an increasing adoption of new production technologies. 

The challenge with distributed production is to implement communication and integration technologies that 

reduce the coordination effort and provide a focused factory (Khajavi et al. 2014).  

In the proposed scenario, the Scattered Manufacturing Network is composed of AMT nodes that are able to 

manage instance orders or buy production resources (slots) coordinated by an orchestrator, responsible of the 

communication along the network, the negotiation among nodes and the overall (production and logistics) 

optimization along the supply chain structure. Further details about this topic, as well as numerical approaches, 

are in (De Falco et al. 2016) and (Tomasiello and Macìas – Dìaz, 2017). 

The network obeys three principles: sustainability, shared resources and transparency. Sustainability occurs in 

terms of cost-effective manufacturing, reductions of resource demands and related CO2 emissions over the entire 

product life cycle transferring the production closer to the client. According to Circular Economy trend, the SM 

Network aims to create a collaborative, transparent, open and trusting environment with shared purposes and 

shared resources. In fact, every node in the network can buy resources in the world with an open bidding system, 

while customers can send demands of products (orders) to the orchestrator. Hence, the orchestrator acts as an 

intermediate layer collecting orders from many customers.  

In this paper, the authors present the just described paradigm via a SM Network within the 3D Printings (3DPs) 

field, where the different nodes are “productive” or “demanding”. Productive nodes provide finished pieces 

realized by 3D printings. Demanding nodes, instead, orders finished pieces from the productive nodes. In this 

sense, demanding nodes formulate work orders that have to be satisfied by the productive ones. Considering 

complex dynamics inside large networks, it often happens that a same node can be of either productive or 

demanding type in different times and/or situations. This suggests that the communication and/or negotiation 

activities among nodes, managed by the orchestrator, are fundamental in order to share different resources and 

distribute them along the network by satisfying principles of transparency and sustainability. In what follows, we 

investigate the dynamics of networks with a unique demanding node and various productive ones. In general, such 

assumption is not detrimental for the discussion of a general issue but further details will be described in future 

research activities. 

In order to consider the variables/factors that affect a 3DPs network, a unique model is proposed by combining 

different approaches, which focus on such needs: 

• Logistics issues related to the productive nodes that are near the demanding one. 

• Possibility of division of demanding node’s order into subparts, and consequent assignment of each 

subpart to a productive node. 

• Negotiation criteria between the demanding node and the productive ones, in order to establish tradeoffs 

between different profits.  

Hence, the orchestrator has a primary role as it behaves like a control unit that applies a multilevel optimization 

that deals with the following exigencies. Localization: starting from the demanding node’s geographical position, 

the orchestrator provides some neighboring nodes that define a “certified” sub-network, able to satisfy the users’ 

requests. Fragmentation and Assignment: the orchestrator establishes how to divide the work order into subparts, 

each one assigned to different productive nodes, in order to achieve the lowest overall purchase cost. Notice that 

this phenomenon requires a suitable negotiation between the demanding node, which asks for a predefined amount 

of pieces, and the productive nodes, that have their own quantity/price plans. Picking: the orchestrator defines a 

closed path that starts from the demanding node and returns to it touching all the productive nodes once. Such 

path, useful to collect the amount of pieces from all the productive nodes, is obtained via an approach (see Karp, 

1979; Gutin et al. 2002; Applegate et al. 2006; Gutin and Punnen, 2007; Gutin and Yeo, 2007; Wang et al. 2016) 

that minimizes the logistics costs.  
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Based on the just described requirements, the orchestrator set a run of iterations. As for the first one, the 

orchestrator: 

• Indicates suitable productive nodes near the demanding one, and assigns them the amount of pieces to 

produce by satisfying constraints dealing with quantity/price plans.  

• Defines a picking path at minimum logistics cost.  

• Computes the weights that each productive node has inside the network. Precisely, for each node the 

corresponding weight represents a tradeoff among logistics components, possible quantities of produced 

pieces, as well as reallocation of quantities by excluding the productive node from the network in 

consideration. Such last operation is necessary to discriminate among different productive nodes that 

can be far from the demanding one (hence requiring high logistics costs) but in turn useful due to their 

advantageous quantity/price plans. 

As for the second one, the orchestrator works as follows. First, the productive node, whose weight indicates the 

highest decrement of the overall logistics and production costs, is excluded from the network. Then, the 

orchestrator redefines either the picking path or new fragmentations/assignments to the remaining productive 

nodes. This last phenomenon triggers a consequent negotiation phase between the demanding node and the 

productive ones and the result is a tradeoff between different profits. Finally, the orchestrator recalculates the new 

weights of the remaining productive nodes, and next iterations works as the second one. Iterations continue until 

the computation of weights indicates that further decrements of costs are not possible, hence reaching an 

equilibrium state.  

Indeed, the actual originality of the proposed approach foresees a complete balance among exigencies of different 

nodes. In fact, starting from localization requests of the demanding node that needs a certified service network, a 

unique framework mixes approaches for picking paths and resource allocation problems that solve issues of 

fragmentation and assignment. Such aspects are dependent each other, as they are strictly connected by the weights 

that the various productive nodes have inside the network. In fact, the possible exclusion of productive nodes from 

the network determines a guideline to solve at the same time logistics issues, as well as reallocations by 

considering the overall quantity/price plans of each productive node. This last aspect, which clearly deals with the 

negotiation phases between the demanding node and the productive ones, represents the effective dynamics of the 

network at each iteration provided by the orchestrator. 

The presented numerical examples have either expected features or unexpected ones. For instance, it is possible 

that the exclusion of a node during the iterations could provoke increments of logistics costs, as well as suitable 

reduction of productive purchase. This implies the consequent birth of new iterations, where the tradeoff between 

logistics and production components indicates clearly that the nodes to exclude do not obey a predefined and 

precise rule. Moreover, it could occur that networks of medium dimensions reach an equilibrium state in just one 

iterations, and such a phenomenon is important as it indicates that larger networks are sometimes easier to manage.  

The outline of the paper is as follows. Section II and III present the proposed approach and its features within 

the context of SM networks. Section IV contains simulation results for some test networks. Section V ends the 

paper with conclusions and future developments. 
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2. A 3DPS NETWORK  

 

This section describes some features for a SM network within the context of 3DPs.  

The SM network has the set of nodes 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} while: 

• 𝑒𝑖𝑗 is the arc that connects nodes 𝑣𝑖 and 𝑣𝑗; 

• 𝑐𝑖𝑗  is the cost for arc 𝑒𝑖𝑗.  

Notice that 𝑐𝑖𝑗  depends on various factors, such as the distance between 𝑣𝑖 and 𝑣𝑗, the monetary overall cost for 

transports, the traveling time, as well as criteria of sustainability. Parameters 𝑐𝑖𝑗  are kept in a coefficient matrix 

𝑋 = (𝑐𝑖𝑗)𝑖,𝑗=1,…,𝑁. 

The SM network is assumed to be bidirectional, namely: two different nodes 𝑣𝑖 and 𝑣𝑗 are connected in the 

direction either “from 𝑣𝑖 to 𝑣𝑗” or “from 𝑣𝑗 to 𝑣𝑖”. Obviously, 𝑒𝑖𝑗 and 𝑒𝑗𝑖 are the same arc while, in general, 𝑐𝑖𝑗 ≠

𝑐𝑗𝑖. 

Each node provides services to the users in terms of finished pieces produced by 3DPs. Quantities 𝑄𝑖  and prices 

𝑃𝑖  of pieces for a generic node 𝑣𝑖 obey a “law at three levels” of type: 

 

𝑃𝑖(𝑄𝑖) = {

𝑝𝐿
𝑖 𝑖𝑓 0 < 𝑄𝑖 ≤ 𝑘𝐿

𝑖

𝑝𝑀
𝑖 𝑖𝑓 𝑘𝐿

𝑖 < 𝑄𝑖 ≤ 𝑘𝑀
𝑖

𝑝𝐻
𝑖 𝑖𝑓 𝑘𝑀

𝑖 < 𝑄𝑖 ≤ 𝑘𝐻
𝑖

                                                                                           (1) 

 

with 𝑝𝐿
𝑖 < 𝑝𝑀

𝑖 < 𝑝𝐻
𝑖 . The interpretation is the following: if the required quantity 𝑄𝑖  does not exceed 𝑘𝐿

𝑖 , the price 

𝑃𝑖  is the lowest 𝑝𝐿
𝑖 ; otherwise, possible prices are 𝑝𝑀

𝑖  and 𝑝𝐻
𝑖 . 

Notice that (1) represents a possible and realistic attempt to describe the evolution of pieces versus their possible 

prices. Indeed, future research activities aim at guaranteeing more suitable shapes for (1), with the aim of 

describing negotiation criteria among nodes.  

 

 

3. OPTIMIZATION OF CUSTOMERS’ NEEDS  

 

This section shortly describes a possible approach for the optimization of demanding node’s needs inside a 3DPs 

network. In particular, a unique framework is described in which more approaches, often used individually, are 

used.  

The aim of the demanding node is to obtain a series of services from the SM network. In the specific case, in a 

preliminary phase, the orchestrator helps the demanding node referring to the following issues: 

• Localization: the orchestrator makes the demanding node become the center of a circle with a radius of 

“economic” type. This means that, according to the demanding node’s geographical position, only some 

production nodes, belonging to an area tracked by the orchestrator, are able to offer services. Such a 

localization criterion has the advantage of defining the most known and neighboring nodes, thus creating 

a sort of “certified” sub-network, for which the demanding node has a higher level of trust. Each 

available node of the certified sub-network shows its own offer in terms of prices/quantities plans. 
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• Fragmentation and Assignment: the orchestrator, considering the features of the sub-network, decides: 

how to fragment the demanding node’s work order and how to assign the various subparts to the 

production nodes, in order to get the lowest purchase costs.  

• Picking: the orchestrator chooses a closed path, which starts and returns to the demanding node through 

all the production nodes once. The path is defined via an approach described by procedure shown as 

follows (see for details Karp, 1979; Gutin et al. 2002; Applegate et al. 2006; Gutin and Punnen, 2007; 

Gutin and Yeo, 2007; Wang et al. 2016). 

For a SM network whose features are described in previous section, the following procedure is used for the picking 

activities. Assume that 𝑃 is a possible closed path that crosses each node of 𝑉, starting from a source node 𝑣𝑠 ∈ 𝑉, 

and coming back to it; 𝐶(𝑃) is the cost associated to 𝑃. 

 

Picking algorithm (PA). 

Initialization:  

𝑃 ≔ ∅, 𝐶(𝑃) ≔ 0, 𝑣𝑠 ≔ 𝑣𝑗 ∈ 𝑉. 

Steps: 

1. From node 𝑣𝑗 go to node 𝑣𝑖 ∈ 𝑉\{𝑣𝑗} such that 𝑐𝑗𝑖 = 𝑚𝑖𝑛⋃ 𝑐𝑗𝑖
|𝑉|
𝑖=1,𝑖≠𝑗 . 

2. 𝑃 ← 𝑃 ∪ 𝑒𝑗𝑖, 𝐶(𝑃) ← 𝐶(𝑃) + 𝑐𝑗𝑖, 𝑉 ← 𝑉\{𝑣𝑗}. 

3. If |𝑉| = 1, 𝑃 ← 𝑃 ∪ 𝑒𝑖𝑠 end of the algorithm; otherwise, 𝑣𝑗 ← 𝑣𝑖 and go to step 1. 

For a better comprehension of such a procedure, see Example PA in the Appendix. 

 

 

3.1 Combining issues of Localization, Fragmentation, Assignment and Picking  

 

Considering a demanding node that asks for services from a generic SM network, the aim is to decrease the overall 

cost, that has two components, 𝐶𝑋 and 𝐶𝑌, that refer to the logistics (associated to the path) and the purchase costs, 

respectively.  

In what follows, a suitable algorithm, that considers all exigencies of the demanding role, is presented. 

Consider a preliminary phase (iteration 0). The orchestrator, referring to a SM network with 𝑁 nodes (Figure 1, 

up left), tracks an economic radius for the demanding node (in position 𝑇 in Figure 1, up right), discriminates the 

unreliable nodes (in red, Figure 1, bottom left), defines a closed path 𝑃 from 𝑇 to 𝑇 according to algorithm (PA), 

and computes the weights of each production node inside the network. 

Notice that 𝑃 has production nodes for which, respecting constraints of fragmentation and assignment, purchase 

costs occur. Hence, at the iteration 0, 𝐶𝑋 and 𝐶𝑌 are as follows: 𝐶𝑋
(0) = 𝐶(𝑃) and 𝐶𝑌

(0) = ∑ 𝑝𝐿
𝑖𝑁

𝑖=1 . 
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FIGURE 1  

Preliminary phase (iteration 0) 

 

 

For further iterations, the orchestrator works as follows in order to decrease the overall costs:  

• Erasing of nodes that can provoke the lowest costs in the next iteration. 

• Reallocation of the sub-parts of the work orders (a new fragmentation and assignment phase), with 

consequent negotiation between the demanding node and the productive nodes. Notice that reallocation 

activities foresee a possible saturation of productive nodes. 

• Computation of a new path for picking by using algorithm (PA). 

• Computation of new weights (reallocation parameters) associated to the productive nodes.  

Notice that erasing nodes from the network implies an obvious natural variation of either logistic or purchase 

costs. In order to understand the entity of variations and compute the weights for the productive nodes, we define 

the following quantities: 

• ∆𝐶𝑋
𝑣𝑖, that represents the variation of the logistics costs when node 𝑣𝑖 is excluded from the network. 

Precisely, we have that ∆𝐶𝑋
𝑣𝑖 = 𝐶(𝑃) − 𝐶(𝑃\𝑣𝑖). 

• ∆𝐶𝑌
𝑣𝑖, that indicates the dynamics of purchase costs when node 𝑣𝑖 is excluded from the network. In detail, 

we get that: ∆𝐶𝑌
𝑣𝑖 = −𝑄𝑖[𝑃𝑖(𝑄𝑖)] + ∑ 𝑄′𝑗𝑃𝑗(𝑄𝑗 + 𝑄′𝑗)

|𝑉|
𝑗=1,𝑗≠𝑖 , where 𝑃𝑖(𝑄𝑖) follows (1) while 𝑄′𝑗  is the 

amount of pieces, redistributed on the network, computed using algorithm (RA), described as follows. 

• ∆𝑅𝑣𝑖 = ∆𝐶𝑋
𝑣𝑖 + ∆𝐶𝑌

𝑣𝑖 is the weight (reallocation parameter) associated to node 𝑣𝑖. Notice that, if ∆𝑅𝑣𝑖 <

0, the exclusion of node 𝑣𝑖 allows a decrement of the overall cost for the network.  

 

Reallocation algorithm (RA). 

Assume that 𝐿 is the total amount of pieces, which the demanding nodes requires from the network.  
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If node 𝑣𝑖 is excluded from the network, 𝑄𝑖  is redistributed among nodes. The new quantity 𝑄′𝑗 , 𝑗 = 1, … , |𝑉|, 𝑗 ≠

𝑖, is defined as follows: 

 

𝑄′𝑗 = ⌈
𝑄𝑖

|𝑉|−1
⌉,                                                                                                                                      (2) 

 

such that ∑ 𝑄′𝑗 = 𝐿.
|𝑉|
𝑗=1,𝑗≠𝑖  

 

Notice that (2) has the following interpretation: as the productive nodes have all the same importance for the 

demanding node, the quantity 𝑄𝑖  is equally distributed among all the other remaining productive nodes. If 
𝑄𝑖

|𝑉|−1
 is 

not integer, then the full upper part is taken.  

Finally, the overall optimization algorithm, defined by the orchestrator’s activities, works as follows, at the n-th 

iteration: 

• Step 1: Erase the node 𝑗𝑛 whose weights allows a reduction of the overall costs for the network in 

consideration. 

• Step 2: Compute a new path for picking, with new cost 𝐶𝑋
(𝑛)

. 

• Step 3: Reallocate the quantities of pieces 𝑄𝑖 , 𝑖 = 1, 𝑖 ≠ 𝑗 of each node according to algorithm (RA). 

• Step 4: Compute the new weights for productive nodes. 

• Step 5: Come back to step 1 if there is at least one reallocation parameter ∆𝑅𝑣𝑖 is negative. 

Figure 2 provides an intuitive idea of the optimization algorithm, considering the second, the third and then the n-

th iteration. 

 

FIGURE 2 

Left: in the second iteration, a node (in red) is excluded, the picking path is recomputed, the logistics cost 

decreases while the overall purchase one can remain the same or decrease. Center: in the third iteration, 

another node is excluded, and the process continues. Right: in the n-th iteration, the overall logistics and 

purchase costs are highly decreased 

 

 

The following example shows the various step of the algorithm. 
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Example A. 

Consider a SM network with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and matrix 𝑋 = (𝑐𝑖𝑗)𝑖,𝑗=1,…,6. 

A possible interpretation of the starting phase (iteration 0) is in Figure 3. The preliminary closed path 𝑃 (Figure 

3, up) involves the demanding node, 𝑣1, and the productive nodes 𝑣2, 𝑣3, 𝑣4, 𝑣5 and 𝑣6. For the productive nodes, 

the orchestrator determines purchase costs of 𝑝𝐿  type (Figure 3, down), together with suitable assignments of 

finished pieces, as well as weights of each productive node inside the network. 

 

FIGURE 3 

Example A, iteration 0 

 

 

At the iteration 1: 

• Node 𝑣3 is excluded because it has the lowest reallocation parameter; 

• The closed path 𝑃 is recomputed using algorithm (PA) considering the set 𝑉 = {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6};  

• A cost 𝐶𝑋
(1)

 is obtained; 

• A new fragmentation/assignment is made for the nodes of set 𝑉, see algorithm (RA). 

• A cost 𝐶𝑌
(1)

 is obtained. 

• New weights for productive nodes are computed. 

Figure 4 sums up the iteration 1.  
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FIGURE 4 

Example A, iteration 1 

 

 

Precisely, Figure 4 (up) presents the new path, while Figure 4 (bottom) shows possible scenarios for 𝐶𝑌
(1)

: 

• Scenario 1.1 (no variations): 𝑝𝐿
3 is erased and all other prices of 𝑝𝐿  type remain the same. 

• Scenario 1.2 (variations of just one cost): 𝑝𝐿
3 is erased, 𝑝𝐿

4 becomes 𝑝𝑀
4  and all other prices of 𝑝𝐿  type 

remain the same. 

• Scenario 1.3 (variations of more costs): 𝑝𝐿
3 is erased while, for instance, 𝑝𝐿

4 and 𝑝𝐿
5 become, respectively, 

𝑝𝑀
4  and 𝑝𝑀

5 . 

Assuming that the scenario 1.2 occurs, at the iteration 2: 

• Node 𝑣2 is excluded due to its weight; 

• The closed path 𝑃 is obtained via algorithm (PA) for the new set 𝑉 = {𝑣1, 𝑣4, 𝑣5, 𝑣6};  

• A cost 𝐶𝑋
(2)

 is computed; 

• A new fragmentation/assignment occurs for the nodes of 𝑉, see algorithm (RA). 

• A cost 𝐶𝑌
(2)

 is computed. 

• New weights for productive nodes are established. 

Figure 5 presents the iteration 2.  
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Figure 5 

Example A, iteration 2 

 

 

Precisely, Figure 5 (up) considers the new path, while Figure 5 (bottom) indicates possible new scenarios for 𝐶𝑌
(2)

: 

• Scenario 2.1 (no variations): 𝑝𝐿
2 is erased while all other nodes have prices foreseen in scenario 1.2. 

• Scenario 2.2 (variations of just one cost): 𝑝𝐿
2 is erased, 𝑝𝐿

5 becomes 𝑝𝑀
5  while all other nodes have prices 

described in the scenario 1.2. 

• Scenario 2.3 (a high cost is achieved): 𝑝𝐿
2 is erased, 𝑝𝑀

4  becomes 𝑝𝐻
4  while all other nodes have prices 

described in scenario 1.2. In this case, the algorithm ends, as one term of 𝑝𝐻  type is obtained, and all 

reallocation parameters become positive. 

Assuming that the scenario 2.2 occurs, at the iteration 3: 

• Node 𝑣6 is excluded; 

• A new closed path 𝑃 is computed by algorithm (PA) for the new set 𝑉 = {𝑣1, 𝑣4, 𝑣5};  

• A cost 𝐶𝑋
(3)

 is obtained; 

• A new fragmentation/assignment is made for the nodes of 𝑉, see algorithm (RA). 

• A cost 𝐶𝑌
(3)

 is considered. 

• Weights for productive nodes are updated. 

Figure 6 presents the iteration 3.  
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Figure 6 

Example A, iteration 3 

 

 

In particular, Figure 6 (up) shows the new path, while Figure 6 (bottom) presents possible various scenarios for 

𝐶𝑌
(3)

: 

• Scenario 3.1 (no variations): 𝑝𝐿
6 is erased while all other nodes have prices foreseen in the scenario 2.2.  

• Scenario 3.2 (variations of just one cost): 𝑝𝐿
6 is erased, 𝑝𝑀

4  becomes 𝑝𝐻
4  while all other nodes have prices 

described in scenario 2.2. The algorithm ends, as one term of 𝑝𝐻  type is obtained and all reallocation 

parameters become positive. 

 

 

4. NUMERICAL TESTS 

 

This section is devoted to some numerical tests. In particular, each of them presents some features that are useful 

to provide a better idea of dynamics inside a SM network. 
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Test 1. 

Focus on a SM network with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and matrix 𝑋: 

 

𝑋 = (

∞ 10 40 30
10 ∞ 20 50
40 20 ∞ 40
30 50 40 ∞

). 

 

Assume that 𝑃 ≔ ∅, 𝐶(𝑃) ≔ 0, 𝑣𝑠 ≔ 𝑣1. Hence, the demanding node is 𝑣1 while node 𝑣𝑗, 𝑗 = 2, 3, 4, is of 

productive type. Price/quantity plans follow the formulation (1) with 𝑝𝐿
2 = 25, 𝑝𝐿

3 = 20, 𝑝𝐿
4 = 15; 𝑝𝑀

2 = 30, 𝑝𝑀
3 =

𝑝𝑀
4 = 25; 𝑝𝐻

2 = 35, 𝑝𝐻
3 = 𝑝𝐻

4 = 45; 𝑘𝐿
2 = 40, 𝑘𝐿

3 = 50, 𝑘𝐿
4 = 70; 𝑘𝑀

2 = 50, 𝑘𝑀
3 = 90, 𝑘𝑀

4 = 95; 𝑘𝐻
2 = 60, 𝑘𝑀

3 =

 𝑘𝑀
4 = 95. 

We need to distribute 𝐿 = 100 pieces among the productive nodes 𝑣2, 𝑣3 and 𝑣4. Preliminarily, the orchestrator 

indicates 𝑄2 = 10, 𝑄3 = 30 and 𝑄4 = 50. Such quantities are offered at prices 𝑝𝐿
2, 𝑝𝐿

3 and 𝑝𝐿
4, respectively.  

The iterations run as follows. 

 

First iteration: 

From algorithm (PA), we have 𝑃 ≔ {𝑒12, 𝑒23, 𝑒34, 𝑒41}, 𝐶(𝑃) ≔ 100 = 𝐶𝑋
(1)

. As 𝑄2
(1) = 𝑄2 = 10, 𝑄3

(1) = 𝑄3 =

30 and 𝑄4
(1) = 𝑄4 = 50, from the preliminary fragmentation we get 𝐶𝑌

(1) = 𝑄2
(1)𝑝𝐿

2 + 𝑄3
(1)𝑝𝐿

3 + 𝑄4
(1)𝑝𝐿

4 = 1600. 

Therefore, 𝐶𝑇𝑂𝑇
(1) = 1700. 

By considering the computation of weights for nodes, as well as the reallocation via algorithm (RA), Table 1 is 

obtained. 

 

TABLE 1 

Dynamics of logistics paths, costs and reallocations for the first iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣2 {𝑒14, 𝑒43, 𝑒31} +10 −75 −65 

𝑣3 {𝑒12, 𝑒24, 𝑒41} −10 0 −10 

𝑣4 {𝑒12, 𝑒23, 𝑒31} −30 +375 +345 

 

From Table 1, node 2 must be excluded in the next iteration. 
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Second iteration: 

We get 𝑃 ≔ {𝑒14, 𝑒43, 𝑒31}, 𝐶(𝑃) ≔ 110 = 𝐶𝑋
(2)

. Moreover, 𝑄3
(2) = 35 and 𝑄4

(2) = 55 at prices 𝑝𝐿
3 and 𝑝𝐿

4 and 

𝐶𝑌
(2) = 𝑄3

(2)𝑝𝐿
3 + 𝑄4

(2)𝑝𝐿
4 = 1525. Hence, 𝐶𝑇𝑂𝑇

(2) = 1635. Table 2E shows the possible reallocations and variations 

of costs for the next iteration. 

 

TABLE 2 

Reallocation for the second iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣3 {𝑒14, 𝑒41} −50 +725 +675 

𝑣4 {𝑒13, 𝑒31} −30 +275 +245 

 

As Table 2 indicates that ∆𝑅𝑣𝑖 > 0, 𝑖 = 3, 4, the possible exclusion of nodes 𝑣3 and 𝑣4 does not imply a reduction 

of the overall cost. Hence, the iterations stop.  

 

From the following example, we consider two important phenomena. First, the exclusion of a node from the 

network does not necessarily imply a reduction of the logistics costs. This is due to the recalculation of the new 

picking path, which can be very different, also in terms of costs of arcs, from the ones of previous iterations. 

Second, for the last iteration node 𝑣2 is not considered. At a first sight, one expects that this could occur for node 

𝑣4 as ∆𝐶𝑋
𝑣4 < ∆𝐶𝑋

𝑣2. Indeed, as ∆𝐶𝑌
𝑣4 ≫ ∆𝐶𝑌

𝑣2, the possible exclusion of node 𝑣4 implies the worst case for the 

overall cost, that increases considerably. Hence, although node 𝑣2, unlike 𝑣4, is the less advantageous in logistics 

terms for the demanding node 𝑣1, it must avoided because of high fluctuations of production costs.  

 

Test 2. 

Consider a SM network with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} and matrix 𝑋: 

 

𝑋 =

(

 
 
 
 

∞ 10 25 5 7 9 13
14 ∞ 171 21 12 5 12
11 15 ∞ 14 13 12 14
11 10 9 ∞ 17 12 13
15 12 11 9 ∞ 14 18
12 13 17 17 19 ∞ 15
13 11 9 13 15 17 ∞ )

 
 
 
 

. 

 

The demanding node is 𝑣1 while node 𝑣𝑗, 𝑗 = 2,… 7, is of productive type. For productive nodes, prince/quantity 

functions have levels shown in Table 3. 
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TABLE 3 

Levels for prince/quantity plans of the network in consideration 

Node i 𝑝𝐿
𝑖  𝑝𝑀

𝑖  𝑝𝐻
𝑖  𝑘𝐿

𝑖  𝑘𝑀
𝑖  𝑘𝐻

𝑖  

𝑣2 25 35 45 15 25 35 

𝑣3 35 45 55 20 40 50 

𝑣4 30 40 60 25 35 50 

𝑣5 20 30 45 10 25 40 

𝑣6 30 45 60 15 25 35 

𝑣7 30 40 50 25 40 55 

 

Assume that 𝑃 ≔ ∅, 𝐶(𝑃) ≔ 0, 𝑣𝑠 ≔ 𝑣1. In this case, 𝐿 = 80 pieces must be distributed among the productive 

nodes. At the beginning of the iterations, the orchestrator provides 𝑄2 = 10, 𝑄3 = 15, 𝑄4 = 20, 𝑄5 = 5, 𝑄6 =

10 and 𝑄7 = 20, at prices 𝑝𝐿
𝑖 , 𝑖 = 2,… ,7.  

The iterations run as follows. 

 

First iteration: 

From algorithm (PA), we have 𝑃 ≔ {𝑒14, 𝑒43, 𝑒36, 𝑒62, 𝑒25, 𝑒57, 𝑒71}, 𝐶(𝑃) ≔ 82 = 𝐶𝑋
(1)

. As 𝑄𝑖
(1) = 𝑄𝑖 , 𝑖 =

2,… ,7, we simply have that 𝐶𝑌
(1) = ∑ 𝑄𝑖

(1)𝑝𝐿
𝑖7

𝑖=2 = 2375, and 𝐶𝑇𝑂𝑇
(1) = 2457. 

As for the computation of weights for various nodes and reallocation due to algorithm (RA), Table 4 is obtained. 

 

TABLE 4 

Possible logistics paths, costs and reallocations for the first iteration 

Erase 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖  ∆𝑅𝑣𝑖  

𝑣2 {𝑒14, 𝑒43, 𝑒36, 𝑒67, 𝑒75, 𝑒51} −11 +40 +29 

𝑣3 {𝑒14, 𝑒42, 𝑒26, 𝑒67, 𝑒75, 𝑒51} −17 −120 −137 

𝑣4 {𝑒15, 𝑒53, 𝑒36, 𝑒62, 𝑒27, 𝑒71} −14 +100 +86 

𝑣5 {𝑒14, 𝑒43, 𝑒36, 𝑒62, 𝑒27, 𝑒71} −18 +50 +32 

𝑣6 {𝑒14, 𝑒43, 𝑒35, 𝑒52, 𝑒27, 𝑒71} −18 +50 +32 

𝑣7 {𝑒14, 𝑒43, 𝑒36, 𝑒62, 𝑒25, 𝑒51} −16 +50 +34 



 

2523-6547 - Copyright: © 2017 The Authors. This is an open access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 

are credited. 
456 

 

 

Table 4 foresees that node 𝑣3 must not be considered in the second iteration. 

 

Second iteration: 

In this case, the new path is 𝑃 ≔ {𝑒14, 𝑒42, 𝑒26, 𝑒67, 𝑒75, 𝑒51} and 𝐶(𝑃) ≔ 65 = 𝐶𝑋
(2)

. We get that 𝑄2
(1) =

13, 𝑄4
(1) = 24, 𝑄5

(1) = 8, 𝑄6
(1) = 13, 𝑄7

(1) = 23, while 𝐶𝑌
(2) = 2255, and 𝐶𝑇𝑂𝑇

(1) = 2320. 

As for the computation of reallocation parameters, we refer to Table 5. 

 

TABLE 5 

Variation of parameters for the second iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖  ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖  ∆𝑅𝑣𝑖  

𝑣2 {𝑒14, 𝑒46, 𝑒67, 𝑒75, 𝑒51} −3 +905 +902 

𝑣4 {𝑒15, 𝑒52, 𝑒26, 𝑒67, 𝑒71} −13 +800 +787 

𝑣5 {𝑒14, 𝑒42, 𝑒26, 𝑒67, 𝑒71} −17 +70 +53 

𝑣6 {𝑒14, 𝑒42, 𝑒25, 𝑒57, 𝑒71} −7 +925 +918 

𝑣7 {𝑒14, 𝑒42, 𝑒26, 𝑒65, 𝑒51} −11 +1010 +999 

 

The iterations stop because ∆𝑅𝑣𝑖 > 0, 𝑖 = 2, 4, 5, 6, 7. Moreover, the higher increments of terms ∆𝐶𝑌
𝑣𝑖, 𝑖 =

2, 4, 5, 6, 7, are essentially due to the fact that prices become of type 𝑝𝑀. Such an event, indeed, does not always 

indicate very high discrepancies, as shown by ∆𝐶𝑌
𝑣5 .  

Notice that the described example presents how a network of medium dimensions can reach an equilibrium 

situation in just one iteration. This suggests that suitable policies of choosing productive nodes could foresee to 

enlarge the economic radius, see Section 2, in order to achieve higher advantages in terms of lower costs.  
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Test 3. 

We present a SM network with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10} and matrix 𝑋: 

 

𝑋 =

(

 
 
 
 
 
 
 

∞ 10 15 17 12 11 17 18 19 22
14 ∞ 11 18 17 24 14 22 18 20
17 20 ∞ 22 21 22 23 24 18 19
17 16 15 ∞ 19 21 24 23 22 21
19 21 22 17 ∞ 22 21 20 19 17
20 21 22 23 24 ∞ 24 22 21 19
18 17 18 15 14 19 ∞ 21 22 24
15 18 21 24 27 22 21 ∞ 18 20
38 37 35 32 44 42 41 41 ∞ 40
15 18 18 17 16 17 18 19 21 ∞)

 
 
 
 
 
 
 

. 

 

We assume 𝑣1 as the demanding node, while node 𝑣𝑗, 𝑗 = 2,…7, is productive. Levels of prince/quantity plans 

are in Table 6. 

 

TABLE 6 

Prince/quantity plans for the network in consideration 

Node i 𝑝𝐿
𝑖  𝑝𝑀

𝑖  𝑝𝐻
𝑖  𝑘𝐿

𝑖  𝑘𝑀
𝑖  𝑘𝐻

𝑖  

𝑣2 10 12 15 20 25 35 

𝑣3 15 18 20 25 30 40 

𝑣4 10 11 12 25 35 50 

𝑣5 15 17 19 35 45 50 

𝑣6 25 28 30 30 35 55 

𝑣7 20 22 24 25 30 45 

𝑣8 15 18 21 15 20 25 

𝑣9 10 12 14 20 30 40 

𝑣10 10 13 15 25 30 40 

 

Preliminarily, 𝑃 ≔ ∅, 𝐶(𝑃) ≔ 0, 𝑣𝑠 ≔ 𝑣1. We consider 𝐿 = 130 pieces, which have to be distributed among the 

nine productive nodes. When the iterations start, the orchestrator indicates the following division: 𝑄2 = 10, 𝑄3 =

15, 𝑄4 = 15, 𝑄5 = 25, 𝑄6 = 20,  𝑄7 = 15, 𝑄8 = 5, 𝑄9 = 10 and 𝑄10 = 15, at prices 𝑝𝐿
𝑖 , 𝑖 = 2,… ,9.  
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The iterations are listed as follows. 

 

First iteration: 

From algorithm (PA), we have 𝑃 ≔ {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒106, 𝑒68, 𝑒87, 𝑒71}, 𝐶(𝑃) ≔ 185 = 𝐶𝑋
(1)

. We have 

that 𝑄𝑖
(1) = 𝑄𝑖 , 𝑖 = 2,… ,9, hence 𝐶𝑌

(1) = ∑ 𝑄𝑖
(1)𝑝𝐿

𝑖9
𝑖=2 = 1975, and 𝐶𝑇𝑂𝑇

(1) = 2160. 

Considering the various reallocations and variations of costs, we get Table 7. 

 

TABLE 7 

Logistics paths, variations of costs and reallocations for the first iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣2 {𝑒16, 𝑒610, 𝑒105, 𝑒54, 𝑒43, 𝑒39, 𝑒97, 𝑒78, 𝑒81} −12 +40 +28 

𝑣3 {𝑒12, 𝑒27, 𝑒75, 𝑒54, 𝑒46, 𝑒610, 𝑒108, 𝑒89, 𝑒91} −15 −20 −35 

𝑣4 {𝑒12, 𝑒23, 𝑒39, 𝑒910, 𝑒105, 𝑒58, 𝑒87, 𝑒76, 𝑒61} −10 +65 +55 

𝑣5 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒46, 𝑒610, 𝑒107, 𝑒78, 𝑒81} −20 −30 −50 

𝑣6 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒107, 𝑒78, 𝑒81} −24 −245 −269 

𝑣7 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒106, 𝑒68, 𝑒81} −24 −95 −119 

𝑣8 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒106, 𝑒67, 𝑒71} −19 −20 −39 

𝑣9 {𝑒12, 𝑒23, 𝑒310, 𝑒105, 𝑒54, 𝑒46, 𝑒68, 𝑒87, 𝑒71} −30 +40 +10 

𝑣10 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒58, 𝑒87, 𝑒76, 𝑒61} −15 +130 +115 

 

Table 7 shows that node 𝑣6 has to be excluded in the second iteration. 

 

Second iteration: 

The new path becomes 𝑃 ≔ {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒107, 𝑒78, 𝑒81} and 𝐶(𝑃) ≔ 161 = 𝐶𝑋
(2)

. We get that 

𝑄2
(2) = 13, 𝑄3

(2) = 17,𝑄4
(2) = 17, 𝑄5

(2) = 28, 𝑄7
(2) = 17, 𝑄8

(2) = 7, 𝑄9
(2) = 13  and 𝑄10

(2) = 18, while 𝐶𝑌
(2) =

1730, and 𝐶𝑇𝑂𝑇
(2) = 1891. 

The computation of weights for nodes and possible variations of costs are presented in Table 8. 
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TABLE 8 

Logistics paths, variations of costs and reallocations for the second iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣2 {𝑒15, 𝑒54, 𝑒43, 𝑒39, 𝑒910, 𝑒107, 𝑒78, 𝑒81} −5 +40 +35 

𝑣3 {𝑒12, 𝑒27, 𝑒75, 𝑒54, 𝑒410, 𝑒108, 𝑒89, 𝑒91} −10 −45 −55 

𝑣4 {𝑒12, 𝑒23, 𝑒39, 𝑒910, 𝑒105, 𝑒58, 𝑒87, 𝑒71} −7 +55 +48 

𝑣5 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒410, 𝑒107, 𝑒78, 𝑒81} −15 −60 −75 

𝑣7 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒108, 𝑒81} −20 −140 −160 

𝑣8 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒107, 𝑒71} −18 +85 +67 

𝑣9 {𝑒12, 𝑒23, 𝑒310, 𝑒105, 𝑒54, 𝑒48, 𝑒87, 𝑒71} −26 +40 +14 

𝑣10 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒58, 𝑒87, 𝑒71} −12 +70 +58 

 

From Table 8, it follows that the next iteration does not foresee node 𝑣7.  

 

Third iteration: 

In this case, the new path is 𝑃 ≔ {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒108, 𝑒81} and 𝐶(𝑃) ≔ 141 = 𝐶𝑋
(3)

. We get that 

𝑄2
(3) = 15, 𝑄3

(3) = 19,𝑄4
(3) = 20, 𝑄5

(3) = 30, 𝑄8
(3) = 9, 𝑄9

(3) = 16  and 𝑄10
(3) = 20, while 𝐶𝑌

(3) = 1590, and 

𝐶𝑇𝑂𝑇
(3) = 1731. 

Weights for nodes and variations of costs are in Table 9. 

 

TABLE 9 

Logistics paths, variations of costs and reallocations for the third iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖 ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣2 {𝑒15, 𝑒54, 𝑒43, 𝑒39, 𝑒910, 𝑒108, 𝑒81} −5 +35 +30 

𝑣3 {𝑒12, 𝑒25, 𝑒54, 𝑒410, 𝑒108, 𝑒89, 𝑒91} −1 −65 −66 

𝑣4 {𝑒12, 𝑒23, 𝑒39, 𝑒910, 𝑒105, 𝑒58, 𝑒81} −11 +45 +34 

𝑣5 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒410, 𝑒108, 𝑒81} −15 −16 −31 
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𝑣8 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒510, 𝑒101} −19 −25 −44 

𝑣9 {𝑒12, 𝑒23, 𝑒310, 𝑒105, 𝑒54, 𝑒48, 𝑒81} −30 +35 +5 

𝑣10 {𝑒12, 𝑒23, 𝑒39, 𝑒94, 𝑒45, 𝑒58, 𝑒81} −16 +45 +29 

 

Table 9 shows that node 𝑣3 must be excluded in the next iteration.  

 

Fourth iteration: 

In this case, the new path is 𝑃 ≔ {𝑒12, 𝑒25, 𝑒54, 𝑒410, 𝑒108, 𝑒89, 𝑒91} and 𝐶(𝑃) ≔ 140 = 𝐶𝑋
(4)

. We get that 𝑄2
(4) =

19, 𝑄4
(4) = 24, 𝑄5

(4) = 33, 𝑄8
(4) = 12, 𝑄9

(4) = 19  and 𝑄10
(4) = 23, while 𝐶𝑌

(4) = 1525, and 𝐶𝑇𝑂𝑇
(4) = 1665. 

Weights for nodes and variations of costs are in Table 10. 

 

TABLE 10 

Logistics paths, variations of costs and reallocations for the fourth iteration 

Erase node 𝑣𝑖 𝑃\𝑣𝑖  ∆𝐶𝑋
𝑣𝑖 ∆𝐶𝑌

𝑣𝑖 ∆𝑅𝑣𝑖  

𝑣2 {𝑒15, 𝑒54, 𝑒410, 𝑒108, 𝑒89, 𝑒91} −15 +315 +300 

𝑣4 {𝑒12, 𝑒25, 𝑒510, 𝑒108, 𝑒89, 𝑒91} −21 +349 +328 

𝑣5 {𝑒12, 𝑒24, 𝑒410, 𝑒108, 𝑒89, 𝑒91} −16 +299 +283 

𝑣8 {𝑒12, 𝑒25, 𝑒54, 𝑒410, 𝑒109, 𝑒91} −16 +139 +123 

𝑣9 {𝑒12, 𝑒25, 𝑒54, 𝑒410, 𝑒108, 𝑒81} −41 +240 +199 

𝑣10 {𝑒12, 𝑒25, 𝑒54, 𝑒49, 𝑒98, 𝑒81} −125 +287 +162 

 

 

The iterations stop as ∆𝑅𝑣𝑖 > 0, 𝑖 = 2, 3, 4, 5, 8, 9, 10. The network has reached an equilibrium. Notice that further 

iterations could be possible if the demanding nodes and production nodes could negotiate about the price/plans. 

This is object of further research activities, dealing with possible variations of parameters 𝑘𝐿, 𝑘𝑀 and 𝑘𝐻. 

 

 

5. CONCLUSIONS AND FUTURE DEVELOPMENTS 
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In this paper, the authors have shown a Scattered Manufacturing Network within the 3D Printings context. An 

orchestrator describes communication and dynamics along the network in order to establish tradeoffs between the 

exigencies of demanding and productive nodes.  

In particular, a unique framework has been used to describe logistics and reallocation issues, while suitable 

numerical examples have tested the proposed approach. 

The just described context paves the way for further research activities. In the future, the authors aim to discuss 

complex manufacturing strategies for productive nodes, with consequent modelling of richer phenomena inside 

negotiation phases. Such phases will be defined by Multi-agent Systems. For them each node will be considered 

as smart agents that negotiate among themselves in order to pursue economic interests and manufacturing 

optimization needs (Leitão 2009; Preux et al. 2004; Wang et al. 2016) in a Peer-to-Peer decentralized architecture. 

This will also allow determining new logistics different approaches based on big data analysis, as well as 

introducing new scheduling issues dealing with temporal variables.  
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Appendix 

 

Example PA. 

 

Consider a SM network with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and matrix 𝑋: 

 

𝑋 = (

0 5 9 1
3 0 7 11
7 9 0 8
2 12 6 0

). 

 

Preliminarily, 𝑃 ≔ ∅, 𝐶(𝑃) ≔ 0, 𝑣𝑠 ≔ 𝑣1. Table 11 shows the various iterations. Figure 1A, where numbers 

indicates the nodes for simplicity, presents a graphical evolution of the path. 

 

Table 11 

Evolution of the iterations 

Iteration 𝑃 𝐶(𝑃) 𝑉 

1 {𝑒14} 1 {2,3,4} 

2 {𝑒14, 𝑒43} 7 {2,3} 

3 {𝑒14, 𝑒43, 𝑒32} 16 {2} 

4 {𝑒14, 𝑒43, 𝑒32, 𝑒21} 19 {2} 
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Figure 7 

Iteration 1 (up, left): the first arc of the path 𝑷 connects nodes 𝒗𝟏 and 𝒗𝟒. Iteration 2 (up, right): the path 

𝑷 connects nodes 𝒗𝟒 and 𝒗𝟑. Iteration 3 (bottom, left): the path 𝑷 connects nodes 𝒗𝟑 and 𝒗𝟐. Iteration 4 

(bottom, right): the path 𝑷 connects nodes 𝒗𝟑 and 𝒗𝟐 
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