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In refrigerators production, vacuum creation is fundamental to guarantee the correct manufacturing of the product. Before 
inserting the refrigerant in the refrigerator cabinet, the vacuum is tested through a Pirani gauge that assesses the pressure within 
the cabinet. Such readings are used to evaluate the vacuum creation process and to verify if leakings are present. In this work, we 
employ a Deep Learning-based Anomaly Detection approach to associate an Anomaly Score to each pressure profile; this score 
can be exploited to optimize actions performed by human operators like more detailed inspections or unit exclusion from the 
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assisting human operators in the following testing operations, helping them in reducing evaluation bias and attention losses that 
are inevitable in production line environment. Moreover, costs associated with false positives (normally operating units detected 
as anomalous) and false negatives (undetected anomalies) are considered here to optimize decision making in a cost-reduction 
perspective. We also describe promising results obtained on real industrial data spanning on a 5-month period and consisting of 
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1. Introduction and main contribution 

In refrigerators manufacturing, vacuum creation is a fundamental production stage that has a strong impact on the 
quality of the resulting product. Before inserting the refrigerant in the refrigerator cabinet, vacuum is tested through 
a Pirani gauge and pressure measurements are used to evaluate the presence of leakings. However, abnormal 
behaviors due to leakings often resemble acceptable ones closely, and thus their detection is a challenging task. We 
aim at spotting pressure profiles whose shape is different from normal one due to issues in the vacuum creation 
process. Therefore, the problem can be recast in the framework of Anomaly Detection (AD). In this work, we 
employ Machine Learning (ML)-based Anomaly Detection approaches to detect anomalous behavior in leak testing. 
ML exploits the availability of historical datasets and provides solutions whose performance are expected to further 
improve as new data are collected [1]. The situation where production data are monitored on-line and collected for 
prescriptive analytics is typical in Industry 4.0 scenarios [2] [3] [4]. In this work we show how it can be successfully 
used to improve quality control for manufactured products in the context of refrigerators production. We recall that 
AD is an unsupervised task [5], i.e. tagged information on anomalies are generally not available. In general, most 
AD approaches applied in industrial scenario are based on hand-engineered features whose effective design requires 
a significant amount of domain knowledge and is far from effortless [6]. Feature design in AD is particularly 
challenging since features that are considered informative for supervised tasks (like Fault Classification or some 
Predictive Maintenance use cases [7]) are typically not relevant for AD [8] [9]. Therefore, approaches based on 
hand-craft features are usually difficult to maintain and scale. Indeed, production process may vary in time. 
Moreover, it is usually difficult to adapt features to new products. In this work, we propose an unsupervised Deep 
Learning (DL)-based approach to AD for pressure profiles. We train a Bayesianly Interpretable Neural Network 
(BINN) to predict the future value of a time series in a self-supervised fashion. Prediction uncertainty, naturally 
provided by the network, is then used to assess how abnormal the pressure profile is. Thanks to MC dropout [10] 
(details will be provided in the following Section), training is implemented efficiently and uncertainty estimation can 
be achieved without the need for additional parameters, whereas ordinary Bayesian Neural Networks (that are 
usually used to provide output prediction uncertainty) require at least to double the number of parameters [11]. 
Differently from classic AD techniques, the proposed approach does not require explicit feature design. Moreover, 
prediction uncertainty is used to associate an anomaly score (also called “health factor” in the literature [12]), i.e. an 
estimate of how abnormal a piece is, to each leaking test; the anomaly score can be exploited to optimize actions 
performed by human operators like more detailed inspections or unit exclusion from the downstream production 
stages. In fact, the AD solution will be deployed in a Decision Support System (DSS) [13] for assisting human 
operators in the following testing operations, helping them in removing evaluation bias and attention losses that are 
inevitable in production line environment. Decision making can be optimized by tuning the number of false positives 
or false negatives in a flexible manner. Indeed, it is possible to reduce the number of normally operating units 
detected as anomalous (false positives) when a limited workforce is available for further inspection of suspicious 
pieces. Similarly, the number of undetected anomalies (false negatives) can be reduced when manufacturing high-
end products. The contributions of this paper can be summarized as follows:  

• To the best of our knowledge, this is one of the first AD approaches applied to consumer goods manufacturing 
(few other works are present in automotive manufacturing [14] while, as far as we know, this is the first work in 
white goods manufacturing); 

• We propose a DL-based approach for industrial time series that provides a measure of uncertainty that can be 
exploited in the deployment of a DSS; 

• The proposed approach directly deals with time series and requires no feature engineering. This is a clear 
advantage with respect to classic ML approaches where the design of features is typically a time-consuming 
procedure, heavily dependent on domain knowledge, and difficult to adapt to process and product changes; 

• The proposed approach is tested on real industrial data, corresponding to thousands of tested household units. 
The comparison with classic ML-based solutions for AD suggests that the proposed approach achieves higher 
performance in the problem at hand. 
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 The rest of the paper is organized as follows: Section 2 is devoted to present the proposed architecture and to 
review Bayesian Neural Networks. In Section 3 the considered refrigerator manufacturing case study is described, 
while experimental findings are reported in Section 4. Finally, in Section 5, conclusive remarks are reported and 
future research directions are illustrated. 

2. Proposed approach 

The proposed approach relies on a Bayesian interpretation of Neural Networks [15] [16] [17]. Differently from 
classic Neural Networks (NNs) [18], where parameters (i.e. weights and biases) are represented by single values, in 
Bayesian Neural Networks (BNNs) each parameter is associated with a probability distribution. This probabilistic 
formulation requires a higher number of parameters, but provides confidence intervals for network output, an 
information that is crucial to improve reliability in many practical applications.  In this work, we make use of MC 
dropout, a technique proposed in [10], to modify a standard Convolutional Neural Network (CNN) so that it can 
provide output uncertainty estimates. We remark that the resulting network is not Bayesian by itself but is equipped 
with a natural Bayesian interpretation instead. We remind that in our scenario the aim is to detect abnormal profiles 
rather than abnormal patterns within time series. We reformulate this problem by defining a self-supervised “proxy 
task”: for each time series, we consider a sliding window of length 𝑘𝑘 and we train the model to predict the (𝑘𝑘 + 1)-
th sample for each window. Under the assumption that most pressure profiles are normal, we expect to obtain highly 
confident predictions on values coming from normal examples and greater uncertainty when processing abnormal 
examples. If we average model uncertainty over all windows extracted from each time series, we can compute an 
overall model uncertainty measure. Thus, we can consider it as an anomaly score that is then used to discriminate 
between normal and abnormal pressure profiles, once an appropriate threshold has been defined.  

Fig. 1 depicts the proposed approach, whose main steps are: (i) a BINN is trained (blue lines) to reconstruct 
subsequences taken from time series, under the assumption that most input samples come from normal pressure 
profiles; (ii) once deployed (red lines), the BINN is used to reconstruct 𝑛𝑛 subsequences 𝐱𝐱𝐢𝐢  taken from pressure 
profile 𝐱𝐱 and the sample variance provided by 𝑁𝑁 forward passes is averaged over all 𝑛𝑛 windows to assign an overall 

Fig. 1. Proposed approach for detecting abnormal pressure profiles. 
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anomaly score σ2  to pressure profile 𝐱𝐱 (iii) if σ2 >  σ𝑇𝑇𝑇𝑇
2  the time series 𝐱𝐱 is deemed abnormal. More details on 

BINN training and deployment will be given in Section 2.1 and Section 2.2. The threshold can be defined either in a 
completely unsupervised fashion or, if a training dataset with ground-truth labels is available, based on a trade-off 
between resulting false positive and false negative samples. 

2.1. Review on Bayesian Neural Networks 

Let 𝐷𝐷 = {𝐱𝐱𝑖𝑖, 𝐲𝐲𝑖𝑖}   be the set of observed data, where 𝐱𝐱𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚  is an input data point, and 𝐲𝐲𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛  is the 
corresponding output. To train a BNN, we first define a prior distribution 𝑝𝑝(𝐰𝐰) over the network parameters 𝐰𝐰 ∈
𝑅𝑅𝑝𝑝. Our aim is updating our prior beliefs about 𝐰𝐰 considering the observed data. In other words, we are interested in 
estimating the posterior distribution of the network parameters given the observed data, p(𝐰𝐰|𝐱𝐱, 𝐲𝐲) =
𝑝𝑝(𝐲𝐲|𝐱𝐱, 𝐰𝐰)𝑝𝑝(𝐰𝐰)/𝑝𝑝(𝐲𝐲|𝐱𝐱), where 𝑝𝑝(𝐲𝐲|𝐱𝐱, 𝐰𝐰) is known as likelihood function and 𝑝𝑝(𝐲𝐲|𝐱𝐱)  = ∫ 𝑝𝑝(𝐲𝐲|𝐱𝐱, 𝐰𝐰)𝑝𝑝(𝐰𝐰)𝑑𝑑𝐰𝐰  as 
model evidence. Notice that the denominator requires the integration over all possible values of the parameters, 
making exact computation practically intractable. As a result, we need an approximation of the posterior distribution 
and thus the problem falls under the scope of approximate Bayesian inference. In recent years, many variational 
inference techniques have been applied  [11] [19] [20] [21] based on the following procedure: (i) define a variational 
approximation 𝑞𝑞(𝐰𝐰|𝛉𝛉) , parametrized by 𝛉𝛉 ∈ 𝑅𝑅𝑞𝑞 , of the true posterior distribution 𝑝𝑝(𝐰𝐰|𝐱𝐱, 𝐲𝐲) ; (ii) optimize 
parameters 𝛉𝛉  such that the KL divergence between 𝑞𝑞(𝐰𝐰|𝛉𝛉)  and 𝑝𝑝(𝐰𝐰| 𝐱𝐱, 𝐲𝐲)  is minimized. This leads to an 
optimization problem where the cost function to be minimized is 

 

𝛉𝛉∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝛉𝛉 [𝐾𝐾𝐾𝐾(𝑞𝑞(𝐰𝐰|𝛉𝛉)| 𝑝𝑝(𝐰𝐰)) − 𝐸𝐸𝑞𝑞(𝐰𝐰|𝛉𝛉)[𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝐲𝐲| 𝐱𝐱, 𝐰𝐰)]]. 
 
𝐾𝐾𝐾𝐾(𝑞𝑞(𝐰𝐰|𝜽𝜽)| 𝑝𝑝(𝐰𝐰)) is a complexity term, which prevents the variational distribution to deviate too much from 

the prior distribution, and 𝐸𝐸𝑞𝑞(𝐰𝐰|𝛉𝛉)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐲𝐲|𝐱𝐱, 𝐰𝐰)]  is a fit term (also known as reconstruction probability) that 
encourages the variational distribution to explain the data well.  

The main disadvantage when using variational inference techniques is represented by the high computational cost 
and this motivated the search for cheaper methods to get uncertainty estimates. In [10] the authors propose “a new 
theoretical framework casting dropout training in deep neural networks as approximate Bayesian inference in deep 
Gaussian processes”. In short, they demonstrate that standard dropout [22] can be interpreted as a variational 
Bayesian approximation where the variational distribution 𝑞𝑞(𝐰𝐰)  is a Bernoulli. The main peculiarity of this 
technique lies in the fact that dropout is used in the testing phase as well. This can be seen as Monte Carlo sampling 
from the posterior distribution over the network weights and this is the reason why this method is commonly 
referred to as MC dropout. More in detail, when the trained network is fed with a new input 𝐱𝐱∗, we sample the 
posterior distribution over the weights to obtain the posterior distribution of the output 𝐲𝐲∗. In practice, this is done 
by performing 𝑁𝑁 stochastic forward passes through the network and then taking the mean of the output samples as 
the prediction and the variance as the model uncertainty. 

Since a complete dissertation on dropout variational inference is out of the scope of this work, we refer the 
curious reader to [10] [23]. For a clear comprehension of the following Sections, all we need to know is that MC 
dropout can be applied to ordinary CNNs with no need to modify the training procedure [24]. Then, the resulting 
network provides output uncertainty estimates that we will use as anomaly scores to detect abnormal pressure 
profiles. 

2.2. Proposed architecture 

Fig. 2 depicts the proposed architecture. The input consists in a window of 𝑘𝑘 = 8 contiguous samples from the 
processed time series and the output (that the network has to predict) is the sample that follows the last sample in the 
input window. Notice that no feature engineering is needed: the input window contains raw data from the 
preprocessed time series. Given the small length of the sequences to be processed, we decided to use convolutional 
layers instead of recurrent layers. This choice has proved to give enough capacity to the network, while maintaining 
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the number of parameters limited. On top of the two convolutional layers (with 32 and 16 filters of size 2, 
respectively), we placed two dense layers (with 30 and 1 hidden units, respectively). ReLUs non-linearities are used 
as activation functions of each layer, except for the last one. In the training phase the network parameters are 
optimized by means of Adam optimizer [25] to minimize the Mean Square Error between the network predictions 
and the true outputs. As mentioned in Section 2.1, dropout is used during training and testing as well to induce a 
Bayesian variational inference interpretation of the model. More in detail, at test time we perform 𝑁𝑁 = 50 stochastic 
forward passes through the network for each test example and we consider the sample mean of the output samples as 
prediction and the sample variance as an estimate of model uncertainty. 

We remind that the goal of the proposed algorithm is to detect abnormal time series and not to detect anomalies 
within time series. Therefore, we average the sample variance associated to each sliding window within the time 
series to obtain the anomaly score associated to each pressure profile. 

 

3. Industrial case study 

We tested the proposed approach on a real case study, provided by an industrial partner. Data consist in pressure 
profiles measured after vacuum creation process for thousands of refrigerators. Preliminarily, we performed a Pareto 
analysis and we decided to focus on the most frequent refrigerator type, that accounts for more than 10% of 
manufactured pieces between 2018/03 and 2018/07. Thus, we have 2000 pressure profiles given by pressure 
measurements acquired by a Pirani gauge, with sampling time 𝑇𝑇 = 2 𝑠𝑠. Pressure in the cabinet is measured in the 
interval between the final stage of the vacuum creation process and the end of the testing phase. This interval 
consists in three stages: (i) a pump is attached to the cabinet and vacuum creation process begins; (ii) once vacuum 
creation is complete and the pump is detached, the valve is opened for a few seconds; (iii) the valve is closed and 
pressure test ends. 

Fig. 3 shows equipment used to perform vacuum creation and assess the quality of this process. To enable the 
evaluation of proposed ML approaches, when the dataset was created, a label was assigned to each time series by a 
domain expert. If a time series is deemed normal, then it is tagged with 0, otherwise with 1. In the dataset at hand, 
15% of the time series are tagged with label 1. As typically happens in industrial case studies, the availability of 
tagged data can be considered as an exceptional occasion and the presence of labels is not expected in production 
phase. Thus, we focused on unsupervised techniques for AD. 

 

Fig. 2. Proposed BINN (based on MC dropout + CNN) for sequence forecasting. 

Fig. 3. Pump carousel used to perform vacuum creation in refrigerators (left); Pirani gauge used to assess vacuum quality (right). 
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4. Experimental results 

4.1. Fully unsupervised scenario 

To evaluate the proposed approach, we compared it with three state-of-the-art AD algorithms, namely: Isolation 
Forest (I-Forest), One-Class SVM (OCSVM) and Principal Component Analysis (PCA). We also considered 
another DL-based solution where the reconstruction error provided by a fully-connected autoencoder (AE) is used as 
a measure of anomaly. For each AD algorithm, we considered the implementation available in PyOD Python 
toolbox [26] (we refer the curious reader to [26] also for references associated with the mentioned algorithms). In 
the unsupervised scenario, when designing a threshold on prediction variance provided by BINN to distinguish 
between normal and abnormal profiles, there are no labels we can rely on. However, we notice that the threshold 
plays the same role as the contamination parameter (i.e. the expected fraction of outliers in the dataset) for the 
classic algorithms listed above. Since, when no prior information is available, 0.1 is a very common choice for the 
contamination parameter, we propose to classify a time series as abnormal if its prediction variance is greater than 
the 90-th percentile of the prediction variance attained by time series in the training stage.  

Differently from BINN, all classic AD techniques considered for the comparison, except for the autoencoder, are 
not designed to deal directly with time series. Thus, we propose a straightforward feature extraction procedure: (i) 
for each time series, we split it in 7 windows (of length 10) and (ii) for each window we compute minimum value, 
maximum value, average value, median value, standard deviation and median absolute deviation. The resulting 
design matrix has 42 columns. We performed 10 random iterations and computed mean and standard deviation for 
precision, recall and F1 score. The experimental results shown in Tab. 1 suggest that our approach exhibits the best 
performance according to all the metrics considered. One may argue that the creation of more informative features, 
for the task at hand, may improve the performance of classic AD algorithms. However, if we assume that the design 
of elaborate, domain-specific features is not the preferable solution, due to scalability and maintenance issues, the 
choice of straightforward statistics such as the proposed ones seems very natural. Indeed, hand-craft features based 
on very specific domain knowledge are usually hard to adapt to process or product changes. To assess the impact of 
feature design, we also applied the above-mentioned algorithms to time series samples directly, without an 
intermediate feature extraction stage. We remark that this naive approach was considered only to assess the quality 
of the features proposed above, and it is not advisable in scenarios where longer time series are involved. On the 
contrary, BINN can be adapted to different time series durations by tuning number and length of considered 
windows. Tab. 1 shows that the proposed approach still outperforms the others. This highlights once again the great 
advantage of a solution that can handle directly time series data. In addition, the fact that some algorithms achieve 
better results with raw data suggests that the extraction of informative features that are not heavily dependent on 
domain knowledge is a very challenging task. 

Tab. 1. Performance of proposed BINN approach in its completely unsupervised version versus off-the-shelf AD algorithms. 

 

Algorithm 

 

F1 score 

Raw data 

Precision 

 

Recall 

 

F1 score 

Features 

Precision 

 

Recall 

BINN 0.743 ± 0.013 0.857 ± 0.018 0.655 ± 0.015 - - - 

PCA 0.612 ± 0.054 0.760 ± 0.054 0.514 ± 0.059 0.573 ± 0.035 0.725 ± 0.048 0.478 ± 0.051 

OCSVM 0.584 ± 0.046 0.727 ± 0.030 0.492 ± 0.063 0.540 ± 0.039 0.653 ± 0.047 0.464 ± 0.048 

AE 0.562 ± 0.061 0.692 ± 0.074 0.476 ± 0.064 0.551 ± 0.037 0.681 ± 0.036 0.466 ± 0.052 

I-Forest 0.534 ± 0.056 0.682 ± 0.048 0.441 ± 0.063 0.524 ± 0.037 0.653 ± 0.061 0.441 ± 0.043 

4.2. Impact and tuning of decision function threshold 

In this Section we analyze the performance of BINN as a function of the threshold in the decision function and 
make a comparison with the techniques introduced in Section 4.1. The aim of such an analysis is to prove that the 
higher performance of our approach is not due to an ad-hoc selection of the threshold. Thus, we consider available 
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labels provided by a domain expert to define an optimal threshold in the decision function. Following the 
considerations given in [27], we assess optimality through the precision-recall plot which is more informative than 
ROC when dealing with imbalanced datasets. Ideally, the best performing algorithm would be located at the upper 
right corner, where both precision and recall values are equal to 1. Fig. 4 shows that even when the best threshold is 
selected for each algorithm, BINN still outperforms all classic AD techniques. 

Since the proposed approach is designed to be integrated into a Decision Support System (DSS), it is possible to 
tune the threshold on prediction variance based on resulting false positive and false negative rates. Indeed, for lots of 
high-end products it may be advisable to reduce false negatives as much as possible; on the other hand, when 
reduced workforce is available, it may be useful to reduce the number of false positives to make human operators 
focus on a small number of pieces that are defective with high probability. 

5. Conclusions and research directions 

In this work we propose an approach to Anomaly Detection in refrigerators manufacturing based on a Bayesianly 
Interpretable Neural Network. To the best of our knowledge, this is one of the first Anomaly Detection approaches 
applied to consumer goods manufacturing.  

The proposed approach requires no feature engineering because it can deal directly with time series. Thus, it is 
simpler to deploy than classic Machine Learning-based solutions for Anomaly Detection. For each analyzed time 
series, we compute a measure of uncertainty that can be exploited inside a Decision Support System to drive 
corrective actions; in particular, it can be used to focus first on most anomalous units when limited workforce is 
available. On the other hand, only units whose evaluated uncertainty is very low may be considered acceptable when 
high-end products manufacturing is involved. 

Finally, we performed tests on real industrial data corresponding to thousands of tested refrigerators household 
units. The comparison with other Anomaly Detection techniques (that have been proven to be effective in other 
manufacturing areas  [5] [8] [9]) suggests that the proposed approach achieves higher performance for the problem 
at hand. 

We foresee at least two relevant future research directions: (i) we could use uncertainty associated to the task of 
predicting future values for single windows to highlight local abnormal behaviors that may be difficult to spot when 
looking at the entire time series; (ii) we can make the proposed approach adaptive with respect to new products and 
changes in the production process by means of adaptive thresholds and/or condition-based model retraining. 

Fig. 4. Precision-recall plots. Each cross represents a precision-recall pair corresponding to a specific value of the threshold. 
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