
Electronic Notes in Theoretical Computer Science 50 No. 3 (2001) { Proc. GT-VMT 2001
URL: http://www.elsevier.nl/locate/entcs/volume50.html 8 pages

An Agg Application
Supporting Visual Reasoning 1

Andrea Formisano
2

Dipartimento di Matematica e Informatica, Universit�a di Perugia

Marta Simeoni
3

Dipartimento di Informatica, Universit�a `C�a Foscari' di Venezia

1 Introduction

The map calculus, the arithmetic of dyadic relations (cf. [9]), is a ground

equational formalism where one can state properties of dyadic relations over

a unspeci�ed domain of discourse. It can be seen as an evolution of the

theory of relations, an algebraic approach to logic developed by, among others,

A. de Morgan, C. S. Peirce and E. Schr�oder [8,7].

Direct algebraic manipulation of map expressions seems to be, for human

beings, much less natural than developing inferences in �rst-order logic; it

may in fact appear to be overly machine-oriented for direct hand-based ex-

ploitation. However, the situation radically changes when one resorts to a

convenient representation of map expressions based on labeled graphs. Beside

allowing the abstraction w.r.t inessential features of expressions, such a rep-

resentation allows an easy and intuitive visual handling of map speci�cations.

Approaches of this kind have been proposed, for instance, in [2,1,3,6].

In this work we move the �rst step toward the implementation of an au-

tomated tool for the mechanization of visual map-reasoning. To this end,

we exploit Agg |Algebraic Graph Grammar| [4], which provides a visual

programming environment for graph transformation based applications. Such

applications are described by graph grammars, which consist of an initial

graph and a set of graph rewriting rules. Agg supports the visual handling of

both the start graph and the rewriting rules, and, once the graph grammar

has been formalized, it allows the manipulation of the start graph. We use

1 This research was partially funded by the Italian IASI-CNR (coordinated project

log(SETA)); by MURST|PGR-2000; by the EC TMR Network GETGRATS (GEneral

Theory of GRAph Transformation Systems); and by Esprit Working Group APPLIGRAPH.
2 Email:formis@dipmat.unipg.it
3 Email:simeoni@dsi.unive.it

c2001 Published by Elsevier Science B. V.

GT-VMT 2001 { A. Formisano and M. Simeoni

Agg as a visual proof-assistant for map reasoning: inference mechanisms are

implemented as graph rewriting rules and techniques, allowing the transfor-

mation of premises into conclusions (forward reasoning), or the reduction of

theses |goals| into simpler goals and, ultimately, into known facts (back-

ward reasoning).

A detailed exposition of the topics of this paper, comprising a series of

worked exampes, can be found in [5].

2 A graphical rendering for equational speci�cations

The map calculus is based on L�, an equational language devoid of variables.

Its basic ingredients are three constants �, 1l, �; in�nitely many map letters

p1; p2; p3; : : :; three dyadic constructs \, 4, ; of map intersection, map sym-

metric di�erence, and map composition; and the monadic construct ^ of map

conversion. A map expression is any term built up from this signature in the

usual manner. A map equality is a writing of the form Q=R, where both Q

and R are map expressions.

Once a nonempty domain U has been �xed, the map constants �, 1l,

and � are interpreted by putting: �= =Def ;, 1l= =Def U
2 =Def U � U , and

�
= =Def f[a; a] : a 2 Ug. On the basis of the usual evaluation rules, by putting

subsets p=1 ; p
=

2 ; p
=

3 ; : : : of U
2 in correspondence with the p

i
s, each map expres-

sion P comes to designate a speci�c map P
=, and each equality Q=R turns

out to be either true or false.

Let us now assume that ' is a conjunction (9 x1) � � � (9 xk)(L1^� � �^Ln) of

atoms, and that vars(') � fv1; v2; : : :g is the set of all the variables occurring

in '. Moreover, assume that x1; : : : ; xk 2 vars(') and that each Li is of the

form xLi
PLi

yLi
, where xLi

; yLi
2 vars(') are variables (assumed ranging over

the domain U of discourse), and PLi
is a map expression of L� . Clearly, free

variables may occur in ' intermixed with existentially quanti�ed variables.

An Agg graph G' representing ' is so de�ned: given the two alphabets

AN =Def f g and AE =Def f ; g; for nodes and edges

(graphical) labels, we have G' = hGE; GN ; Gs; Gt; Gle; Glni where:

GE =Def f1; : : : ; ng is the set of edges;

GN =Def vars(') is the set of nodes;

Gs : GE ! GN maps each i 2 GE into xLi
(source function);

Gt : GE ! GN maps each i 2 GE into yLi
(target function);

Gln : GN !AN maps each node to the unique available label;

Gle : GE !AE maps each edge to .

Agg graphs may be attributed by Java objects (i.e instances of Java classes,

either imported from standard libraries or user de�ned): we exploit the at-

tribution mechanism in order to permit suitable manipulation of map expres-

sions. More precisely, we introduce the node attribution function type : GN !

fB; Fg such that, for each node x, type(x) is B (resp. F) if x is a bound (resp.

free) variable in '. Accordingly, a node is said bound if the corresponding

2

GT-VMT 2001 { A. Formisano and M. Simeoni

variable is bound in '. We consider moreover the edge attribution function

Esp : GE ! L� which associates each edge i, with the map expression PLi
.

The following Agg rules, which manifestly preserve the meaning of the

involved graphs, can be combined to constitute an algorithm for associating an

`unfolded' graph G to a given (compound) map expression P . Two designated

(free) nodes, named source and sink, represent the two arguments of P , and

every node distinct from these two is regarded as being bound.

Note that X, Y , and P are variables which are instantiated with concrete

attribute values when the left-hand side graphs are applied to a certain graph.

The rules are applicable when P is instantiated with P1\P2 (�rst rule), P1;P2

(second rule) and P^

1 (last rule), where P1 and P2 stand for general map ex-

pressions. Their applicability is checked via Java methods. Moreover, the Java

methods proj1 and proj2 return the map expressions P1 and P2, respectively.

Representing map equalities. Let us now extend our approach in order

to suitably represent map equalities. To this end we convert the graph rep-

resentation of a relation P (i.e., (xPy)) into the representation of an equality

involving P by bounding the source x and sink y by universal or existential

quanti�cation. The following equalities (shown on the left-hand side), corre-

spond to closed �rst-order formulas (shown on the middle), and are rendered

in our graphical notation by means of particular node attribute values (shown

on the right-hand side).

P=1l; (8x)(8y)(xPy) type(x) = A, type(y) = A

P ;1l=1l, i.e., Total(P) (8x)(9y)(xPy) type(x) = A, type(y) = E

P 6=�, i.e., Total(1l;P); (9x)(9y)(xPy) type(x) = E, type(y) = E

P=� :(9x)(9y)(xPy) type(x) = NE, type(y) = E

3

GT-VMT 2001 { A. Formisano and M. Simeoni

The node attribute function has been re�ned to type : GN ! fB; F; A; E; NEg

and the source x and sink y of the graph representing P are attributed ac-

cording with the equality to be expressed. We refer to the four kind of graph

listed above, by the writings 88, 89, 99, and :99, respectively.

Dealing with complementation. In order to allow (partial) handling of

complementation, we introduce the edge label: , to denote that the

associated attributed expression, say P , has to be intended as complemented.

The following is a simple graph-rewriting rule related to this convention:

As we will see, a simple (albeit partial), treatment of complementation,

allows one to model/represent map inclusions of the form P �Q and, conse-

quentely, to describe simple rewriting rules for inferring (new) map inclusions.

3 A proof-assistant based on graph-rewriting techniques

In our context, deriving map equalities from proper axioms, and from laws

already known, can be viewed as a graph-rewriting activity. Here we focus

our treatment on two particular classes of graphs: the existential graphs of the

two types 88 and :99. We call them positive and negative graphs, respectively.

These graphs are exploited to represent premises and conclusions, theses, etc.

From this perspective, inference mechanisms are seen as graph-rewriting

techniques: in forward reasoning, rewriting rules are used to transform premises

into conclusions; in backward reasoning, to reduce theses |`goals', as they are

often called| into simpler goals and, ultimately, into known and perhaps ob-

vious facts.

As a basic principle, it is legitimate to replace a positive goal by a more de-

manding one, and a negative goal by one less demanding. E.g., new attributed

edges can be added at will to a positive goal, whereas edges can be removed

from a negative goal. Solving the new goal, although not necessarily equivalent

to solving the previous goal, will in fact suÆce for the purpose. Quite often a

negative premise represents an inclusion P�Q, i.e., :(9x)(9y)(xP \Qy) :

If a subgraph of a positive goal matches the part of the premise which rep-

resents Q, then it can be replaced by the part representing P ; in a negative

goal, on the opposite, Q may replace P .

From now on, to be more speci�c, let us consider negative graphs only.

4

GT-VMT 2001 { A. Formisano and M. Simeoni

The above-outlined basic rule is formulated in the Agg graphical language as

displayed in Fig.1(1), where the nodes marked 4: and 5: constitute (together

with the edges marked 10: and 12:) the negative premise; while the nodes 6:

and 9: identify the edge to be replaced during the �ring of the rule. Notice

that the negative premise P�Q remains unchanged in the transformed graph.

Moreover, to ensure the soundness of the rule, further conditions have to be

imposed. In fact, during the application of the rule, the negative premise must

match with a complete connected component of the graph.

The properties of inclusion (e.g., transitivity) easily determine the simple

inference rules of Fig.2; further rules for negative goals are shown in Fig.3.

As mentioned, proving a particular map equality in this visual framework

amounts to repeatedly reducing the corresponding graph/goal into simplier

goals until known facts are derived. Some of these facts, or axioms, related to

map-inclusion are:

(A1) P � 1l, (A2) P � P , (A3) 1l� P [P , (A4) � ; P � P .

An axiom corresponds to an Agg production whose left-hand side contain the

obvious inclusions while the right-hand side is empty. The application of a

production of this kind removes obvious facts from the graph.

We describe now a simple example of assisted reasoning. More precisely,

we prove that for any map expression N the following holds: 4

Func(N^) ! 1l ;N �N = � ;N:

We split the problem into two simpler theses:

(a) 1l ;N �N � � ;N ; and (b) Func(N^) ! � ;N � 1l ;N �N ,

The following are the proofs of (a) and (b) as obtained by exploiting Agg.

(a) The representation of 1l ;N �N � � ;N as a :99-graph is:

On the right we have added an instance of the axiom (A4) since the �rst step

will consist in applying rule (2) of Fig.1. As a result we obtain the graph

(i) below, which can be rewritten into graph (ii) by applying a rule imple-

menting a generalization of the `De Morgan' law P ; T\Q ; T=(P [Q) ; T .

(i) (ii)

By (1) of Fig.3 Agg reduces the goal (ii) into the two goals:

4 Here Func(P) stands for the map equality P\P ;�= P .

5

GT-VMT 2001 { A. Formisano and M. Simeoni

(1)

(2)

Fig. 1. Basic inference rules for :99-goals

(1)

(2)

Fig. 2. Simple inference rules for map inclusion

which are then immediately proved by using (A3) and (A2), respectively.

This completes the �rst part of the proof.

(b) The assumption Func(N
^
) can be rewriten as �;N�N , and represented

by the graph (i) below; while our thesis originates the starting graph (ii)

6

GT-VMT 2001 { A. Formisano and M. Simeoni

(1)

Where R is required to be a composition of maps.

(2)

Where R is required to be an intersection of maps.

Fig. 3. Simple reduction rules for :99-goals involving map inclusion

(i) (ii)

By applying an instance of rule (2) of Fig.3 |obtained identifying P and

Q in (2)| Agg reduces the thesis to two subgoals:

The goal on the right corresponds to our hypothesis Func(N
^
); the other

one can be further reduced as follows

by applying the `compound composition' rule of page 3. A further step re-

duces the remaining goal by means of (1) of Fig.3, yielding the two goals:

7

GT-VMT 2001 { A. Formisano and M. Simeoni

which are instances of (A1) and (A2), resp.. This completes the proof.

4 Concluding remarks

In this paper we reported on a �rst attempt in implementing graphical tech-

niques for map representation and reasoning. An interesting further develop-

ment would consist in the design and implementation of a more sophisticated

proof-assistant: consider for instance the capability of performing backtrack-

ing or suggesting the user the `better' rule to apply. The implementation of

these features could be considered as a �rst step toward the realization of a

tool for automated map-reasoning based on graph-transformation techniques.

References

[1] Cantone, D., A. Formisano, E. G. Omodeo and C. G. Zarba, Compiling dyadic

�rst-order speci�cations into map algebra, in: Proc. 2nd AMAST|AMILP 2000

(2000), pp. 35{54.

[2] Chiacchiaretta, A., A. Formisano and E. G. Omodeo, Map reasoning through

existential multigraphs, Tech. Rep. 05/00, Dip. di Matematica Pura ed

Applicata, Univ. di L'Aquila (2000).

[3] Curtis, S. and G. Lowe, Proofs with graphs, Science of Computer Programming

26 (1996), pp. 197{216, Mathematics of program construction, Kloster Irsee.

[4] Ermel, C., M. Rudolf and G. Taentzer, The agg approach: Language and

environment, in: H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg, editors,

Handbook of Graph Grammars and Computing by Graph Transformation,

Vol. 2., World Scienti�c, Singapore (1999).

[5] Formisano, A. and M. Simeoni, Graphs and maps: rewriting techniques at work,

Tech. Rep. 2001-01, TU-Berlin (2001).

[6] Kahl, W., Relational matching for graphical calculi of relations, Information

Sciences 119 (1999), pp. 253{273.

[7] Maddux, R. D., The origin of relation algebras in the development and

axiomatization of the calculus of relations, Studia Logica 50 (1991).

[8] Schr�oder, E., \Vorlesungen �uber die Algebra der Logik (exakte Logik)," B.

Teubner, Leipzig, 1891{95, [Reprinted by Chelsea Pub. Co., New York, (1966)].

[9] Tarski, A. and S. Givant, \A formalization of Set Theory without variables,"

Colloquium Publications 41, American Mathematical Society (1987).

8

