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Abstract

Data tipically evolve according to specific processes, with the consequent possibility to identify a profile of evolution: the values
it may assume, the frequencies at which it changes, the temporal variation in relation to other data, or other constraints that are
directly connected to the reference domain. A violation of these conditions could be the signal of different menaces that threat the
system, as well as: attempts of a tampering or a cyber attack, a failure in the system operation, a bug in the applications which
manage the life cycle of data. To detect such violations is not straightforward as processes could be unknown or hard to extract.
In this paper we propose an approach to detect data anomalies. We represent data user behaviours in terms of labelled transition
systems and through the model checking techniques we demonstrate the proposed modeling can be exploited to successfully detect
data anomalies.
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1. Introduction

Data fields within databases usually vary according to specific processes which reflect the steps accomplished
by the users. These processes are typically tacit, but they are reflected in the data variations. These variations, for
instance, can refer to:

• groups of data fields which vary contextually: for instance, data fields a, b, and c vary every time together;

• temporal intervals in which the data field varies; for instance, data field a varies once in a month;

• users which usually have access to the data field and how; for instance, an user writes every two hours on data
field a.
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When a data field variation violates the correspondent process, it can be the case of a “data anomaly”6. In fact,
data usually evolves according to specific processes. An anomaly, i.e., an illegal or unexpected alteration of data field,
could be determined by several likely causes:

1. tampering of the database;

2. a cyber attack to the system of which the database is a part;

3. a failure in the operating system of the infrastructure;

4. a bug in the applications which update the database.

Thus, the detection of a data anomaly could lead to: reveal an improper behaviour of a clerk who has access to data
(1); discover an intrusion or a cyber attack (2); verify the quality of software and hardware infrastructure (3,4). The
problem is that the data variations could be not made explicit and consequently they cannot be verified, because they
are not known by the organization responsible of the database. This happens for several reasons:

• the data variation can be the result of several different processes;

• the data variation could derive from not formalized processes;

• the data variation could be due to incidental or circumstances’ factors, as well as: the behaviour of a specific
class of users, data are available according to specific constraints, different configurations of the systems may
influence the order in which updates are made.

Data fields can be modified by recurrent or by non-deterministic processes. Unlikely recurrent processes, the non-
deterministic processes have not the characteristic of occurring always in the same way, since they are the result of
stochastic events. An example of a non-deterministic process is the update of a bank account: deposits and withdraws
of money can happen in non-deterministic moments, so it is not possible to derive a specific pattern concerning
the frequency of variation for the account data field. For their intrinsically unpredictable nature, non-deterministic
processes must not be used for deriving data evolution, as this would entail false positives proliferation. Conversely,
recurrent processes must be used for defining data life cycle. Recurrent processes may be explicit or latent: explicit
processes are known, and could be completely or partially formalized, while latent processes are not known to the
organization that owns/uses the database.

A process can remain latent for different reasons:

• it can be the result of actions performed by different applications sharing the same data. Thus, for the responsible
of the data source, it is hard to have the comprehensive picture of the correct order in which these applications
change a specific data field;

• the applications that modify the data field could belong to third part organizations.

In general, a database administrator may have a partial view of the processes that change the data fields, with
missing or incomplete information on:

• which applications modify which data field;

• what is the order of the different application execution when changing the data field;

• what is the frequency of execution of each process that modifies a data field.

In this paper we propose a data-driven approach aimed to extract the data variation directly by observing the
database while modifications occur. We focus on recurrent processes that take place at regular time intervals and, each
time they are enacted, modify the same sets of data fields. Our aim is to capture these recurring characteristics of
data fields variation by mining the variations happening on the database using formal methods. The use of a formal
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system model is important to explicitly specify the dependency between the processes and the various stages of data.
The data life cycle for each user is modelled through automata. The data anomalies are detected through the model
checking technique.

The paper proceeds as follows: next section introduces preliminary background notion about the model checking
technique used in the proposed method, Section 3 describes the proposed approach to detect data anomaly, Section 4
presents a case study, current state of the art literature is discusses in Section 5 and, finally, conclusion and future
work are drawn in the last section.

2. Background

In this section we provide preliminary notions related to the formal methods technique exploited by the proposed
method (i.e., the model checking). To apply model checking we need: (i) Formal Model, (ii) Temporal Logic and (iii)
Formal Verification Environment.

Formal Model: Specification is used to represent the system under analysis in a formal way. A language with a
mathematically defined syntax and semantics is used. We represent the system behaviour as an automaton consisting
of a set of node and a set of labeled edge connecting the nodes. The system state is represented by a node, while the
transition of the system by a state to the next one is represented by a labeled edge.

Whether the automaton exhibit an s
a−→ s′ edge, this means that the system can evolve from the s state into the

s′ state through the a action (that ranges over sets of A actions). The initial state of the automaton is the so-called
initial state. Considering that it is usually convenient to represent automaton algebraically in the form of processes,
we exploit the Calculus of Communication Systems of Milner 17 (CCS), a widespread process algebra.

CCS defines operators to build finite processes, to describe parallel composition, choice between actions and scope
restriction but also some notion of recursion aimed to catch infinite behaviour.

A CCS process p is formally defined using the structural operational semantics, i.e., a set of conditional rules de-
scribing the transition relation of the automaton corresponding to the behavior expression defining p. The considered
automaton is called standard transition system of p. Further details can be found in17.

Temporal Logic: in order to define properties we need a precise notation. We use mu-calculus logic28, which
syntax is below reported. We suppose that Z ranges over a set of variables, K and R range over sets of actionsA.

φ ::= tt | ff | Z | φ ∨ φ | φ ∧ φ | [K] φ | 〈K〉 φ | νZ.φ | µZ.φ

The satisfaction of a formula φ by a state s of a transition system, denoted by s |= φ, is so defined:

• each state satisfies tt and no state satisfies ff;

• a state satisfies φ1 ∨ φ2 (φ1 ∧ φ2) if it satisfies φ1 or (and) φ2.

• [K] φ and 〈K〉 φ are the modal operators:

[K] φ is satisfied by a state which, for every performance of an action in K, evolves in a state obeying φ.

〈K〉 φ is satisfied by a state which can evolve to a state obeying φ by performing an action in K.

In Table 1 is reported the precise definition of the satisfaction of a closed formula ϕ by a state s (denoted s |= ϕ). µZ.φ
and νZ.φ are the fixed point formulae, where µZ (νZ) binds free occurrences of Z in φ. An occurrence of Z is free if
it is not within the scope of a binder µZ (νZ). A formula is closed if it contains no free variables. µZ.φ is the least
fix-point of the recursive equation Z = φ, while νZ.φ is the greatest one. A transition system T satisfies a formula φ,
denoted T |= φ, if and only if q |= φ, where q is the initial state of T . A CCS process p satisfies φ if the standard
transition system of p satisfies φ.

In the paper we use, in the modal operators, the following abbreviations: − for A and −K for A − K, where A is
the set of all actions and K ⊆ A.

Formal Verification Environment: once defined the model and the temporal logic properties, we need something
enabling us to check whether the model satisfies the defined properties. To this aim formal verification is considered,
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p �|= ff

p |= tt

p |= ϕ ∧ ψ iff p |= ϕ and p |= ψ
p |= ϕ ∨ ψ iff p |= ϕ or p |= ψ
p |= [K] ϕ iff ∀p′.∀α ∈ K.p

α−→ p′ implies p′ |= ϕ
p |= 〈K〉 ϕ iff ∃p′.∃α ∈ K.p

α−→ p′ and p′ |= ϕ
p |= νZ.ϕ iff p |= νZn.ϕ for all n
p |= µZ.ϕ iff p |= µZn.ϕ for some n

where:

• for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

where the notation ϕ[ψ/Z] indicates the substitution of ψ for every free occurrence of the variable Z in ϕ.

Table 1: Satisfaction of a closed formula by a state

a system process exploiting mathematical reasoning to verify if a system (i.e., the model) satisfies some requirement
(i.e., the temporal logic properties).

In last years several verification techniques were proposed, in this paper model checking24 is considered.
In the model checking technique the properties are formulated in temporal logic: each property is evaluated against

the system (i.e., the automaton-based model). The model checker accepts as input a model and a property, it returns
“true” whether the system satisfies the formula and “false” otherwise. The performed check is an exhaustive state
space search that is guaranteed to terminate since the model is finite.

As model checker in this paper we consider TAPAs4, a tool for specifying and analyzing concurrent systems.

3. The Data Anomaly Detection Method

The proposed method is data-driven: it works with homogeneous data (stored in relational databases or data ware-
houses) but also with heterogeneous ones (i.e., big data).

Our proposal for data anomaly detection comprises two main phases: the Automata generation depicted in Figure 1
and the Model Verification shown in Figure 2.

The Automata generation (Figure 1) builds an automaton for each user. In figure, as an example, a set of four
users (user A, user B, user C and user D) has been considered. Each user is able to perform read, update and write
operation on data. Each user operation is stored through log: from the log are gathered a series of information enabling
the proposed method to build an automaton for each user. In the considered example (automaton A, automaton
B, automaton C and automaton D, representing the user behaviours, have been generated. Furthermore a cluster
automaton is built, with the responsibility to guarantee the synchronization between the other automata.

To build the automata a log with following information is considered:

• timestamp: date and time when the transaction took place;

• user: user performing the transaction;

• operation: type of transaction performed;
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Fig. 1: Automata generation.

Table 2: Temporal logic formula to detect data anomalies.

ϕ = νX.[action A] ff ∧ [−action A, action B] X

• table: table name;

• field: analysed field.

Through the timestamp, a series of time window fixed clusters is defined: data operations falling in each temporal
cluster are retrieved from the log. The cluster automaton is able to ensure synchronization between the several clusters
(and between the relative actions of the user automata).

We consider as data anomaly a variation from the expected behaviour. The legitimate behaviour can be described
in terms of logic temporal properties. For this reason, once built the automata (in the Automata Generation phase)
representing the user behaviour, the Model Verification (Figure 2) is focused on the data anomaly detection.

In this phase a CSS model invoking in parallel all the automata is built (i.e., model in Figure 2) with a set of
restricted action to guarantee the synchronization. Thus, the model checker verifies whether the built model satisfies
a set of properties expressed in mu-calculus: whether the model checker outputs true the model is compliant with
respect to the legitimate behaviour, otherwise (i.e., the model checker outputs false) the property under analysis is not
verified on the model and this is symptomatic that a deviation from the legitimate behaviour is occurred.

4. The Case Study

In this section we present a case study aimed to demonstrate how the proposed method can be successfully exploited
to detect anomalies in the data alteration processes.

Table 2 shows the temporal logic formula aimed to detect data anomalies.
The ϕ property is describing following behavior: “it is not possible to perform the action A whether action B is

not previously done”. This property will be considered in the case study to detect the data anomalies.
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Fig. 2: Model Verification.

Figure 3 shows the model we considered in the case study: the left side of the figure shows the process system,
while the right one shows the automata. To guarantee the synchonization between the automata the action we consider
as restricted the actions on the cluster automata.

Fig. 3: Process system and automata case study.

As shown in Figure 3 the system is composed by the parallel of A0 (i.e., the Antonella user), M0 (i.e., the Madalina
user), F0 (i.e., the Francesco user) and C0 (i.e., the cluster automaton) processes with the restriction on the c A, c M,
c F actions representing the clusters for Antonella, Madalina and Francesco plus an additional set restricted action
aimed to guarantee that the various automata are properly synchronized. In the case study two temporal clusters and
three users have been considered.
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Moreover, we generally label the actions with the following syntax: operation field Table User, where operation
∈ { read, update, write }, f ield is the considered field belonging to a certain Table and user represents the user
performing the transaction.

From the general formula for data anomaly detection depicted in Table 2, we formulate following properties, as
shows in Figure 4.

Fig. 4: Data anomaly detection temporal logic properties.

The formulae shown in Figure 4 are related to following (anomalous and legitimate) behaviours:

• anomaly 1: it is not possible that Madalina performs a write operation on the f field on the “Account” table
whether Antonella did not read the b field of the “Registry” table previously: this represents an anomaly, in fact
from the model in Figure 3 Madalina performs a write operation on the f field on the “Account” table before
the read operation of Antonella on the b field of the “Registry” table for this reason the model checking outputs
true;

• anomaly 2: it is not possible that Madalina performs a write operation on the f field on the “Account” table
whether Francesco did not read the f field of the same table is not previously done: this represents an anomaly,
in fact Madalina performs a write operation on the f field on the “Account” table before the read operation of
Francesco on the f field of the same table. For this reason the model checking outputs true;

• anomaly 3: it is not possible that Antonella performs a read operation on the c field on the “Registry” table
whether the same user did not perform previously a write operation on the g field of the “Registry” table. This
represent an anomaly, in fact the read operation of Antonella in the model of Figure 3 occurs before her write
operation;

• anomaly 4: it is not possible that Antonella performs a read operation on the c field on the “Registry” table
whether Francesco did not perform a read operation on the g field of the “Registry” table previously. This is an
anomaly: in fact Francesco perform the read operation on this field before the read operation of the Antonella
user;

• anomaly 5: it is not possible that Madalina performs a write operation on the f field on the “Account” table
whether Francesco did not perform a read on the f field of the “Account” table previously. This is an anomaly,
as detected by the model checker: in fact the write operation of Madalina occurs before the read operation of
Francesco;

• legitimate 1: it is not possible that Antonella performs a read operation on the b field on the “Project” table
whether the same user did not previously performed a write operation on the g field of the “Registry” table.
This represents a legitimate behavior, as shown from the model in Figure 3 and for this reason the model
checker outputs false;

• legitimate 2: it is not possible that Antonella performs a write operation on the e field on the “Budget” table
whether the same user did not perform a write operation on the g field of the “Registry” table previously. This
represents a legitimate behavior, as shown from the model in Figure 3 and for this reason the model checker
outputs false;
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• legitimate 3: it is not possible that Antonella performs a write operation on the e field on the “Budget” table
whether Francesco did not previously perform a read operation on the e field of the “Budget” table. This
represents a legitimate behavior, as shown from the model in Figure 3 and for this reason the model checker
outputs false;

• legitimate 4: it is not possible that Antonella performs a read operation on the c field on the “Registry” table
whether Madalina user did not read the h field of the “Movement” table previously. This represents a legitimate
behavior, as shown from the model in Figure 3 and for this reason the model checker outputs false;

• legitimate 5: it is not possible that the Antonella user performs a write operation on the e field on the “Budget”
table whether Madalina did not perform a write operation on the g field of the “Movement” table previously.
This represents a legitimate behavior, as shown from the model in Figure 3 and for this reason the model checker
outputs false.

The anomalous and legitimate properties (in the second column of Figure 4) are verified by the TAPAs model
checker on the model in Figure 3 with a true output, as shows by the third column in Figure 4 (i.e., Yes). Furthermore,
the last column in Figure 4 shows the time in second employed by the TAPAs model checker to verify each property,
ranging from 0.0 to 0.06 seconds. Experiments were performed on a Microsoft Windows 10 machine equipped with
following configuration: 8th Generation Intel Core i7 2.0 GHz CPU, NVIDIA GeForce MX150 graphic card, 16 GB
RAM memory and 500 GB Hard Disk.

It is important to observe that the extended number of possible legitimate behaviours (and of the data anomalies)
would make the analysis impossible without the support of automatic formal verification environments. Whether there
is any possibility of a data anomaly, the model checker will be able to find it. In a parallel system where concurrency
must be managed (as the one shown in the model depicted in Figure 3), formal analysis can explore all possible
interleaving and event orderings. This level of coverage is not possible to achieve through testing, from the other side
formal methods have the property of completeness i.e., they cover all aspects of the system under analysis.

5. Related Work

Anomaly detection has been studied in several contexts, such as intrusion detection5,8,35, fraud detection10,21,32,sensor
networks9,19,29,33, and so on.

Chandola et al.6, conducted a survey covering most of the applications and techniques proposed for anomaly
detection in the above mentioned fields.

Available techniques can be classified based on the approach they adopt to detect the anomalies. Our approach
belongs to the classification based techniques, thus, in this section, we mainly focus on this research area. However,
many other approaches are available that detect anomalies using nearest neighbor algorithms3, clustering11, and
statistical anomalies2.

In this paper, we focus on anomalies in data fields with a special focus on the database, data warehouse, and big
data contexts. In this field, related work is mainly focused on finding anomalies caused by schema and data updated
concurrently26, as well as to the detection of outliers31,34, noise30.

In the data warehouse context, built-in operations such as drill-down, roll-up, and selection can be used to explore
data cubes and identify anomalies. A different approach has been proposed by Sarawagi et al.25 that use discovery-
driven exploration paradigm to mine OLAP (i.e., On-Line Analytical Processing) systems and identify exceptions
within data cubes. A systematic semi-automatic approach to monitor Key Performance Indicators has been proposed
by Mat et al.15 to enable managers to identify deviations in their strategic plan by analyzing the data warehouse. Son
et al.27 propose three simple methods using moving average and 3-sigma techniques to detect anomalies in log data.

Big data represent a recent challenge for anomaly detection techniques, because of the huge amount of data, the
data heterogeneity, and the velocity of data production. Rettig et al.23 use Kafka queues12 and Spark Streaming
to detect of anomalies over high velocity streams of events. Machine learning, in particular, has been widely used
to detect anomalies in streaming datasets1 using Hoeffding tree algorithm18, Convolutional Neural Networks14, or
randomized algorithms such as rPS and gPS7. Lighari and Hussain13 combine rule based and clustering analysis for
security analysis16 of big data-set.
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Most of the above mentioned works, aim a detecting outliers at an individual instance level (a.k.a. point anomalies)
and looking for values that deviate from the underlying data distribution20. However, in our case, we are also interested
in detecting contextual anomalies, in which a specific transaction may be considered normal in a given context (e.g.,
for a particular time period or a given user) as well as collective anomalies, in which a subset of instances occur
together as a collection6. In this case, multi-dimensional statistical tests have been proposed to detect user behavioural
anomalies22.

A comparison of the proposed approach is a very tricky task due the several factors that influence the effectiveness
of each proposal. A first evaluation dimension is the ability to deal with point anomalies, contextual anomalies
and/or collective anomalies. Despite many approaches try to solve the problem reducing contexts and collections
to instances, and successively applying point anomaly techniques to the resulting data-set, the obtained results are
not optimized. Another evaluation dimension concerns the technique computational complexity. Nearest neighbor
and clustering based approaches do not scale for complex and large data sets, because they rely on the computation
of distance measurement between normal and anomalous instances. On the other hand, rule based approaches are
highly dependant on the preliminary construction of the rules. The distribution of anomalies within the data set is
another factor that may influence the results of a classification techniques. Sparse and rare anomalies are easily
identified by nearest neighbor and clustering algorithms, but dense or clustered anomalies may be identified as normal
data especially for unsupervised approaches. In this case, our approach is independent of the data, since rules are
constructed appropriately.

The main difference between the cited works and our method is the adoption of the formal methods to detect data
anomalies.

6. Conclusion and Future Work

In this paper a method aimed to mine data anomalies is proposed. We represent the user behaviour in terms of
automaton and we exploit the model checking technique to detect whether a deviation from the expected behaviour
occurred. We plan to exhaustively evaluate the proposed method using a real-world dataset related, for instance, to a
financial domain. Furthermore, a research direction could be focused on the semantic meaning of change, i.e. when
the change of data is not consistent with its semantic identity. Furthermore, we will consider the adoption of timed
automata to better model the data variation time-window.
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