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ABSTRACT Emerging applications across environmental, biomedical, and structural monitoring require
the measurement of physical variables over extended regions. Because addressing many sensors individually
can result in impractical bandwidth and power requirements, there is a need for distributed sensing
approaches wherein readouts are obtained directly at the ensemble level. In turn, this generally requires
sensor nodes capable of interacting with each other to implement the required readout statistic. Here,
the first practical steps towards approaching this challenge via a nonlinear analog approach based on
chaotic synchronization are presented. Namely, single-transistor oscillators, representing remarkably low-
complexity yet highly-flexible entities, are experimentally found to be suitable for wireless coupling via
mutual induction, realizing a simple form of telemetry for luminous flux. Via numerical simulations
and numerous laboratory experiments, a rich repertoire of possible interactions among multiple sensor
nodes and between the same and an external exciter is demonstrated, encompassing synchronization,
desynchronization, relay effects, and chaotic transitions. Together, these results reveal the possibility and
means of accurately estimating the average of a distributed physical magnitude from the complexity of
ensemble dynamics. This new approach contributes an important blueprint for future work using simple
chaotic circuits in sensing applications.

INDEX TERMS Chaos, Chaotic oscillator, Correlation dimension, Distributed sensing, Entropy, Inductive
coupling, Remote measurement, Synchronization, Transistor oscillator, Telemetry, Wireless network.

I. BACKGROUND AND INTRODUCTION

A. DISTRIBUTED SENSING

Over the last two decades, automation has undergone
a profound transformation towards ever more distributed
paradigms wherein, instead of controlling separate processes
based on input from individual sensors, control systems are
increasingly used to manage complex systems and networks
[1]–[3]. An indispensable ingredient for this evolution is, and
has been, the ability to gather data from multiple sensors

scattered over a structure, surface, or environment. In turn,
this ability has principally been provided by the development
of wireless sensor network technologies, which alleviate the
cost and physical overheads associated with laying exten-
sive or dense wired connections. To date, these networks
constitute a topic of intensive research, targeted at core
issues such as over-the-air timing synchronization, as well
as the optimization of bandwidth and power budgets, which
are often the limiting factors in real-world scenarios. Their
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predominant applications are in agriculture, meteorology, air
quality monitoring, and biomedicine [4]–[7].

Arguably, the most established instances of “distributed
sensing” are presently realized using specially-designed fiber
optics, which generate a back-scattering signal tracking in a
calibrated manner a physical variable such as temperature
or the concentration of an analyte. In this context, time-
and frequency-domain techniques allow reconstructing a
one-dimensional measurement profile along the fiber length.
Aside from the high cost due to the advanced optoelectronic
devices required, these technologies are inherently poorly
suited for applications requiring pervasive monitoring, or
minimum intrusiveness [8], [9]. On the other hand, existing
wireless sensor networks generally hinge around a one-to-
many communication scheme, wherein a limited number of
base-stations individually address (or passively receive from)
a large number of nodes. This requires a considerable aggre-
gate bandwidth, translating into the need for complex radio-
frequency infrastructure, potentially requiring transceivers
that are difficult to power purely based on harvesting tech-
niques such as solar cells. Ad-hoc networks can mitigate this
problem but still imply significant hardware and software
complexity [10], [11].

B. PARAMETRIC MAPPING VS. SUMMARY STATISTICS
In many applications, a full topographical mapping is not
continuously necessary, and a summary statistic, such as
average, sum, or extrema values, is sufficient for ongoing
monitoring, enabling the triggering of more detailed data
gathering and inference only when an anomaly is detected.
In such scenarios, a drastic data reduction is performed
during analysis, rendering it wasteful to transfer data from
each sensor in the first place: it would be more efficient if
the network itself could, collectively, calculate the summary
statistic by a form of consensus.

One example application would be the monitoring of con-
crete pillars: assuming hundreds or thousands of “smart dust”
sensors are embedded in the mixture, the challenge would be
to seamlessly quantify the overall structural degradation, i.e.,
sum the number of micro-fissures. Another possible appli-
cation would be in precision agriculture: assuming sensors
are equipped with biochemical transducers able to measure
the presence of a parasite, the purpose of the monitoring
would be to detect the highest or average concentration in
a field. In both cases, a distributed computation of the sum-
mary statistic, performed continuously at low power draw,
would reduce the complexity of “middleware” infrastructure.
Further, there would be substantial practical advantages if the
state of the network as a whole, reflecting the variable to be
measured, could be inferred based on signals received from
a small subset of it, thus reducing the communication range
requirements [10]–[14].

In order to implement the distributed calculation of a sum-
mary statistic, it is needed for sensor nodes to interact among
themselves, engendering a purposeful collective behavior,
which could, for instance, be in the form of synchronized

dynamics. This requirement is closely related to the approach
of “autonomic computing” or intelligent networks, wherein
nodes can self-organize, realizing in an emergent manner
not only computation but also recovery and optimization
functions [3], [15], [16].

C. COUPLED NONLINEAR OSCILLATORS
Because it requires substantial interaction, self-organization
may translate into a high power consumption when it is im-
plemented digitally, due to computing and transceiver load.
An innovative approach would be to elicit it in the analog
domain, for example, via coupled oscillators. Thus far, in the
field of wireless sensor networks, coupled oscillators have
been considered almost exclusively regarding pulse coupling
schemes aiming to provide robust frequency distribution;
nevertheless, it is known from biological models that non-
linear oscillators can also give rise to complex emergent
phenomena [1], [17]–[20]. With that in mind, in the present
work, we investigate the possibility of taking the degree
of dynamical complexity in partially-synchronized network
activity as a means of obtaining a distributed measurement
of a physical variable. We demonstrate a number of network
phenomena having direct relevance for this purpose.

It is well-established that nonlinear oscillators, mainly
when operating in or close to chaotic mode, can realize com-
plex operations, including forming emergent spatiotemporal
patterns such as clusters (or communities), stationary and
traveling waves, even instances of remote entrainment [21]–
[25]. At its simplest, an electronic chaotic oscillator can be
realized through a bipolar junction transistor, whose transfer
function provides both the amplification and the nonlinearity.
Notably, a rich spectrum of dynamical behaviors can arise
under diverse arrangements comprising a single transistor,
two inductors, one capacitor, and one control resistor. Re-
cently, it was suggested that networks of these circuits,
coupled diffusively in elementary topologies such as rings
or lattices or more complicated configurations, can be used
as a basis to realize emergent collective behaviors via chaotic
synchronization [26]–[30].

Yet, at present, only minimal research has been conducted
on the synchronization of these oscillators at a distance
without an electrical collection, limited to two studies on
the Colpitts circuit: one measuring a magnetically coupled
pair, and another simulating a light coupling scheme [31],
[32]. Realistic studies similar to those available for wirelessly
coupled oscillators with a frequency distribution such as Ref.
[33] are lacking.

D. CONTRIBUTION
In this paper, we experimentally demonstrate for the first time
the possibility of realizing the core mechanisms necessary for
distributed sensing via chaotic synchronization. Namely, we
implemented it in a network of inductively coupled single-
transistor chaotic oscillators powered by photovoltaic cells.
We show the occurrence of chaotic transitions, synchroniza-
tion, the interaction with an external field and confirm the
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FIGURE 1. Schematics of the physically-realized circuits. a) Exciter node
(E); L(E)

2 denotes the externally-connected wire-loop coupling coil, U and
RO represent the output buffer towards an oscilloscope. b) Sensor node (S);
voltage VB at current iB corresponds to the photovoltaic cell illuminated with
a light source having flux φ or to an external source, UZ and C0 implement
over-voltage protection and bypassing,L(S)

2 denotes the printed coil, coupled
to L(E)

2 with coefficient k. Components C, L1 and Q are nominally equal
for all circuits, whereas R(E) and R(S) represent the individually-tuned
parameters controlling the node dynamics. Depending on the configuration,
each exciter may be coupled to more than one sensor, and multiple sensors
may be coupled between themselves.

possibility of accurately estimating the global light intensity
from the dynamical complexity characterizing the collective
oscillation.

In Section II, the circuit of interest is firstly presented
from the practical viewpoint of its realization and the as-
sociated experimental setup. In Section III, aspects of the
underlying theory are provided with reference to numerical
simulations of an elementary model capturing the essential
dynamical features. In Section IV, an extensive series of
experimental results is reported, firstly about the effects of
coupling then about the sensed variable. Finally, in Section V,
the implications of the observed phenomena are considered,
and directions for future applications of a new approach to
distributed sensing are proposed.

II. CIRCUITS AND MEASUREMENTS
A. OSCILLATOR DESIGN, REALIZATION AND
COUPLING
Each node comprised one autonomous oscillator, consisting
of a single NPN bipolar-junction transistor in a common-
emitter configuration, whose base and collector terminals are
connected via separate inductors to a grounded capacitor and
a variable resistor towards a DC voltage source (Fig. 1).
Despite its elementary form, this arrangement was discovered
only recently, and remarkably found to generate a multitude
of chaotic behaviors, including spiral, funnel, phase-coherent
and Rössler-like attractors; in a realization wherein the in-
ductors are replaced with fractal resonators, this circuit is
also capable of producing high-dimensional dynamics [30],

[34]. Chaos arises due to nonlinear interaction between the
currents in the two inductors via the transistor; furthermore,
there is an interplay between oscillations at the frequencies
determined by the L-C pairs, corresponding not only to the
discrete capacitor but also to the junction capacitance at the
collector. By moving the operating point of the transistor,
the series resistor shapes the nonlinearity: as such, it acts as
the primary control parameter, depending on which chaotic
transitions can be observed. In these experiments, it was
generally tuned to obtain operation close to an order-chaos
transition [30], [34].

The experiments in the present study revolved around
two structurally coincident realizations of this oscillator. The
first, dubbed ame (雨, rain), served as “exciter” (E) for
one or a multitude of sensor nodes which were inductively
coupled to it. In other words, it provided access to a signal
reflecting the dynamical activity of the network, not in a
passive manner (as a simple receiver would) but via actively
synchronizing with it, that is, exchanging energy bidirection-
ally [26]. In this circuit, the inductor attached to the base of
the transistor was constructed as a wide-field coil. It shared
a small fraction of its magnetic flux with the corresponding
coils in the collective of sensor nodes. Power was provided
externally, and a low-capacitance buffer drove a transmission
line towards a digitizing oscilloscope (Fig. 1a). The second,
dubbed tsubomi (蕾, bud), implemented a sensor node (S),
wherein the inductor attached to the transistor base was also a
coupling coil, but one featuring a considerably narrower field.
Mimicking a representative use scenario, power for these
nodes was provided by photovoltaic cells, and no external
electrical connections were necessary (Fig. 1b).

In both nodes, the transistor Q was of type 2SC5226A
(ON Semiconductor Inc., Phoenix AZ). The fixed inductors
and capacitors had nominal values L1 = 220 µH (type
NLFV32T-221K-EF; TDK Corp., Tokyo, Japan) and C =
270 pF (type CC0603JRNPO9BN271; Yageo Corp., New
Taipei City), and the variable resistors had values R(E,S) ∈
[0, 2000] Ω. For the exciter node (E), the buffer was of
type MAX4201 (Maxim Integrated Inc., San Jose CA), with
RO = 50 Ω; the supply voltages to the oscillator and buffer
were, respectively, 5 V and ±6 V. For the sensor node (S),
the photovoltaic source consisted of three monocrystalline
cells (type KXOB22-04X3F; IXYS Corp., Milipitas CA)
connected in series, providing an open-circuit voltage VB up
toUZ = 6.2 V limited by a Zener diode (type CZRU52C6V2;
Comchip Technology Corp., New Taipei City). The high-
frequency source impedance was lowered through two low-
ESL parallel bypassing capacitors having a total value of
C0 = 9.4 µF (type LWK212BJ475KD; Taiyo Yuden Corp.,
Tokyo, Japan). Importantly, all components were subject to
fabrication tolerances, which rendered the nodes nonidenti-
cal: these were on the order of ±10% for L1 and L2, ±5%
for C and the setting of R, and ±20% for the transistor
parameters and the photovoltaic cell voltage VB.

The circuits were physically realized on separate two-layer
printed circuit boards, both types having size 32 × 32 mm,
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FIGURE 2. Circuit boards and arrangement. a) Exciter node (E); left-side
connectors are for power input and signal output, right-side connector is
towards the wire-loop coupling coil. b) Sensor node (S), whose area is
largely covered by the photovoltaic cells. c) Representative arrangement
of 4 × 4 sensor nodes illuminated by four LEDs located at the corners
(underneath the blue heat-sinks).

whose fabrication files are publicly available [35]. In the ex-
citer node, SMA connectors were provisioned for interfacing
to the wide-field coil and oscilloscope (Fig. 2a). In the sensor
node, there were no connectors; however, test-points were
provided for external voltage supply and measurement during
some of the experimental sessions (Fig. 2b). The coupling
coils for the two circuits were designed in such a manner
as to reproduce a situation of weak coupling over a scale of
distances convenient for laboratory measurement conditions
while allowing a multitude of topographical arrangements.
Namely, the wide-field coil connected to the exciter node
consisted of 8 turns of single-core wire having a diameter
of 0.25 mm along the perimeter of a 90 mm square (Fig. 3a).
In contrast, the flat coil for the sensor node was embedded in
the solder copper side of its printed circuit board, covering
the outer area and arranged as a square concentric pattern
with 15 turns of a 0.2 mm-wide track with 0.2 mm spacing,
thickness 35 µm (Fig. 3b).

At f = 2 MHz, approximately corresponding to the
centroid of the oscillation spectrum, their inductances re-
spectively measured L(E)

2 = 21 µH and L(S)
2 = 10 µH

(type E4991A; Keysight Inc., Santa Rosa CA); as shown in
Ref. [30], these values are not critical for obtaining chaos.
Considering one wide-field coil and one sensor node coil
directly overlaying its center, the coupling coefficient, mea-
sured at Z0 = 50 Ω via a signal generator and oscillo-
scope (type WS3054; Teledyne LeCroy Inc., Chestnut Ridge

FIGURE 3. Coupling coils. a) Wide-field coil realized as a wire loop on
a cardboard support and connected to the exciter node (E). b) Flat coil
with square winding printed onto the underside of each sensor node board
(S). Experimentally-measured coupling coefficient k as a function of c) the
distance d between the wire-loop and one printed coil, (E)-(S), and d) the
spacing d̂ between two printed coils, (S)-(S).

NY), gradually decayed as k ≈ {0.14, 0.04, 0.01, 0.004}
at distances d = {0, 50, 100, 150} mm (Fig. 3c). For
two coplanar sensor coils linearly displaced along one
axis from each other, the coupling coefficient decayed
as k ≈ {0.11, 0.02, 0.005, 0.003} at spacings d̂ =
{0, 20, 40, 60} mm (Fig. 3d). These values are comparable
to those which can be observed over considerably larger
distances, suitable for real-world applications, when suitably
scaled coils are used, and to the configuration considered
in the preexisting study on magnetically coupled Colpitts
oscillators [31], [36].

B. DATA ACQUISITION AND ANALYSIS
The interactions between the exciter and sensor node(s),
and among the sensor nodes themselves, were evaluated for
several different arrangements, which are detailed in Sec. IV;
in brief, the influence of distance and spacing was measured
while powering the sensor(s) with a fixed external voltage,
whereas the effect of light intensity was assessed while
illuminating their photovoltaic cells with high-intensity LED
arrays (Fig. 4).

All measurements were conducted in a shielded enclo-
sure; they were repeated and averaged between 3-5 times,
depending on the experiment, to confirm consistency and
attenuate random error. Time-series of one million points
were recorded at 1 GSa/s using a digitizing oscilloscope
(type WS3054; Teledyne LeCroy Inc.), separately for all
experimental conditions under the control of scripts written
in the Matlab language (MathWorks Inc., Natick MA). The
raw data are freely downloadable from Ref. [35]. When
acquiring directly from sensor nodes, low-capacitance probes
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were used to record the capacitor voltage vC(t), which was
elected as the physical state variable of interest and, where
appropriate, the supply voltage VB. All acquisitions were
performed in AC coupling mode, and a-posteriori smooth-
ing was performed to reduce analog-to-digital conversion
discretization effects. Software-controlled illumination was
provided by four independent high-current white LED arrays
(type CMA3090; Cree Inc., Durham NC), each emitting a
luminous flux up to φmax = 12400 lm; these were positioned
at a fixed distance over either single sensors or an array of
4 × 4 sensors (Fig. 2c). Their intensity was controlled via
dimmable power supplies (type HBG-100-48B; Mean Well
Inc., Fremont CA) controlled by an Arduino UNO board
(Interaction Design Institute, Ivrea, Italy).

Off-line analyses were performed, aiming to quantify the
level of dynamical complexity as well as synchronization
between the nodes in each configuration. Firstly, a measure
of attractor fractality, namely the correlation dimension D2,
was computed. To this end, phase-space reconstruction was
performed based on time-delay embedding, with x(t) =
[x(t− δt(m− 1)), x(t− δt(m− 2)), . . . , x(t)] [37] setting,
as customary, the embedding lag δt equal to the first local
minimum of the time-lag mutual information function [38],
the embedding dimension m as the lowest integer number
for which < 5% of false nearest neighbors are observed
[39], and the minimum neighbor time separation (Theiler
window w) to twice the first local maximum on the space-
time separation plot [40]. These analyses were carried out
using the TISEAN package (ver. 3.0.1) [41]. Based on this
time-lag embedding, D2 was estimated via the Grassberger-
Procaccia method, namely from the correlation sum

C(m, ε) =
1

Npairs

N∑
j=m

∑
k<j−w

Θ(ε− |xj − xk|) (1)

where Npairs = (N − m + 1)(N − m − w + 1)/2 denotes
the number of point pairs covered by the sums, and Θ(x) is
the Heaviside step function [42]. Insofar as the embedding
dimension m exceeds the box-counting dimension of the
underlying attractor, over sufficiently small length scales ε,
one has

C(m, ε) ∝ εD2 . (2)

Here, over-embedding was performed up to 2m, calculations
were performed in each recording for 10 evenly-spaced seg-
ments of 50,000 points, and the convergence plateau of D2

in m, ε was estimated via a direct search method introduced
previously [29], [30]. While this estimator tends to be nega-
tively biased in the presence of high-dimensional signals, it
was deemed adequate given the relatively low-dimensional
dynamics expected in these experiments [43].

A further complexity measure, based on information the-
ory rather than dynamics, was also applied. Namely, the
permutation entropy is a non-parametric technique, which
only considers an ordinal representation of the temporal
evolution in a signal; as such, it is particularly robust to

noise, discretization, and other issues that often affect exper-
imental datasets. To apply this method, the dynamics x(t)
were transformed to a map-like representation by extracting
the sequences of local extrema points, identified through
ẋ(t) = 0, with either ẍ(t) < 0 and x(t) ≥ x(t ± δt) or
ẍ(t) > 0 and x(t) ≤ x(t ± δt), wherein δt = 20 ns. This
yielded a step-wise amplitude time-series having length l;
such a representation has been shown to successfully capture
the cycle amplitude fluctuation dynamics occurring in this
circuit [34]. In brief, the dynamics are encoded by ranks,
meaning, based on the symbolic sequences of ascending and
descending values. Insofar as the phase space bin counts
are sufficiently large to be statistically representative, the
permutation entropy is given by

H = −
m!∑
j

pj log2 pj , (3)

wherein pj denote the relative symbol frequencies. Usually,
H is normalized, giving h = H/ log2m! ∈ [0, 1] [44]. The
order (sequence length) was set to m = 6 (not critical),
ensuring that the coverage criterion 5m! < l was in most
cases met [45].

Synchronization was estimated in terms of phase locking,
which is a robust hallmark of entrainment between chaotic
oscillators [26]. To this end, for each pair of experimental
time-series xj(t) with j = 1, 2, the analytic signals were
calculated

ψj(t) = xj(t) + ix̃j(t) = Aj(t)e
iϕj(t) , (4)

where i =
√
−1, x̃j(t) denotes the Hilbert transform of xj(t)

x̃j(t) =
1

π
p.v.

[∫ ∞
−∞

xj(τ)

t− τ
dτ
]

, (5)

and where p.v. represents the Cauchy principal value of the
integral. The instantaneous relative phase is then

∆ϕ(t) = arg[ψj(t)ψk(t)] , (6)

from the distribution of which the corresponding phase-
locking value can be obtained as

r = |〈ei∆ϕ(t)〉t| . (7)

III. THEORY AND SIMULATIONS
As introduced in Section I.C, the approach presented in this
study is founded on several universal concepts from the
theory of nonlinear dynamical systems and networks. One
fundamental notion is that of chaotic transitions, that is, the
ability of isolated as well as coupled nonlinear oscillations to
seamlessly transition between periodic and chaotic behavior.
This can ensue as a function of an arbitrary control param-
eter (such as coupling, or a physical variable to be sensed)
and involve diverse mechanisms, including bifurcations and
quasiperiodicity. Another notion is that of synchronization,
that is, the ability to entrain oscillators which are possibly

VOLUME ?, 2020 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2976139, IEEE Access

Minati et al.: Distributed sensing via inductively coupled single-transistor chaotic oscillators

FIGURE 4. Board arrangements in the experiments measuring a) Effect of the distance d between the wire-loop coil (E) and one sensor board (S) above it,
b) Effect of the distance d between the wire-loop coil (E) and two co-planar sensor boards (S1), (S2) above it, c) Effect of the spacing d̂ between two isolated
co-planar sensor boards (S1), (S2), d) Effect of the spacing d̂ between two co-planar sensor boards (S2), (S3) located next to a fixed sensor board (S1), e) Effect
of the luminous flux φ on an isolated sensor board (S), f) Effect of the luminous flux φ on a sensor board (S) located at a fixed distance above the wire-loop
coil (E), g) Effects of the distance d, luminous flux φu and other interventions on a 4× 4 array of sensor nodes (Si,j ), located above the wire-loop coil (E).

FIGURE 5. Simplified circuit representing two coupled oscillators in the
numerical simulations, wherein each transistor Q is replaced by a constant
voltage source Vth, a nonlinear controlled current source i(A)

t or i(B)
t , and a

parasitic capacitance C̃.

rendered nonidentical by small or large mismatches, gener-
ating stable phase relationships (locking). Notably, synchro-
nization and chaotic transitions are related in various aspects.
Coupling two systems may result in their synchronization, if
the energy transfer rate is sufficiently high, with higher levels
required for synchronizing chaotic than periodic dynamics.
At the same time, depending on the specific configuration,
coupling may cause a transition towards chaos or periodicity;
in the presence of mismatches, increased coupling strength
often promotes transition to chaos [22], [26], [46].

While a detailed presentation of these concepts is omitted
for brevity, the main phenomena are exemplified in this

section, via three idealized scenarios. These are numerically
simulated to support the interpretation of the experimental
results which follow. Previous theoretical work on the chosen
transistor circuit has shown that, upon consideration of the
oscillation dynamics and associated circuit variables, it is
possible to reproduce the qualitative features of individual
and collective behavior while reducing the transistor equa-
tions as follows [34], [47]. Firstly, the base-emitter junction
is represented by a DC voltage source Vth = 0.6 V; this
is acceptable because the base-emitter voltage vBE remains
approximately constant. Secondly, the junction capacitances
are collapsed into a fixed capacitor C̃ = 1 pF between
collector and ground; despite its relatively small value, this
capacitor is essential for sustaining oscillation (details not
shown). Thirdly, the collector-emitter current is captured by
a nonlinear current source controlled by the base current iB
and collector voltage vC̃ according to

it = α (iB, vC̃) (8)

where, empirically, one can write

α (x, y) = βΓ (x) tanh (y/2Vth) . (9)

Here, Γ(x) = xΘ(x), where Θ(x) is the Heaviside step
function, and the corresponding term serves to prevent the
amplification of negative base current, while tanh(y) ap-
proximates a step function and implements the nonlinear
amplification; the rationale for this simplification and its
agreement with more realistic simulations have been clarified
previously [34].
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Predicated on the above, a simplified diagram of an in-
ductively coupled pair of these oscillators is readily obtained
(Fig. 5). Applying Kirchhoff’s laws one has

dvC(A)

dt
=
V (A) − vC(A)

RC (A) −
iL(A)

1
+ iL(A)

2

C (A)

dvC̃(A)

dt
=
iL(A)

1
− i(A)

t

C̃
diL(A)

1

dt
=
vC(A) − vC̃(A)

L1

diL(A)
2

dt
=
vC(A) − Vth

L2
− k vC(B) − Vth

L2

dvC(B)

dt
=
V (B) − vC(B)

RC (B) −
iL(B)

1
+ iL(B)

2

C (B) ;

dvC̃(B)

dt
=
iL(B)

1
− i(B)

t

C̃
diL(B)

1

dt
=
vC(B) − vC̃(B)

L1

diL(B)
2

dt
=
vC(B) − Vth

L2
− k vC(A) − Vth

L2

(10)

these equations represent a valid approximation assuming
k � 1, which corresponds to the weak coupling regime
of interest in this study and realized through the physically-
realized inductors (Fig. 3). Without loss of generality, below
let us assume ideal inductors with L1 = 220 µH and
L2 = 15 µH; under experimental settings, the nodes are
nonidentical, with richer dynamics engendered by paramet-
ric mismatches and imperfections such as inductor self-
resonance. Further, without loss generality, let us assume a
fixed transistor current gain β = 200 and DC supply voltage
V (A,B) = 2.5 V. To provide sufficient inter-node variability
for avoiding complete synchronization, the capacitor values
were drawn randomly in C (A,B) ∈ [240, 300] pF. The initial
conditions were identically set to vC(0) = vC̃(0) = Vth and
iL1

(0) = iL2
(0) = Vth/R. The ODE system was solved up

to t = 15 × 10−5 with the Klopfenstein-Shampine method
of orders 1-5 for stiff equations, setting a relative tolerance
of 10−6 [48]. For brevity, permutation entropy results are not
presented for these simulations.

Firstly, we evaluated the effect of the coupling coefficient,
sweeping it in k ∈ [0, 0.2], approximately corresponding to
the distance ranges between exciter and sensor nodes (E)-(S)
and spacings between sensor nodes (S)-(S) considered exper-
imentally (Fig. 3). In these simulations, the series resistance
was set to R = 1000 Ω, and, aside from the mismatch in
their values of C, the two nodes were identical. As k → 0.1,
the gradual onset of phase synchronization was well-evident,
leading to k(0.1) ≈ 0.9 (Fig. 6a). In the absence of coupling,
the two nodes were initially non-chaotic, with their average
correlation dimension 〈D2〉 ≈ 1.1. As the coupling level was
increased, the threshold of D2 > 2.0, generally accepted
as a hallmark of chaotic dynamics, was reached already
for k ≈ 0.07; past this point, an inflection was observed,

followed by a less marked increase towards a plateau at
〈D2〉 ≈ 2.2 (Fig. 6b).

Secondly, we considered the effect of sweeping the DC
supply voltage at one node (B), with V (B) ∈ [0, 5] V, effec-
tively electing it as a sensor node and evaluating the impact
on the dynamics of the other coupled node (A). In these
simulations, the series resistance was set to R = 1500 Ω
and the coupling coefficient was set to a very low value,
namely k = 0.01, physically corresponding to a distance
d ≈ 100 mm between exciter and sensor nodes (Fig. 3c) and
to a separation d̂ ≈ 25 mm between two sensor nodes (Fig.
3d). A nontrivial influence on synchronization was observed,
wherein initially the two nodes were non-synchronized, then
a moderate level of phase synchronization ensued between
1.6 V < V (B) < 3.6 V and eventually vanished (Fig.
6c). This pattern was closely reflected in the complexity of
the dynamics of the node configured as a sensor, whose
supply DC voltage was swept (B), which was highest in
the intermediate range of V (B). Of particular importance for
possible sensing applications, that voltage had an even more
marked effect on the activity of the other, remote, node. Its
dynamics were initially periodic, with D(A)

2 ≈ 1, after which
the correlation dimension gradually increased, first reaching
a plateauD(A)

2 ≈ 2.1 in the vicinity of V (B) = 2.5 V and after
that increasing further towards D(A)

2 ≈ 3.6 for V (B) = 5 V
(Fig. 6d).

Thirdly, we simulated a larger scenario consisting of a
network of n = 10 sensor nodes (Si, with i = 1, . . . , n),
each one receiving a supply voltage V (Si) ∈ [0, 5] V, coupled
in an all-to-all configuration between themselves and to an
exciter node (E). This situation can be represented as

dvC(E)

dt
=
V (E) − vC(E)

RC (E) −
iL(E)

1
+ iL(E)

2

C (E)

dvC̃(E)

dt
=
iL(E)

1
− i(E)

t

C̃
diL(E)

1

dt
=
vC(E) − vC̃(E)

L1

diL(E)
2

dt
=
vC(E) − Vth

L2
− k

L2
M

· · ·
dvC(Si )

dt
=
V (Si) − vC(Si )

RC (Si) −
i
L

(Si )
1

+ i
L

(Si )
2

C (Si) ,

dvC̃(Si )

dt
=
i
L

(Si )
1
− i(Si)

t

C̃
di

L
(Si )
1

dt
=
vC(Si ) − vC̃(Si )

L1

di
L

(Si )
2

dt
=
vC(Si ) − Vth

L2
− k

L2
M

(11)

where the all-to-all coupling may be conveniently approxi-
mated as a mean field having the form

M =
vC(E) +

∑n
i=1 vC(Si )

n+ 1
− Vth . (12)

VOLUME ?, 2020 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2976139, IEEE Access

Minati et al.: Distributed sensing via inductively coupled single-transistor chaotic oscillators

In a physical setting, the coupling strengths naturally depend
on the distances. However, for explanatory purposes, the
mean-field representation has the advantage of a compact
formulation while retaining a considerable ability to replicate
many results obtained in more complex network topologies
and processes [49], [50].

Retaining the settings R = 1500 Ω and k = 0.01, a
gradual build-up in the amplitude of the irregular mean-field
oscillations was observed, albeit with a nonmonotonic effect:
this consisted of a peak σ[M] ≈ 0.1 V at V (Si) = 1.4 V,
followed by a dip, then a more gradual increase towards
σ[M] ≈ 0.12 V at V (Si) = 5 V, where σ[x] stands for the
standard deviation of x(t) (Fig. 6e). Considering the dynam-
ics of the exciter node (E) as a proxy for the state of the entire
ensemble of sensors, a pattern similar to the previous scenario
was elicited, but with more abrupt transitions. In other words,
starting from periodic dynamics, the correlation dimension
initially peaked at D(E)

2 ≈ 1.9 for V (Si) = 1.4 V, then dipped
and remained on an elongated plateau at D(E)

2 ≈ 1.3, until
V (Si) = 3.6 V, past which point it rapidly arose towards
D(E)

2 ≈ 2.8 (Fig. 6f).
Altogether, these simulations recapitulated the principal

phenomena at the basis of the experimental findings dis-

FIGURE 6. Numerical simulation results. a) and b) Effect of the coupling
coefficient k on the synchronization r between two oscillators (A)-(B), and
the average correlation dimension 〈D2〉 of their dynamics. c) and d) Effect
of changing the supply voltage V (B) at one node (B, acting as sensor) while
holding it constant at the other (A, acting as exciter). e) and f) Effect of
uniformly changing the supply voltage V (Si) over an array of n = 10 sensor
nodes coupled among themselves and to an exciter via a mean field M;
σ[M] andD(E)

2 denote, respectively, the standard deviation of the mean field
and the correlation dimension of the exciter node dynamics.

cussed next. Very weak inductive coupling appears to be suf-
ficient for engendering moderate or intense levels of phase-
locking in these circuits. Moreover, even in the presence of
limited entrainment, inductive coupling can cause a transition
to chaotic dynamics. Owing to these effects, it is possible,
even at relatively large distances for which the coupling
coefficient is low, to remotely infer from the dynamics of
an exciter node the value of a physical variable at a sensor
node, in this case, the applied DC supply voltage. These
results straightforwardly extend to a network comprising an
ensemble of nodes, among which one can be chosen for
signal readout and supplied by a constant voltage, and the
others act as sensors. They agree with existing work covering
a single pair of coupled Colpitts oscillators, and with a recent
analysis of the behavior of diverse numerical and analog
electronic systems under situations of weak coupling [31],
[51]. By confirming that generative effects are visible even
through the lens of highly simplified numerical simulations,
the present findings affirm the general validity of the ap-
proach well beyond a specific circuit implementation.

IV. EXPERIMENTAL OBSERVATIONS AND THEIR
INTERPRETATIONS
A. EFFECTS OF INTER-NODE DISTANCE AND SPACING
1) Exciter and one sensor
Ahead of demonstrating the usage of inductively coupled
oscillators in measuring a physical variable remotely, it ap-
pears necessary to illustrate the synchronization and phase
transition phenomena, which can be observed as the coupling
strength between network nodes is varied through changing
the distances. To this end, as an initial experiment, the
effect of coupling between one exciter node (E) and one
sensor (S) was investigated, with the latter overlaying the
center of the wide-field coil at a distance d ∈ [0, 150] mm
(Fig. 4a). The sensor node was powered by an external DC
source VB = 5 V, and its signal was recorded via a probe.
Three different configurations A-C were considered, each
corresponding to different settings of the DC supply series
resistors, namely: R(E) = 560 Ω, R(S) = 600 Ω for A,
R(E) = 760 Ω, R(S) = 1570 Ω for B, and R(E) = 1830 Ω,
R(S) = 350 Ω for C. The level of phase coherence revealed
a marked heterogeneity between these configurations, in that
the maximum entrainment was r ≈ 0.2 for A and B, whereas
it was considerably higher for C, namely, r ≈ 0.6; as
expected, in all three cases the synchronization vanished as
the nodes were drawn apart (Fig. 7a).

In configuration A, despite the weak synchronization level
attained, with decreasing distance the correlation dimension
increased across both nodes; namely, from D(E)

2 ≈ 1.2 to
D(E)

2 ≈ 3.3 and from D(S)
2 ≈ 2.2 to D(S)

2 ≈ 3.8; albeit
with some differences, the permutation entropy followed a
similar pattern, in particular via increasing from h(E) ≈ 0.32
to h(E) ≈ 0.45 (Fig. 7b). Visual inspection of the spectrogram
for the exciter (E) as a function of distance revealed a well-
evident and gradual transition to chaos, wherein at long
distances, the spectrum was dominated by discrete peaks
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FIGURE 7. Effect of the distance d between the wire-loop coil connected to the exciter node (E) and one sensor board (S) located above it (arrangement in Fig.
4a). a) Synchronization r between the exciter and sensor node for three different configurations A, B and C. b), f) and g) Corresponding correlation dimension
D2 and permutation entropy h. c) Spectrogram for configuration A; color-map reflects the logarithm of the Fourier amplitudes. d) and e) Representative
time-series from the exciter node in configuration A, acquired at d = 150 mm and d = 0 mm, respectively.

at f ≈ {0.5, 1.1, 1.6, 2.2, 2.7, 3.3, 3.8, 4.3}MHz. As the
boards were drawn nearer, the two predominant peaks at
f ≈ {1.1, 2.2}MHz gradually became wider, eventually
morphing into a broad distribution over the range 0.3-3.5
MHz and thus hallmarking the transition to chaos (Fig. 7c)
[46]. Representative waveforms acquired at the two distance
extrema demonstrated the onset of large and low-frequency
cycle amplitude fluctuations, in line with previous recordings
of oscillators of this kind. Those were, however, rendered
chaotic either via control parameter turning or via direct
electrical couplings (Fig. 7d,e) [28]–[30], [34].

In configuration B, a different situation was manifest,
which exemplified how the effect of coupling strength (dis-
tance) may interact with the control parameter settings. On

FIGURE 8. Effect of the distance d between the wire-loop coil connected
to the exciter node (E) and two co-planar sensor boards (S1), (S2) located
above it (arrangement in Fig. 4b). a) and c) Synchronization r between the
exciter and sensor nodes for two different configurations D and E. b) and d)
Corresponding correlation dimension D2 and permutation entropy h.

the one hand, the distance had a marked effect on the dy-
namics of the sensor node (S), with D(S)

2 ≈ 1.3 increasing
to D(S)

2 ≈ 3.3 and h(S) ≈ 0.3 increasing to h(S) ≈ 0.45.
On the other, despite a similar level of synchronization, the
effect on the dynamics of the exciter (E) was visibility more
constrained, with D(E)

2 ≈ 2.2 increasing to D(E)
2 ≈ 3.3, and

h(E) ≈ 0.43 remaining approximately constant (Fig. 7f). In
configuration C, the relative effects on complexity were com-
parable, albeit at lower levels for the exciter (E); plausibly
for the latter reason, an appreciably stronger synchronization
ensued, showing the potential decoupling between the two
aspects of dynamics (Fig. 7a,g).

2) Exciter and two sensors
Subsequently, to exemplify the simplest scenario of interac-
tion with multiple sensors, the effect of coupling between one
exciter node (E) and two sensors (S1), (S2) was investigated,
with the latter in a coplanar arrangement at a fixed pitch of 75
mm, overlaying the center of the wide-field coil at a distance
d ∈ [0, 150] mm (Fig. 4b). Two different configurations
D and E were considered, each corresponding to different
settings of the DC supply series resistors, namely: R(E) =
1830 Ω, R(S1) = R(S2) = 350 Ω for D, and R(E) = 760 Ω,
R(S1) = R(S2) = 1570 Ω for E. In configuration D, for
distance decreasing below d ≈ 50 mm, the synchronization
between the three nodes raised rapidly, eventually approach-
ing r ≈ 0.9, which indicates near-perfect phase locking (Fig.
8a). The corresponding effect on the dynamics was visible
predominantly for the two sensor nodes, with D(Si)

2 ≈ 1.3

increasing to D(Si)
2 ≈ 3.6, whereas the activity of the exciter

remained largely insensitive around D(E)
2 ≈ 2.2 (Fig. 8b).

By contrast, in configuration E, for decreasing distance,
the synchronization between the exciter (E) and either sen-
sor (Si) increased gradually up to r ≈ 0.22, whereas the
synchronization between the two sensor nodes themselves,
initially r ≈ 0.6 when far from the exciter coil, dropped
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FIGURE 9. Effect of the spacing d̂ between two isolate co-planar sensor
boards (S1), (S2); arrangement in Fig. 4c. a), c) and e) Synchronization r
between them for three different configurations F, G and H. b), d) and f)
Corresponding correlation dimension D2 and permutation entropy h.

rapidly to the same value (Fig. 8c). This difference illustrated
how interaction with the exciter could have both a synchro-
nizing or a desynchronizing effect, depending purely on the
control parameter settings; at the same time, the influence on
dynamics remained qualitatively similar to the previous case
(Fig. 8d).

3) Pair of sensors
Next, to show the phenomena which can arise via interactions
between sensor nodes themselves, i.e., away from external
perturbation by the exciter, the effect of coupling between
two isolated sensors (S1), (S2) was investigated, in a coplanar
arrangement with a spacing between them d̂ ∈ [0, 70] mm
(Fig. 4c). Three different configurations F-H were consid-
ered, each corresponding to different settings of the DC sup-
ply series resistors, namely: R(S1) = 470 Ω, R(S2) = 520 Ω
for F, R(S1) = 1880 Ω, R(S2) = 1840 Ω for G, and
R(S1) = 470 Ω,R(S2) = 1480 Ω for H. In configuration F, the
synchronization was rather weak, and for decreasing spacing
followed a nonmonotonic trend, peaking at r ≈ 0.08 around
d̂ = 30, then dipping for d̂ = 20 and increasing towards
r ≈ 0.14 upon direct contact between the boards (Fig. 9a).
As the same were drawn nearer, the correlation dimension
gradually increased, from D

(Si)
2 ≈ {1.1, 1.6} converging

towards D(Si)
2 ≈ 3.6; the permutation entropy followed a

similar trend (Fig. 9b).
In configuration G, the situation was markedly different, in

that the synchronization remained relatively low at r ≈ 0.1

FIGURE 10. Effect of the spacing d̂ between two co-planar sensor boards
(S2), (S3) located next to a third sensor board (S1); arrangement in Fig. 4d.
a) and c) Synchronization r between them for two different configurations I
and J. b) and d) Corresponding correlation dimension D2 and permutation
entropy h.

above d̂ = 20 mm, below which spacing a rapid jump to
a considerably higher level r ≈ 0.7 was observed (Fig.
9c). In this case, the correlation dimension was elevated
only for intermediate spacings between d̂ ≈ 20-50 mm, and
mainly for one of the sensors (S1), further demonstrating the
diversified relationship between the dynamical complexity
and synchronization (Fig. 9d). In configuration H, yet another
pattern was elicited, wherein the synchronization gradually
increased up to r ≈ 0.4. However a sharp peak was observed
for d̂ = 10 mm, at which r ≈ 0.7, effectively resembling
a resonance effect (Fig. 9e). Corresponding to this point, a
sharp dip in the correlation dimension values was observed,
indicating a transient loss of dynamical complexity; albeit
with differences, the effect was visible for both nodes (Fig.
9f). Altogether, these measurements further illustrate the
availability of very different influences of the weak coupling
upon synchronization in any given configuration, based on
the control parameter settings.

4) Chain of sensors
Finally, we illustrate two interaction and relay scenarios
which can arise in a chain of three sensor nodes (S1),
(S2), (S3), away from external perturbations. There were
investigated in a coplanar arrangement with a fixed spacing
of 30 mm between the first two, and a variable spacing
d̂ ∈ [0, 70] mm between the other two (Fig. 4d); as above,
all nodes were powered by an external DC source VB = 5 V
and their signals were recorded via probes. Two different
configurations I and J were considered, each corresponding
to different settings of the DC supply series resistors, namely:
R(S1) = 1440 Ω,R(S2) = 1470 Ω,R(S3) = 1330 Ω for I, and
R(S1) = 1440 Ω, R(S2) = 1070 Ω and R(S3) = 2000 Ω for
J. In configuration I, two regions were clearly identifiable:
for d̂ > 20 mm, near-complete entrainment was present
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between the nodes (S2), (S3) together with a stable moderate
entrainment r ≈ 0.6 between the fixed nodes (S1), (S2);
below this spacing, the synchronization between all nodes
suddenly dropped to r ≈ 0.2 (Fig. 10a). Consideration
of both complexity measures revealed the underlying phe-
nomenon: when the nodes were sufficiently decoupled, their
dynamics were largely periodic, whereas drawing the node
(S3) closer caused a collective transition to chaos. Notably,
this extended also to node (S1), thus demonstrating a relay
effect by node (S2) which, through becoming chaotic, also
caused it to transition (Fig. 10b).

In configuration J, three situations were apparent: for large
spacing d̂ > 30 mm the entrainment between the nodes (S2),
(S3) was nearly zero, and accompanied by a moderate level
of entrainment r ≈ 0.3 between the fixed nodes (S1), (S2).
For small spacings d̂ < 10 mm, a similar scenario was found,
albeit with different relative intensities of synchronization. In
between these settings, the nodes reached a high level of col-
lective synchronization, peaking at r ≈ 0.8 (Fig. 10c). Also
in this case, the effect was associated to different levels of
complexity: at sufficiently large spacings, it was intermediate
D2 ≈ 1.8 for the fixed nodes (S1), (S2) and low D2 ≈ 1.1
for the node (S3). Accordingly, as the last node (S3) was
drawn nearer, its effect was initially opposite to the previous
configuration, in that it drew the other nodes towards periodic
dynamics, thus enabling the emergence of synchronization
between them. Eventually, however, the couplings became
strong enough to cause a collective transition to chaos, with
consequent loss of entrainment (Fig. 10d).

5) Relevance and implications
In summary, these experiments demonstrate the remarkable
generative potential that, in spite of their simplicity, these
oscillators can express when remotely coupled, depending
on their topographical layout and on the control parameter
settings. Firstly, increasing the coupling strength via reducing
the distance can promote a transition to chaos, which may
remain localized or engulf the entire network. Secondly, this
transition may be accompanied by an elevated synchroniza-
tion, or occur on its own, even in the absence of significant
entrainment. Thirdly, the application of an external field,
such as via the wide-field coil of the exciter or a sensor
node being drawn nearer, may, depending on the settings,
promote the emergence of synchronization or dissipate a
synchronization level that preexists. Fourthly, the effect of
coupling on synchronization can be highly nontrivial in that,
as nodes are drawn near to each other, entrainment may
increase gradually, suddenly, or even though a resonance-
like peak around a characteristic value. Fifthly, relay effects
are readily observed between sensor nodes, for example,
arranged as a chain; these may appear in diverse forms, prop-
agating a transition to chaos or transition to periodicity and
thus promoting or hindering the diffusion of synchronization
at the network level.

Altogether, these phenomena can be accurately understood
in terms of the universal properties of nonidentical coupled

chaotic oscillators known from existing simulations and ex-
periments. On the one hand, when the control parameters
are tuned for operation close to an order-chaos transition,
as in the present cases, greater energy exchange generally
promotes the onset of chaos due to the absence of an invariant
manifold. For the same reason, even at the lowest energy
exchange rates, coupling with an oscillator, which is already
chaotic, more quickly results in chaos. On the other hand, due
to the presence of a limit cycle or an open orbit, the energy
exchange rate which is required to maintain a given level of
entrainment is considerably lower for periodic than chaotic
dynamics [26], [52]–[56].

B. EFFECTS OF SENSED VARIABLE (LUMINOUS FLUX)
1) Isolated sensor
Having established the effects of the interactions between
nodes as a function of their topographical arrangement, this
section shall demonstrate the ability to perform remote sens-
ing of a physical variable of interest, namely, luminous flux.
Initially, we consider the intrinsic dynamics of an isolated
sensor node (S), located at a fixed distance of 50 mm un-
derneath a single LED array illuminating it with flux φ (Fig.
4e). In all cases considered herein, the sensors were powered
purely by their photovoltaic cells, whose output voltage
VB depends on both the luminous flux φ and the resistor
value R, due to the nonzero equivalent output resistance
of the source (Fig. 1b). Given this scenario, it is relevant
to evaluate the power requirements of each sensor node: to
address this point, given that the current draw iB could not
be measured directly, corresponding values were determined
via SPICE simulations based on the LTspice XVII envi-
ronment (Analog Devices, Inc., Norwood MA, USA). Each
measured value of VB was entered, and the corresponding
average current 〈iB〉was estimated based on a realistic circuit
model.

FIGURE 11. Effect of the luminous flux φ on an isolated sensor board (S);
arrangement in Fig. 4e. a) and c) Correlation dimension D2 and oscillation
amplitude vRMS of the node dynamics for two different configurations K and
L. b) and d) Corresponding spectrograms; color-map reflects the logarithm
of the Fourier amplitudes.
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FIGURE 12. Effect of the luminous flux φ on a sensor board (S) and exciter
node (E), whose wire-loop coil was located at a fixed distance under it
(arrangement in Fig. 4f). a) and c) Correlation dimension D2 of the exciter
node dynamics, also oscillation amplitudes vRMS and synchronization r, for
two different configurations M and N. b) and d) Corresponding spectrograms
(E); color-map reflects the logarithm of the Fourier amplitudes.

Two different configurations K and L were considered,
each corresponding to a setting of the DC supply series
resistor, namely: R(S) = 700 Ω for K, and R(S) = 2000 Ω
for L. In configuration K, as the luminous flux was gradually
increased, the initially periodic dynamics exhibited a sharp
resonance-like transition to chaos for φ = 1625 lm, at which
D2 ≈ 2.0, followed by a decay back to periodicity D2 ≈ 1
up to φ = 2300 lm, beyond which the complexity gradually
increased again towards D2 ≈ 2.2. The corresponding os-
cillation amplitude increased gradually with a log-like trend,
from vRMS ≈ 20 mV up to vRMS ≈ 80 mV (Fig. 11a). The
corresponding spectrogram as a function of flux revealed
a pattern similar to that observed for distance (Fig. 7c),
wherein transitions to chaos were associated with a well-
evident generation of broad spectral activity over the region
0.3-4.5 MHz (Fig. 11b). Across the first transition to chaos,
periodicity dip and subsequent recovery, the supply voltage
was recorded as VB = {1.5, 2.1, 3.5} V, with estimated
currents iB = {1.1, 1.9, 3.9} mA, corresponding to power
draws of VBiB = {1.7, 4.0, 13.7} mW.

In configuration L, the pattern was different in that the
effect of increasing illumination was even more clearly non-
monotonic and evident as two distinct chaotic bands between
φ = 1350-1450 lm and φ = 1750-2050 lm, wherein D2 ≈
2.0. As in the previous case, the oscillation amplitude vRMS
increased gradually (Fig. 11c), and the spectrogram con-
firmed clear transitions between comb-like and broad spectra
corresponding to these regions (Fig. 11d). Across these order-
chaos-order-chaos-order transitions, the supply voltage was
recorded as VB = {1.9, 2.1, 2.8, 4.5, 5.9} V, with estimated
currents iB = {0.6, 0.7, 1.0, 1.9, 2.6} mA, corresponding
to power draws of VBiB = {1.1, 1.5, 2.8, 8.6, 15.3} mW.
These initial results confirm the possibility of powering the

FIGURE 13. Effect of the luminous flux φ on a 4×4 array of sensor boards
(Si,j ) and an exciter node (E), whose wire-loop coil was located at a fixed
distance under it (arrangement in Fig. 4g). a) and c) Correlation dimension
D2 of the exciter node dynamics, for two different configurations O and P. b)
and d) Corresponding permutation entropy h. For a)-d), sigmoidal fits (D̂2)
shown together with the relative error (φ̂ − φ)/φ incurred estimating the
flux φ̂ from the nonlinear dynamics.

sensor node photovoltaically, and of rendering its dynamics
sensitive to the light intensity, with a relationship determined
by the control parameter (series resistor).

2) Exciter and one sensor
Next, we turned to the first proper remote sensing experi-
ment, wherein a similar arrangement as above was prepared,
however, with the sensor node (S) coupled to an exciter node
(E) located a fixed distance of 50 mm underneath it (Fig. 4f).
Two different configurations M and N were considered, each
corresponding to different settings of the DC supply series
resistors, namely: R(E) = 1250 Ω, R(S) = 1900 Ω for M, and
R(E) = 510 Ω, R(S) = 1900 Ω for N. In configuration M,
with increasing luminosity the oscillation amplitude gradu-
ally grew for the sensor node (S) between v(E)

RMS ≈ 10-90 mV
while remaining relatively stable v(E)

RMS ≈ 300 mV for the
exciter node (E). The correlation dimension in the dynamics
of the latter followed a biphasic trend, starting fromD(E)

2 ≈ 1,
then peaking at D(E)

2 ≈ 2.5 for φ = 2100 lm, dipping
at D(E)

2 ≈ 1.2 for φ = 2500 lm and finally approaching
D(E)

2 ≈ 1.8 for φ > 2750 lm (Fig. 12a). As previously
observed directly for the sensor node itself, the spectral
content closely reflected the level of dynamical complexity,
gradually becoming broader with stronger illumination (Fig.

12 VOLUME ?, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2976139, IEEE Access

Minati et al.: Distributed sensing via inductively coupled single-transistor chaotic oscillators

12b).
In configuration N, the situation was similar, however, the

correlation dimension for the exciter node (E), instead of a
biphasic relationship, showed a monotonic step-wise trend,
wherein it was initially D(E)

2 ≈ 1, then increased to D(E)
2 ≈

2.3 and dwelt around this value for φ = 1430-2400 lm,
and subsequently increased again towards D(E)

2 ≈ 3.0 (Fig.
12c). The spectral content reflected this trend, in particular,
delineating a chaos-chaos transition around φ = 2500 lm
(Fig. 12d). These results demonstrate that telemetry based on
chaotic oscillators is in principle possible, and, importantly,
the relationship between the sensed variable and the dy-
namics can be modified over qualitatively different function
shapes purely based on the local control parameter of the
exciter, R(E).

3) Exciter and array of sensors
Subsequently, we considered the case of 4 × 4 sensors
boards (Si,j), laid out in a similar co-planar arrangement at
a fixed distance from the exciter node (E) coil. The improve
illumination homogeneity, the four LED illuminators were
positioned at the corners of the array, providing light incident
at a 45◦ angle; in this experiment, their luminous flux was
identically set, i.e., φA-D = φ (Fig. 4g). Two different
configurations O and P were considered, each corresponding
to different settings of the DC supply series resistors, namely:
R(E) = 1270 Ω, R(S) = 970 Ω for O, and R(E) = 1270 Ω,
R(S) = 1300 Ω for P. Here, it should be borne in mind
that even though the nominal value of R(S) was identical for
all nodes, appreciable parametric mismatches rendered them
nonidentical. In each configuration, and separately for the
correlation dimension D(E)

2 and permutation entropy h(E), the
measured relationship between the luminous flux x = 0.02φ
(scaled for instrumental reasons) and the dynamical com-
plexity parameter y = {D(E)

2 , h(E)} was fit with a sigmoidal
function having the form

y(x) =
a

1 + e−b(x−c)
+ d . (13)

A nonlinear least-squares approach was applied, assuming
the starting point a = y(xmax)−y(xmin), b = 0.1, c = xmax/2
and d = y(xmin), determined based on heuristic criteria.
Inverting this function, the flux φ̂ was estimated from the
dynamics, and the corresponding relative error (φ̂ − φ)/φ
was obtained.

In configuration O, the correlation dimension increased
gradually from D(E)

2 ≈ 1.2 to D(E)
2 ≈ 2.6, with a larger

slope up to φ = 2000 lm. Remarkably, the relationship was
nearly perfectly fit assuming the parameter settings a = 2.1,
b = 0.09, c = 8.5, d = 0.47, yielding R2

adj = 0.99 (variance
explained adjusted, not to be confused with resistance); the
corresponding median absolute error for φ̂was 8% (Fig. 13a).
The permutation entropy increased nearly linearly up from
h(E) ≈ 0.36 to h(E) ≈ 0.41 at φ = 1400 lm, with a nearly flat
plateau observed thereafter. This relationship was also nearly
perfectly fit assuming the parameter settings a = 0.053,

b = 0.20, c = 13.9, d = 0.35, yielding R2
adj = 0.98; limited

to the range φ ≤ 1400 lm, the corresponding median absolute
error for φ̂was 11% (Fig. 13b). Accordingly, the spectrogram
showed the stronger effect in the range φ ≤ 1000 lm, with
considerably weaker changes in spectral amplitudes above
that level (Fig. 13c).

In configuration P, the increase in correlation dimension
was quantitatively more contained, from D(E)

2 ≈ 1.0 to
D(E)

2 ≈ 2.1, but more evenly distributed over the span φ
values. Similarly, it was nearly perfectly fit assuming the
parameter settings a = 1.1, b = 0.12, c = 35.8, d = 1.00,
yielding R2

adj = 0.99; the corresponding median absolute
error for φ̂ was also 8% (Fig. 13d). Analogous consideration
applied for the permutation entropy, which increased from
h(E) ≈ 0.27 to h(E) ≈ 0.35, and was nearly perfectly fit
assuming the parameter settings a = 0.074, b = 0.12,
c = 40.3, d = 0.27, yielding R2

adj = 0.98; the corresponding
median absolute error for φ̂ was 10% (Fig. 13e). Compared
to the previous configuration, the spectrogram showed a more
gradual transition to broadband activity, building up around
φ ≈ 1500 lm (Fig. 13f).

Additional insights into the coupled activity could be
obtained by visualizing the attractors reconstructed in two
dimensions via time-lag embedding. The dynamics of exciter
node (E) delineated a particular snail-like trajectory, which,
for low illumination levels, corresponded to a limit cycle,
maintaining the same scale but becoming gradually more
irregular, hence blurred when averaged over time, with in-
creasing luminous flux on the sensor array (Fig. 14a). On the
other hand, due to the increasing supply voltage applied to it,
the oscillations of the sensor node (S) steadily grew in am-
plitude, concomitantly morphing from a circle into a similar
snail-like shape (Fig. 14b). Two representative examples of
the underlying time-series are visible in Fig. 14c,d.

4) Relevance and implications

Summing up, the results discussed herein unequivocally
demonstrated the possibility of performing remote measure-
ments using these oscillators. Firstly, it was possible to power
each sensor node via a photovoltaic cell, which also acted as
a sensing element because the circuit dynamics were con-
trolled by the supply voltage itself, which depended on the
illumination level. Secondly, by coupling two nodes, it was
possible to harvest information about the physical variable
at the remote node (sensor) from the dynamics of the local
one (exciter). Thirdly, when using a single sensor node, even
though a relationship between the dynamics and the sensed
variable was well evident, this was not univocal and thus
problematic to invert.

On the other hand, when multiple sensor nodes were
combined, the collective dynamics developed a level of com-
plexity that adequately tracked the parameter to be measured
and which was closely reflected in the signal generated by the
exciter oscillator. It, therefore, became possible to perform
an accurate measurement, which, as more explicitly shown
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FIGURE 14. Representative examples of the dynamics in a 4 × 4 array of sensor boards (Si,j ) and an exciter node (E) as a function of the luminous flux φ;
phosphorus-like temporal averaging with log-intensity scaling, and same settings as in Fig. 13d-f. a) and b) Two-dimensional time-lag (τ = 0.12 µs) attractor
reconstructions for the exciter and the sensor at location (1,1). c) and d) Time-series recorded given flux φ = 580 lm and φ = 3300 lm, respectively.

in the next section, harvested ensemble information from the
network as a whole. This offered an issue of calibration,
which implied determining a response function and its fitting
parameters, as elaborated in other works on distributed and
traditional sensing: here, the challenge could be addressed
straightforwardly by fitting a sigmoidal curve [57], [58].

C. ADDITIONAL NETWORK MANIPULATIONS
The results reported thus far leave open the question of
whether it is the majority of the network contributing to the
measured value, or potentially only a subset of influential
nodes. Though rigorously addressing this question requires
detailed analyses beyond the scope of this work, two addi-
tional interventions were performed to gain further insight.
Here, we set R(E) = 525 Ω, R(S) = 1550 Ω.

1) Incipient damage to sensor array
Firstly, measurements at four representative illumination lev-
els φ = {500, 1500, 2500, 3500} lm were repeated while
gradually reducing the number of viable sensor nodes
through severing the connection of the respective coupling
coils L2; this operation was iterated until only two oscillators
were left active (Fig. 15a). According to the correlation di-
mension, the parameter distribution observed between these
four levels when all n = 16 nodes were active, namely
D2 ≈ {1.4, 2.2, 2.6, 2.8}, was only weakly compressed after
removing half of the node, yieldingD2 ≈ {1.3, 2.3, 2.6, 2.6}
for n = 8. However, when just n = 2 oscillators were
operating, the distribution was considerably shrunk towards
low values, even though the rank positions were preserved,
with D2 ≈ {1.2, 1.6, 1.8, 1.9} (Fig. 15b). The permutation
entropy revealed an analogous pattern, albeit with a consid-
erably more marked effect of the number of active nodes:

for n = 16, h ≈ {0.38, 0.39, 0.41, 0.42}, but already for
n = 8, this range was significantly compressed towards
lower values, into h ≈ {0.38, 0.39, 0.40, 0.40}; for n ≤ 6,
the rank positions were lost (Fig. 15c).

2) Incomplete illumination
Secondly, measurements sweeping the luminous flux emitted
by each LED over φ ∈ [0, 3900] lm were repeated while
illuminating only m = 1, 2, 3, 4 quadrants (i.e., 25%, 50%,
75% and 100% of the array area), and averaging over all
possible combinations for each value of m (i.e., zones A-
D in Fig. 15d). The correlation dimension, which gradu-
ally increased with stronger illumination, was visibly higher
depending on the number of illuminated quadrants, for all
settings φ > 1500 lm; the relationship was, however, clearly
sub-linear. For example, at φ = 2000 lm the correlation
dimension was D2 ≈ {2.1, 2.3, 2.5, 2.6}; however, at φ =
3900 lm, it was D2 ≈ {2.4, 2.6, 2.7, 2.9}. In other words,
even though the rank positions were consistent, between one
and four illuminated quadrants D2 increased only by ≈ 20%
(Fig. 15e). The situation was analogous for the permutation
entropy, with h ≈ {0.38, 0.39, 0.40, 0.41} for φ = 2000 lm
and h ≈ {0.39, 0.40, 0.41, 0.42} for φ = 3900 lm (Fig. 15f).

3) Relevance and implications
These results confirm that the collective dynamics reflect
an ensemble evaluation over a representative multitude of
nodes. On the one hand, the number of electrically viable or
illuminated sensors had an evident influence on the measure-
ment, rendering it sufficiently indicative of a sum or average
operation, which represents the predominant requirement in
distributed sensing [10]–[14]. On the other, albeit with some
differences between the correlation dimension and permuta-
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FIGURE 15. Additional interventions on a 4 × 4 array of sensor boards
(Si,j ) and an exciter node (E), whose wire-loop coil is located at a fixed
distance under it (arrangement in Fig. 4g). a) Gradually reducing the number
of viable sensors n in a pseudo-random sequence via severing the coupling
coils. b) and c) Corresponding correlation dimension D2 and permutation
entropy h curves. d) Partial illumination of only m quadrants (averaged
over all combinations of the zones A-D). e) and f) Corresponding correlation
dimension D2 and permutation entropy h curves.

tion entropy, the relationship between the illumination level
and the dynamics was relatively resilient to the loss of a
subpopulation of nodes, remaining well visible even when
only half of the network was retained. These two features
are of central importance to distributed sensing since its
purpose is obtaining a robust ensemble measurement that is
not excessively influenced by a minority of sensors, while at
the same time ensuring that viability is maintained up to a
moderate level of damage, which in real-life scenarios could
ensue due to spontaneous failure or deliberate attack [7], [10],
[11], [59], [60].

The sublinear relationship elicited for the sensed variable,
as well as the number of sensors, is inherent in the nature
of the system, which is governed by synergistic rather than
summative interactions (as would be, for instance, in the
case of pure transmitters whose output power gets integrated
spatially). While a transition from periodicity to chaos can

be engendered relatively straightforwardly in the presence of
sufficient nonlinearity, and the chaotic dynamics can be en-
riched via couplings, the dimensionality is eventually bound
by the finiteness of the system. Approaching dimensional sat-
uration (that is, attaining a strange attractor whose fractional
dimension nears the number of physical variables in the
phase space) may be hindered by the weak level of couplings
[26], [30]. A clear demonstration of this phenomenon for ex-
perimental and simulated systems can be found, for example,
in a recent study of star networks but also in realizations of
the present single-transistor oscillator with fractal elements
[34], [51]. Finally, the negative bias of the complexity esti-
mators should be borne in mind, potentially accounting for
the steeper slopes observed for the permutation entropy than
the correlation dimension [42]–[45].

V. CONCLUSIONS AND FUTURE APPLICATIONS
A. CONTRIBUTION
This precursory study aimed to bring together two research
fields that, thus far, had remained mostly separate: wireless
sensor networks and electronic chaotic oscillators. It demon-
strated that it is, in principle, possible to realize a viable dis-
tributed sensing system while implementing each node with
a simple analog circuit, consisting only of a single transistor
and a limited number of passive components, rather than a
microprocessor-based entity. In other words, the explicitly-
coded behavior of an automaton is replaced by the nonlinear
dynamics of an oscillator, fuzzy and heterogeneous, power-
fully capable of giving rise to complex emergent phenomena
via synchronization [61]–[63].

Because the present approach is new, there is limited
literature to which direct comparisons can be made. In this
regard, the most important study is that in Ref. [31]: therein,
the experimental synchronization of two inductively-coupled
Colpitts oscillators was demonstrated. Synchronization and
chaotic transitions were demonstrated as a function of the
coupling coefficient k. However, no usage in remote sensing
was elaborated, and only one configuration was considered,
namely an oscillator pair, as opposed to the seven arrange-
ments of sensor and exciter nodes considered herein; more-
over, the transistor circuit was structurally more complex. At
a more general level, the present results are well in line with
existing work on the synchronization of chaotic oscillators
using direct electrical connections [27], [28], [51].

Even though for demonstration purposes in this work
the oscillators were realized using discrete components and
had a current draw on the order of milliwatts, it is well
established that, on a mainstream CMOS process node,
single-chip chaos generators can be implemented with an
area and power footprint on the order of ≈ 0.03 mm2 and
≈ 0.05 µW. A distributed sensing approach hinged around
simple oscillators, therefore, appears ideally suited for the
realization of fine-granularity smart dust sensors, insofar as
future work can realize on-chip, via appropriate feature size
and frequency scaling (e.g., X band and beyond), both the
coupling antenna and an energy harvesting system (electro-
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magnetic, electromechanical, thermoelectric or photovoltaic)
[10], [64]–[68].

B. NOVELTY
To the authors’ knowledge, these findings represent the first
physical demonstration that chaotic oscillators may be cou-
pled remotely in an extended network, expanding previous
work limited to an isolated node pair [31]. A particularly
relevant result, which is expected to have general valid-
ity, is that emergent phenomena such as synchronization,
desynchronization, relaying, and chaotic transitions could
be elicited, as a function of both the network topography
and the sensed physical variable, even in the presence of
weak coupling. Importantly, the coupling coefficients under
consideration, on the order of ≈ 0.01, are expected to be
unproblematic to realize over considerably longer distances,
on the order of meters and beyond, using optimized electro-
magnetic structures. It should be noted that even this though
initial laboratory demonstration was based on simple induc-
tive coupling, without any attempt at design optimization, the
mechanisms are expected to straightforwardly generalize to
diverse antenna types, as well as to frequencies well-suited
for on-chip coil realization [36], [64], [67].

A specific aspect of novelty is the readout of the network
dynamics via an active exciter node coupled to all sensors,
that is, a structurally identical oscillator possessing its intrin-
sic dynamics. Due to the bidirectional nature of the inductive
coupling, the dynamics of this node may both be influenced
by and act upon the dynamics of the remote sensor nodes,
which is unlike the simple averaging performed by a passive
receiver. As exemplified by the configurations considered,
this allowed realizing different interaction patterns, such as
the transition to synchronization or chaotic state, only as a
function of the local control parameter (series resistor value)
within the exciter node (which would, in an application,
functionally correspond to a base-station). Furthermore, de-
pending on the settings, it enabled the externally-applied
excitation field to enhance or hinder synchronization among
the sensors. Sensing via applying an external excitation
is pervasive across physical measurement techniques, most
notably nuclear magnetic resonance, and rhymes with the
notion of harvesting information about a complex network
via externally perturbing it; however, this approach had seem-
ingly not yet been applied to wireless sensor networks [69]–
[71]. Future work should investigate it more extensively,
elucidating its advantages over a passive receiver also in
terms of sensitivity and selectivity, and considering more
advanced configurations such as a possibly adaptive exciter
node capable of rapidly sweeping its control parameter.

C. APPLICATIONS
For demonstration purposes, here, the sensed variable,
namely the light intensity, coincided with the power source
for the sensor nodes. The approach, however, is entirely
generic and may be realized with other configurations, and
other nonlinear electronic oscillators; for example, a sensing

FIGURE 16. Examples of possible future application concepts. a) Moni-
toring of average human body temperature 〈◦C〉, via a resistive temperature
sensor and a biological electrochemical power source (e.g., sweat). b) Mon-
itoring of human oscillatory movement a(t) (e.g., tremor), with oscillator
synchronization via a capacitive acceleration sensor. c) Monitoring of total
solar photon flux density

∫
φ in an agricultural field, via a photovoltaic

cell acting both as sensor and power source. d) Monitoring of cracking
in a concrete structure, via a break wire inductor (maximum inductance
max(L)) and a photovoltaic power source. e) Monitoring of the concen-
tration max(c) of an analyte via a chemically-sensitive transistor and long-
life battery. Coupling infrastructure not shown, sensorized circuit element
highlighted in red.

element could be instanced corresponding to the supply
resistor, or the tank capacitor, while the node is powered at
a voltage unrelated to the sensed variable. Indeed, previous
work has demonstrated that the dynamics of these circuits
are more responsive to the series resistance than to the supply
voltage [28], [30].

The concrete next steps towards prototype implementa-
tions shall depend on the specific application scenarios. For
example, in a biomedical scenario, low-energy oscillators
could be powered by an electrochemical source based on
sweat, and the body itself could act as an electrical coupling
medium between the oscillators. The accurate approximation
of core body temperature from noninvasive measurements
is knowingly challenging, hence application of the present
techniques to obtain a large-area average could be beneficial
[6], [72]; this could be realized by altering the series supply
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resistor via a suitably-sized parallel thermistor (Fig. 16a). In-
sofar as the oscillation frequency (or a secondary, modulating
component) can be lowered down to the range of ≈ 5 Hz to
allow direct synchronization between the physiological and
electronic dynamics, coupled oscillators could also find ap-
plications in the detection of subclinical tremors in movement
disorders. One approach may be coherently integrating them
over multiple limb locations, for instance through capacitive
micro-sensors (Fig. 16b); a similar method could also be ap-
plied to monitoring the oscillation of an engineered structure
[73], [74].

In an agricultural scenario, the present demonstration of
average illumination estimation could have immediate rele-
vance to the determination of the solar photon flux density,
provided that the coupling coils are redesigned and scaled to
operate on the range of at least several meters (Fig. 16c). To-
wards such an application, via the relay mechanisms demon-
strated in the present results, it could be helpful to exploit a
small subset of nodes as a proxy for the state of the entire
network [4]. Differently, in a civil engineering scenario, one
could envisage a network of these oscillators being coupled
via a conductive structural element and individually equipped
with a wire break sensor altering, for example, the value of
one of the coils when opened [75], [76]. The nodes could
be tuned for collective oscillation close to chaos transition
in such a manner that, rather than representing an ensemble
average, the dynamics suddenly turn chaotic if one sensor is
damaged, triggering an alarm (Fig. 16d). Further, in suitable
chemical sensing applications, even the transistor itself could
act as a sensing element for the concentration of an analyte
(Fig. 16e) [77].

Lastly, diverse forms of coupled nonlinear networks can
provide viable substrates for physical reservoir computing.
Therefore, insofar as the nodes are distributed sufficiently
densely to ensure the emergence of collective behavior, the
paradigm of remote chaotic synchronization could be used as
a basis to implement distributed forms of reservoir computing
over wireless sensor networks [78], [79]. At the same time,
the elementary nature of single-transistor oscillators renders
them ideally suited for realization in the form of flexible
and printed electronics, considerably expanding the perva-
siveness of the distributed sensor nodes that can be realized
vastly beyond what is presently possible, one example being
skin patch transducers [80], [81].
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