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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 

Keywords: Cost Models; ABC; TDABC; Capacity Management; Idle Capacity; Operational Efficiency 

1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Data science is a multidisciplinary blend of data inference, algorithm development, and technology in order to solve analytically 
complex problems. Sustainability is a critical asset of a manufacturing enterprise. It enables a business to differentiate itself from 
competitors and to compete efficiently and effectively to the best of its ability. This paper is a review of data analytics, and how it 
supports advanced manufacturing with an emphasis on sustainability. The objective is to present a context for a roadmap for applied 
data science addressing such analytic challenges. We start with a general introduction to advanced manufacturing and trends in 
modern analytics tools and technology. We then list challenges of analytics supporting advanced manufacturing and sustainability 
aspects. The information quality (InfoQ) framework is proposed as a backbone to evaluate the analytics needed in advanced 
manufacturing. The eight InfoQ dimensions are: 1) Data Resolution, 2) Data Structure, 3) Data Integration, 4) Temporal Relevance, 
5) Chronology of Data and Goal, 6) Generalizability, 7) Operationalization and 8) Communication. These dimensions provide a 
classification of advanced manufacturing analytics domains. The paper provides a roadmap for the development of applied analytic 
techniques supporting advanced manufacturing and sustainability. The objective is to motivate researchers, practitioners and 
industrialists to support such a roadmap. 
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1. Introduction 

In this paper, we present a roadmap for data science and applied statistics with an emphasis on industrial 
applications and challenges posed by Industry 4.0. Data is increasingly cheap and ubiquitous.  The rise of "big data" 
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has the potential to deepen our understanding of phenomena ranging from physical and biological systems to human 
social and economic behavior. Working with this data requires distinctive new skills and tools. The data is also more 
heterogeneous than the highly curated data of the past. Digitized text, audio, and visual content, like sensor and blog 
data, is typically messy, incomplete, and unstructured; it is often of uncertain provenance and quality; and frequently 
must be combined with other data to be useful. Working with user-generated data sets also raises challenging issues 
of privacy, security, and ethics. A system approach to the design for sustainability is presented in [27]. The paper 
provides an overview of the challenges of systems engineering in designing for sustainability by involving all 
interested stakeholders, dealing with the entire life cycle value chain of products, practicing corporate social 
responsibility and managing the relevant risks and opportunities. In parallel with these developments, the last several 
years have seen a significant growth in the number of courses and new programs titles “Data Science”, “Business 
Analytics”, “Predictive Analytics”, “Big Data Analytics”, and related titles. Different programs have a different 
emphasis depending on whether they are housed in a business school, a computer science department, or a cross-
departmental program. What is however common to all of them, is their focus on data (structured and unstructured), 
and specifically, on data analysis. Many Statistics and Operations Research programs and departments have been 
restructuring, revising, and rebranding their courses and programs to match the high demand for people skilled in data 
analysis (see [3]).  

Applied statistics is about meeting the challenge of solving real world problems with mathematical tools and 
statistical thinking. In a paper discussing the expanded role of statistics in research, business, industry, and service 
organizations. The paper in [9] proposes a life cycle view that combines an inductive-deductive learning process. The 
main point in this proposal is that effective statistical work is much more than properly applying statistical methods. 
One needs to emphasize that statistical analysis is a collaborative venture whose success depends essentially on the 
effectiveness of the communication between the statistician and the client. The statistician needs to exercise social 
and communicative skills for his work to have an impact. In addition, a systematic assessment of the impact and the 
quality of information generated by the statistical analysis requires additional activities not usually performed by 
statisticians. A particularly important area of application to data science and applied statistics is industry and 
manufacturing operations. The first industrial revolution was triggered by the introduction of the steam engine and 
the mechanization of manual work in the 18th century. Electricity drove mass production in the second industrial 
revolution in the early 20th century. The third revolution in manufacturing was due to the use of electronics and 
computer technology for manufacturing and production automation.  We are now entering the fourth phase, labeled 
advanced manufacturing or Industry 4.0. For a perspective on the evolution of production and quality conceptual 
frameworks, from inspection to process improvement to quality by design, see chapter 1 in [13].  

2. Data Science and Applied Statistics in Advanced Manufacturing 

Advanced manufacturing requires analytics and operational capabilities to interface to devices in real time, at an 
individual level. Software development has become agile and commonly applied DevOps operations provide 
continuous delivery (see [14]). Moreover, processing and analytic models evolve to provide a high level of agility as 
organizations realize data agility, the ability to understand data in context and take the right business action, is the 
source of competitive advantage (see [19]). The emergence of agile processing models enables the same instance of 
data to support batch analytics, interactive analytics, global messaging, database and file-based models. More agile 
analytic models are also enabled when a single instance of data can support a broader set of tools. The result is an 
agile development and application platform that supports the broadest range of processing and analytic models. Tools 
and methods implemented to verify if process behavior is consistent with normal operating conditions include 
functionalities such as:  i) Detection - rapidly detect abnormalities in process operation ,ii) Diagnosis - look for the 
root cause of abnormal behavior ,iii) Fault criticality assessment - assess potential severity of the fault  and iv) Decision 
- stop the process and fix the problem or accommodate the fault and proceed. 

In this paper, we focus on applications of statistics and data science to “Sustainable Manufacturing”.  In the US, a 
president team on sustainable manufacturing, emphasized the need to maximize every atom of matter and joule of 
energy using technologies and systems that enable optimal raw material, energy, and resource utilization. The 
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objective is to achieve manufacturing processes with lower energy‐consumptions, savings in energy and higher 
efficiencies. Advanced manufacturing builds on emerging technologies to critically enhance economic 
competitiveness of individual manufacturers and enhance sustainability of the whole industrial sector profitability.  
Data science and analytic tools supporting advanced manufacturing can be classified in 9 domains: 1) Engineering 
Design, 2) Manufacturing Systems, 3) Decision Support Systems, 4) Shop Floor Control and Layout, 5) Fault 
Detection and Quality Improvement, 6) Condition Based Maintenance, 7) Customer and Supplier Relationship 
Management, 8) Energy and Infrastructure Management and 9) Cybersecurity and security related issues 

In each of these domains, there are opportunities for advancing sustainability of the products, the processes and 
even of the organization. Each of these domains is described below with examples of the analytic support required to 
perform the related tasks. The examples are designed to demonstrate the role of analytics in advanced manufacturing 
and sustainability. For each domain, we discuss how to enhance sustainability through data analytics. A follow up 
section lists challenges that need to be addressed in developing and implementing such methods. 

 

2.1. Engineering Design 

Modelling and simulation is an integral part of modern design and engineering. Fast prototypes today are based on 
3D printing for testing design alternatives and enable multidimensional optimization during the design and 
engineering process. Advanced manufacturing opens new options for personalized production and low volume high 
mix processing. As an example, [26] discuss simulations used to compare mathematical models for tissue mimicking 
with 3D printers processing. Recent advances in computer-aided design (CAD) have provided a rapid and low-cost 
method to generate patient-specific tissue-mimicking phantoms from computational models that are constructed from 
CT or MRI results of individuals. They designed and fabricated metamaterials with three microstructures and applied 
finite element analysis (FEA) to predict their mechanical behaviors under tensile loadings. For more on such computer 
experiments see [11]. Modern computer experiments and simulations provide the means to achieve robust designs 
with effectiveness and efficiency that are way beyond the pioneering work in [24]. 

The engineering phase is the right stage to introduce sustainability into the designed products and/or systems. Most 
of the CAD models include information on material and energy consumptions. The designer should incorporate the 
Design for Sustainability features while using the CAD models. The designing of products for 3D printing is 
conserving materials and resources. Data analytics can support sustainability during the Engineering Design by 
introducing quantitative measures for the sustainability of the designed product. In addition, there are number of 
initiatives on indicators and frameworks for sustainable development. see [23]. 

2.2. Manufacturing Systems 

There is an increasing tendency in industry towards data-rich environments characterized by “intelligent” and 
autonomous machine tools, where several sources of information (i.e. sensors installed in production systems) are 
available for many purposes (e.g., monitoring, diagnostics, predictive maintenance, etc.). In this framework, many 
technological advances pave the way for a systematic and extended use of sensor data for industrial quality control. 
Furthermore, in many industrial applications, the process naturally switches from one operating mode to the following 
one, producing streams of data from different distributions that follow one another over time. This kind of process is 
referred to as “multimode process”. The monitored variables usually represent quantities that originate from one or 
multiple sensors, and each one of them requires dedicated pre-processing and raw signal elaboration steps [4] . A 
crucial issue in sustainable manufacturing is resource consumption. An advanced manufacturing policy promotes the 
use of sensors as internet of things (IoT) systems for real time monitoring of the resources consumptions, including 
sophisticated data analytics. For example, the system introduced by Lightapp (www.lightapp.com) monitors air 
pressure in companies all over the world. It is also used for benchmarking energy consumption in production plants. 

 
 



144	 Ron S. Kenett et al. / Procedia Manufacturing 21 (2018) 141–148
4 Ron S. Kennet/ Procedia Manufacturing 00 (2017) 000–000 

 

2.3. Decision Support Systems 

Groger et al. [6] present indication-based and pattern-based manufacturing process optimization as data mining 
approaches provided by in advanced manufacturing. They discuss dashboards that are typically part of manufacturing 
execution systems (MES) and custom business intelligence (BI) applications based on online analytical processing 
(OLAP). Their proposal relies on a data integration layer that integrates process and operational manufacturing data 
in a holistic process centric data warehouse. The analytic tools they discuss include Bayesian classification, neural 
networks, support vector machines and decision trees. For more on such tools see [10]. Usually, Business Intelligence 
(BI) includes the measurements of sustainability indicators. As the sustainability approach promotes a triple bottom 
line model, [22], the BI should include measures that support these bottom lines. 

2.4. Shop Floor Control and Layout 

Shop floor control is inherently a multivariate problem. With modern computing power and advanced integration 
and visualization platforms, multivariate statistical process control (MSPC) is becoming operational and critical to 
advanced manufacturing. For a background on MSPC see [16].  The authors in [26] evaluate the effect of control 
parameters on 3D printed meta-materials designed to mimic the strain-stiffening behavior of soft tissues. They 
evaluate, with simulation and physical experiments, the effects of design parameters such as wavelength, amplitude, 
and radius of fiber on the sinusoidal wave design, pitch, radius of helix, and radius of fiber on the double helix design. 
Modern experimental design methods permit to effectively account for nonlinearities in such responses (see [11]). In 
terms of factory layout, an early model of a process with a testing and repair stations has been proposed in [1]. In that 
paper, the authors investigate the impact of the defect distribution on system performance measures such as yield, 
production lead time, and work-in-process inventory and provide management guidelines for short term control 
decisions such as identifying potential bottlenecks under increased workloads and allocating additional resources to 
release bottlenecks. They also discuss budget allocation method for process improvement projects initiated in order 
to meet the long-term goal of continuously decreasing defect levels. Optimal shop floor control and layout serves 
sustainability objectives. An improved shop floor layout saves time, energy and increases employee satisfaction. A 
real time shop floor control activated by data analytics ensures that the shop floor is well managed, also from 
sustainability aspects. 

2.5. Fault Detection and Quality Improvement 

Hybrid systems consist of continuous behavior and discrete states represented by modes. In each mode, the system 
is governed by continuous dynamics, and different modes correspond to different continuous models. System health 
monitoring is a key feature for early detection of faults, failure prevention, reliability, and condition-based 
maintenance. A health monitoring system integrates four main skills, namely: 1) fault detection; 2) fault isolation; and 
3) fault parameter estimation and 4) prediction of time to maintenance or replacement. In hybrid system diagnosis, 
two different types of faults are defined. The first is a parametric fault, where one or more model parameters are 
deviating from their nominal value to an unknown value. The second type is fault mode; in this case, the faulty state 
is known a prior and can be modeled by known parameters only.  A health monitoring framework for hybrid system 
is presented in [2] and [15]. The work in [4] and [13] describe various process monitoring methods such as Shiraryev-
Roberts (SR) detection procedure, multivariate statistical process control (MSPC), SPS, signal decomposition and 
Empirical Mode Decomposition (EMD). [21] present an automation framework for the effective usage of diagnosis 
tools in the performance testing of clustered systems. One of the possible relationships among Quality Improvements 
and Sustainability is the Cost of Quality (CoQ) which most of it is the cost of producing and delivering non quality 
products. The measure of CoQ through data analytics helps companies to lower the CoQ through quality 
improvements initiatives. Lower CoQ improves sustainability. In addition, quality improvements may prevent 
companies from events like products recalls. Some of these recalls turn to be disasters for companies like auto 
manufacturing companies. These recalls can be prevented if the early failures data was correctly analyzed and 
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interpreted. Such recalls are real risks for the sustainability of companies and preventing theses recalls is crucial for 
the sustainability.  

2.6. Condition Based Maintenance 

Man-made systems are prone to deterioration over time and therefore require ongoing maintenance to avoid 
malfunctioning. Accordingly, it is essential to undertake an effective preventive maintenance (PM) policy that 
minimizes the life cycle cost (LCC) of the system and maximizes its operational profit. [8] presents a condition-based 
maintenance method to define a PM policy per the state of the system at various time periods by combining both a 
simulation model of the system and a predictive metamodel. [16], [17] and [25] review challenges of big data to 
modern reliability engineering. As mentioned above, preventive maintenance and predictive maintenance based on 
sensors and data analytics, is a perfect tool for optimizing Life Cycle Costs. An example of this technology is provided 
by Augury (www.augury.com) which develops products measuring and monitoring magnetic signals of rotors and 
predict motor repair or subsystem replacement.  

2.7. Customer and Supplier Relationship Management 

Supply chain management (SCM) is a systematic progression in which an organization manages the flows of 
products, services, money, etc. The aim is to obtain maximum profit with minimum costing as well as fulfilling the 
customer’s demand. SCM includes the movement and storage of raw materials, work-in-process inventory, and 
finished goods i.e., from raw material to point of consumption. Among others, [20] looked at this interconnected 
network. They developed a three-layer supply chain model with production-inventory model for re-workable items 
including an inventory model for deteriorating items price and stock dependent demand. They propose an economical 
order quantity model with imperfect quality and shortage backordering under inspection errors and deterioration. The 
ISO20400 new international standard guides how to manage sustainability in the procurement process and along all 
supply chain and system. The standard provides principles, policies, processes and enablers for introducing and 
assuring sustainability in the procurement process and along the supply chain. The standard is based on the ISO26000 
standard which is dealing with Corporate Social Responsibility. Data collected about suppliers provides valuable 
information for evaluating the supply chain sustainability. Today, there are various systems over the web which 
provide data about customers and their market status and position. This information can support the evaluation a 
company sustainability. 

2.8 Energy and Infrastructure Management 

The authors in [18] consider data gathered from operation and service of off-shore wind turbines. They use and 
analyze field data or so-called Product Use Information (PUI) to improve maintenance activities and to reduce the 
costs. Their data is from sensors on the turbines, alarms information, signals from the condition monitoring and 
supervisory control and data acquisition (SCADA) systems used in maintenance activities. To make the right decision, 
it is important to understand which PUI data source and which data analysis methods are suitable for what kind of 
decision making task. The aim of their study is to discover how big data analytics of PUI can help in the maintenance 
processes of off-shore wind power, thus ensuring their sustainable operations.  

2.9 Cybersecurity and security related issues 

The definition used in the EU Cybersecurity Strategy is: "Cyber-security commonly refers to the safeguards and 
actions that can be used to protect the cyber domain, both in the civilian and military fields, from those threats that 
are associated with or that may harm its interdependent networks and information infrastructure. Cyber-security strives 
to preserve the availability and integrity of the networks and infrastructure and the confidentiality of the information 
contained therein." [5]. Cybersecurity is a critical concern in advanced manufacturing sustainability. [7] proposes an 
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application that characterizes the behavioral patterns of suspect users versus non-suspect users based on usage 
metadata. These are examples of a growing area of research. In today’s world, cybersecurity is a big challenge for 
companies’ sustainability. Data analytics, like pattern recognition and anomaly detection is applied in efforts securing 
companies sustainability against cyber-attacks. 

3. A Roadmap of Data Science and Analytic Tools in Advanced Manufacturing 

Big data has been around for some time, e.g. satellite imaging, genomics, particle physics. And the collection, 
provision and analysis of data is now a huge industry. The term data science is commonly used to describe these 
activities. Big data is considered to offer a high potential for learning, even though it is largely observational. The 
main challenges are due to i) a need for transitioning from monitoring the mean, to dispersion, to correlation, ii) from 
stationary, to dynamic, to non-stationary, iii) from sensor data to higher-order profiles and iv) from detection, to 
diagnosis, to prognosis thus assuring the sustainability of the production process 

Continuous processes are characterized by a stable operation window. Classical approaches are based on the 
assumption of independent and identically distributed variables, which is rarely valid for industrial processes due the 
existence of inertial elements (big process units) coupled with fast acquisition rates. For dealing with autocorrelation, 
three types of approaches can be followed:  

1. Adjusting the control limits (this is feasible only for very simple systems). 
2. Estimating a multivariate time series model and monitor the residuals with over a dozen variables. 
3. Using a transformation in the time domain that decorrelates the autocorrelation of the series (namely the wavelet 

transform) 
Batch processes monitoring is a much more challenging task than monitoring continuous processes. In this context, 

all variables can change in each cycle or batch. The batch process is therefore intrinsically multivariate and non-
stationary. Moreover, in this case, non-linearities are more noticeable that in continuous processes with more or less 
consistent cycles. To characterize these challenges, we refer to a comprehensive framework designed to plan and 
assess the level of information quality provided by analytic tools and methods.  . 

Information quality (InfoQ) is defined in [12] as the potential of a dataset to achieve a specific (scientific or 
practical) goal using a given empirical analysis method. InfoQ is different from data quality and analysis quality, but 
is dependent on these components and on the relationship between them. Technically, the definition of InfoQ is the 
derived utility (U) from an application of a statistical or data analytic model (f), to a data set (X), given the research 
goal (g).  This can be written algebraically as: InfoQ(f, X, g, U) = U( f (X|g)).  [12] proposes eight dimensions of 
InfoQ: 

1) Data Resolution: The measurement scale and level of aggregation of the data relative to the task at hand must 
be adequate for the study 

2) Data Structure: The data can combine structured quantitative data with unstructured, semantic based data 
3) Data Integration: Data is often spread out across multiple data sources. Hence, properly identifying the different 

relevant sources, collecting the relevant data, and integrating the data, directly affect information quality  
4) Temporal Relevance: A data set contains information collected during a certain time window. The degree of 

relevance of the data in that time window to the current goal at hand must be assessed and is crucial to attain sustainable 
control of the process or the product 

5) Chronology of Data and Goal: Depending on the nature of the goal, the chronology of the data can support the 
goal to different degrees. For example, in process control applications of discrete parts, we might collect data from 
previous processes that is relevant to a specific part. If the goal is to quantify the effect of previous manufacturing 
steps on the specific part’ quality, then the chronology is fine. However, if the goal is to predict the final quality of a 
part, then the required information builds on data collected in future manufacturing steps, and hence the chronology 
of data and goal is not met 

6) Generalizability: Two types of generalizability are statistical and scientific generalizability. Statistical 
generalizability refers to inferring from a sample to a target population. Scientific generalizability refers to applying 
a model based on a particular target population to other populations 
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7) Operationalization: Action operationalization is about deriving concrete actions from the information provided 
by a study 

8) Communication: If the information does not reach the right person at the right time in a clear and understandable 
way, then the quality of information becomes poor.  

The InfoQ dimensions provide a roadmap for assessing data analytics methods in the 9 advanced manufacturing 
domains listed in section 2. 

4. Discussion 

Eventually, analytics and statistics analysis is performed to generate information and to support decisions. In this 
paper, we review the general role of data science and specifically the role of analytics in the context of advanced 
manufacturing and sustainability. We list examples of analytic methods and open challenges. The framework of 
information quality (InfoQ) is presented as an infrastructure for evaluating analytic methods and tools. The elements 
of a roadmap for applied data science require linking industry and academia and provide test bed environments where 
new analytic algorithms can be tested and information hubs where knowledge can be documented and shared. 
Education programs are needed at different levels (schools, colleges, universities, workers, managers, scientists) in 
order to prepare human resource infrastructures for data analytics developments. As more companies draw on analytics 
for their competitive edge and sustainable growth, several complementary organizational trends are emerging around 
the emphasis on data. Businesses that take data seriously are organized around data as an asset. These businesses are 
democratizing the access to data and “bring the right information to the right person at the right time”. These 
businesses promote and support data sharing. Data sharing requires many parts of the organization to work together. 
The objectives of this paper are to provide a context for the development of applied data science in advanced 
manufacturing and sustainability 
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