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Abstract 

This work aims at determining the right moment to stop single-point dressing the grinding wheel in order to optimize the grinding process as a 
whole. Acoustic emission signals and signal processing tools are used as primary approach. An acoustic emission (AE) sensor was connected to 
a signal processing module. The AE sensor was attached to the dresser holder, which was specifically built to perform dressing tests. In this 
work there were three types of test where the edit parameters of each dressing test are: the passes number, the dressing speed, the width of 
action of the dresser, the dressing time and the sharpness. Artificial Neural Networks (ANNs) technique is employed to classify and predict the 
best moment for stopping the dressing operation. During the ANNs use, the results from Supervised Neural Networks and Unsupervised Neural 
Networks are compared.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction  

Grinding processing are generally one of the last operation 
on the workpiece. These processes are not necessarily limited 
to surface finishing or removal of small quantities of material. 
They can be used to remove large amounts of material and can 
compete in economic terms with processes such as milling and 
turning. The wear of the grinding wheel is more important 
because it adversely influence the shape and accuracy of the 
surfaces machined with this process [1]. A solution for this 
problem is the online monitoring of the grinding wheel 
conditions [2]. For the online monitoring of the grinding 
wheel, it is necessary to use sensors that acquire information 
about the performance of the grinding wheel. Such sensors can 
be sensors of force, vibration, current, acoustic emission (AE), 
etc. The sensors can control the dressing process. This is the 
process of grinding wheel surface restoring and it consists in 
eliminating worn grains in order to expose new sharp grains. 

Dressing is necessary when excessive friction wears the 
grinding wheel [1].  

It is possible to correlate the AE produced by the dressing 
process to the exact point in which to stop the process. To do 
this, it is possible use Artificial Neural Networks (ANNs) to 
decisions making. ANN models have already been employed 
to predict the dressing wear of grinding operations on the basis 
of the measured AE signals and, furthermore, working 
parameters of cutting operations [3, 4]. 

2. Material and equipment 

According to the dressing conditions established for this 
test and considering the need to ensure the digital processing 
of the signals, analysis and discussion of the results, several 
preliminary tests were carried out to determine the best 
parameters to be used. Thus, an experimental test setup was 
assembled and configured to allow process output variables to 
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be acquired with quality. In the tests, an aluminum oxide 
grinding wheel was used, from NORTON, model 
38A150LVH, with dimensions of 355.6x25.4x127mm, where 
it was mounted on a surface tangential grinding machine, 
model RAPH 1055, from Sulmecânica. An acoustic emission 
(AE) sensor was connected to a signal processing module, 
model Sensis DM-42. The AE sensor was attached to the 
dresser holder, which was specifically built to perform 
dressing tests. The DM-42 module was connected to an 
oscilloscope from the company Yokogawa, model DL850, 
and the AE signals were acquired at a sampling frequency of 
two million samples per second. The dressing tool used was 
the CVD single-point diamond, where the parameter bd, 
which is the width of action of the dresser for a given depth of 
dressing (ad), was measured before the beginning of each 
dressing test.  

The method proposed by Nakayama et al. [5] and later 
adapted by Coelho [6], was used to measure the sharpness of 
the grinding wheel. This method consists in using a weight 
balance scale (an equipment similar to a seesaw) so that at one 
end is held fixed (without rotation) a cylindrical disc, which 
due to the force FN, equal 1N, of known weights fixed on the 
opposite side equipment, the disc remains in constant contact 
with the cutting surface of the grinding wheel. Thus, by 
putting the grinding wheel in movement, a wear on the disc is 
generated, which consequently causes a displacement over a 
given contact time. This displacement in time is recorded by a 
TESATRONIC, model TT60, from Tesa Technology, and 
collected by serial communication using MatLAB software. 
The sharpness of the grinding wheel is determined at various 
times of the test; at each time four displacement curves are 
obtained as a function of time at 4 points along the cutting 
face of the grinding wheel. Equation (1) is used to determine 
the sharpness values (K) for each displacement curve and, 
afterwards, the standard deviation and the average of the 
sharpness of the grinding wheel are calculated from these 
values.  
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where b and r are the width and radius of the disc, 

respectively, FN is the normal force applied on the opposite 
end of the disc, and a is the gradient of the regression line 
obtained from the characteristic of displacement curve versus 
(t)2/3, where t is the experiment time or contact time. The 
cylindrical discs used in the process of acquiring the 
sharpness curves, with external diameter of 24 mm, internal 
diameter of 7.8 mm and with of 2 mm, were made from a 
cylindrical bar of SAE 1020 steel. 

Figure 1a presents the sharpness curves for two distinct 
grinding wheel conditions. A magnification of the gray region 
of figure 1a is shown in figure 1b, from which the sharpness 
of the grinding wheel was computed. According to [7], 
sharpness is the measure of a body’s capacity to remove 
material from another. It can be observed in Figure 1a that the 
sharpness curve for the undressed and uneven grinding wheel 
condition makes a small α angle with respect to the time axis. 
That happens because the grinding wheel has its sharpness 
degraded, and thus its capacity to remove material from the 

workpiece is low. This characteristic occurs due to the 
clogging (with chips) of the cutting face of the grinding wheel 
and to the wear of the abrasive grains underwent during the 
grinding process. On the other hand, for a fully dressed and 
even grinding wheel, the sharpness curve forms a high β angle 
with the time axis, indicating that the grinding wheel is sharp 
because of its high capacity to remove material. 

 

 

Fig. 1. DISPLACEMENT CURVE vs T(2/3) 

3. Clogging and dressing tests 

In this work, the process of clogging and dressing of the 
grinding wheel is divided into three steps:  

 Dressing was performed with an overlap ratio (Ud) of 
1.5 and ad equals to 10 μm, consisting of 10 consecutive 
passes from the moment when the wheel surface was 
already cleaned, and after the last pass, the sharpness 
was measured;  

 Aiming at clogging the grinding wheel, grinding of an 
SAE 1020 steel workpiece was performed, with 
dimensions of 150x48x12 mm. The grinding process 
consisted of 20 passes with cutting depths of 20 μm, and 
constant peripheral speed of the grinding wheel and 
workpiece speed equal to 33m/s and 0.098m/s, 
respectively. After the grinding, the sharpness of the 
grinding wheel was measured by the system described 
above;  
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 After the grinding operation on the wheel, dressing was 
performed with Ud equals to 1.5 and ad equals to 10 μm, 
which consisted of 24 consecutive passes. The signals of 
raw AE were collected throughout the test, and the 
sharpness measured after the last pass. 

The dressing tests as well as the grinding test were 
performed without the use of cutting fluid. 

In Table 1 and Table 2 are presented the parameters of 
each dressing test, in which (vd) is the dressing speed, (bd) is 
the width of action of the dresser, (td) is dressing time, K0 is 
the sharpness measured before the start of the dressing test, 
and Kf is the sharpness at the end of the dressing test (last 
dressing pass). 

Table 3 shows the classifications of the different grinding 
wheel conditions achieved during the tests 1, 2 and 3. 

 Table 1. Parameters of dressing test. 

N° TEST Passes vS (m/s) vd (m/s) bd (μm) td (s) Ud 

TEST I 24 33 0.0098 520 2.6 1.5 

TEST II 10 33 0.0098 520 2.6 1.5 

TEST III 17 33 0.0069 365 3.7 1.5 

Table 2. Parameters of dressing test. 

N° TEST Passes Sharpness (K0) 
(mm3/N*s) 

Sharpness (Kf) 
(mm3/N*s) 

TEST I 24 0.569 2.854 

TEST II 10 2.437 2.796 

TEST III 17 1.987 2.695 

Table 3. Classification of the different grinding wheel conditions. 

Condition TEST I TEST II TEST III 

Undressed and Uneven Passes 1-9 - Passes 1-9 

Dressed and Uneven Passes 10-14 Passes 1-4 Passes 10-14 

Dressed and Even Passes15-24 Passes 5-10 Passes 15-17 

4. Digital signal processing 

The raw AE signal was initially analysed to select only the 
period corresponding to the dressing process (dressing pass 
only). Then, the signal was analysed in the frequency domain 
in order to identify specific frequency bands that best 
characterized the behaviour of the process. The spectrum was 

obtained for two different conditions of the grinding wheel 
(dressed and even; undressed and uneven).  

The discrete Fourier transform (DFT) was obtained for 9 
points equidistant from the dressing pass. Thus, 9 vectors of 
32768 points were processed in the MatLAB by means of the 
fft command and Hanning window and then the mean of the 
spectra was obtained, representing the spectral behaviour of 
the dressing pass. 

From the analysis of the spectra referring to two conditions 
of the surface of the grinding wheel, a band of frequencies 
was selected using the criterion of non-overlap between the 
spectra. After analysing the signals, the band from 25 kHz to 
40 kHz was selected for study. A 2048-point window, 
corresponding to 1 ms, as suggested by [8], was used. The 
ROP statistic was determined from the non-filtered signals, 
since this statistic uses a “self-filtering”. For obtaining the 
Counts statistics, the raw AE signal was filtered by using a 
Butterworth digital filter, bandpass of order 30, in the selected 
band of 25 to 40 kHz. A threshold of 100mV was used to 
calculate the statistics Counts for all the tests. 

5. Study of the frequencies 

The results from the digital processing of the AE signals 
show that the spectral content changes, which depend on the 
shape and sharpening characteristics of the grinding wheel. In 
the spectrum presented in figure 2, two different conditions of 
shape and sharpening of the grinding wheel are presented: (1) 
undressed and uneven grinding wheel and (2) dressed and 
even grinding wheel. 

It is observed in figure 2 that the spectrum of each 
condition of the grinding wheel express different energy 
levels. The grinding wheel without cutting capacity and 
uneven surface generates low energy levels over the entire 
significant frequency range, which are in the range of 0-250 
kHz. As described by [9], this is due to the low friction 
between the dressing tool and the grinding wheel, which has 
its abrasive grains worn in that condition. On the other hand, 
the dressed and even grinding wheel produces higher energy 
levels, because in this condition the cutting edges of the 
grinding wheel are exposed, and therefore the contact between 
the dresser and the grinding wheel is full, causing a high 
friction and a higher level of AE. These characteristics can 
best be observed for the 25-40 kHz band in the magnification 
shown in figure 2. 

 
 

 

Fig. 2. SPECTRUM OF FREQUENCY FOR TWO CONDITIONS OF THE GRINDING WHEEL 
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6. Sensor signal feature extraction 

The results obtained from the application of the ROP and 
COUNTS statistics for the 25-40 kHz frequency band are 
presented in figures 3 and 4, respectively, for two different 
conditions of the grinding wheel: (1) undressed and uneven 
and (2) Dressed and even. It is observed for a worn and dull 
grinding wheel, figure 3, there are great variations of peaks 
and valleys in the ROP and COUNTS values and an uneven 
behavior of these signals. 
 
 

 

 

 

 

 

 

 

 

Fig. 3.  UNDRESSED AND UNEVEN GRINDING WHEEL CONDITION 

This is due to the clogging rate by chips, in addition to the 
uneven cutting surface and the abrasive grain wear of the 
grinding wheel directly influence on the acoustic activity 
generated during the dressing operation. On the other hand, 
the ROP and COUNTS values for the dressed and uneven 
grinding wheel occur uniformly, in other words, the statistics 
maintain a virtually constant energy level throughout the 
dressing pass. This occurs because at this stage the grinding 
wheel is conditioned and its contact with the dresser is full 
and uniform, generating more acoustic activity. 

Fig. 4. DRESSED AND EVEN GRINDING WHEEL CONDITION 

7. Neural networks models 

The performances of a neural network might sensibly 
change according to the input parameters, network function, 
training function, number of nodes and epochs [2]. Every 
single points of AE waves and the passes number are used to 
construct the ANN model. The algorithm used as ANN is the 
Self-Organizing Map (SOM). It is an algorithm that show a 
topographic map of input data [10]. The supervised neural 
network used is the Back Propagation offered by MatLAB by 
a specific tool. This tool is called "Neural Net Clustering" and 
can be used by the APP software's section or by the command 
"nctool". The tool needs to input matrix and output matrix 
with a specific form. 

7.1. Supervised Neural Network  

Input matrix 
The data from digital signal processing phase are 

composed by AE wave data vector of a single pass. For every 
single pass there is a vector with COUNTS and ROP 
information. This partition is the same for each test. 

The Neural Net Clustering APP needs to a matrix 
containing all vectors of a test. This means that is necessary to 
make two matrix for every test: one matrix for COUNTS and 
one matrix for ROP.  

A script MatLAB is used to make these matrices. The 
script use for loop for open all vectors and save them in a 
matrix. At the end of process, the script make a folder in the 
main directory containing the vectors and it save the 
generated matrix in this folder as .mat file. The generated 
matrix is characterized by having passes as rows and the 
points value of the wave of the passes as column. 

Table 4 shows TEST 1 COUNTS matrix used for the 
Neural Net Clustering APP. Table 5 shows TEST 1 ROP 
matrix used for the Neural Net Clustering APP. 

Output matrix 
The output matrix is characterized by the number of 

condition as rows and the number of passes as column. The 
condition are Undressed and Uneven (UU), Dressed and 
Uneven (DU) and Dressed and Even (DE). Every condition in 
this matrix are indicate with 1 value. The reason of all this is 
related to Boolean value (1 is true and 0 is false). Table 6, 7 
and 8 show respectively TEST 1, TEST 2 and TEST 3 output 
matrix used for the Neural Net Clustering APP. 

Table 4. TEST 1 COUNTS matrix. 

N° Passes Point n°1 Point n°2 Point n°3 … Point n°2570 

Pass n°1 0 0 0 … 0 

Pass n°2 0 0 5 … 0 

Pass n°3 0 8 13 … 0 

… … … … … … 

Pass n°24 0 0 0 … 0 

 

 

 



311 Doriana M. D’Addona et al.  /  Procedia CIRP   67  ( 2018 )  307 – 312 

Table 5. TEST 1 ROP matrix. 

N° Passes Point n°1 Point n°2 Point n°3 … Point n°9727 

Pass n°1 0.0083 0.0063 0.0099 … 0.0081 

Pass n°2 0.0103 0.0078 0.0048 … 0.9318 

Pass n°3 0.0088 0.0062 0.0129 … 0.0097 

… … … … … … 

Pass n°24 0.0013 0.0015 0.0018 … 0.0034 

Table 6. TEST 1 output matrix. 

Condition Pass n°1 Pass n°2 Pass n°3 … Pass n°24 

Undressed 
and Uneven 

1 1 1 … 0 

Dressed 
and Uneven 

0 0 0 … 0 

Dressed 
and Even 

0 0 0 … 1 

Table 7. TEST 2 output matrix. 

Condition Pass n°1 Pass n°2 Pass n°3 … Pass n°10 

Dressed 
and Uneven 

1 1 1 … 0 

Dressed 
and Even 

0 0 0 … 1 

Table 8. TEST 3 output matrix. 

Condition Pass n°1 Pass n°2 Pass n°3 … Pass n°17 

Undressed 
and Uneven 

1 1 1 … 0 

Dressed 
and Uneven 

0 0 0 … 0 

Dressed 
and Even 

0 0 0 … 1 

 
Figures 5 - 10 show respectively the confusion matrices for 

TEST 1 COUNTS, TEST 1 ROP, TEST 2 COUNTS, TEST 2 
ROP, TEST 3 COUNTS and TEST 3 ROP. In the matrices, 
the diagonal represents the classification success carried out 
by the neural network, which is represented by the green 
colour. In those cells, the superior number represent the 
number of samples classified for each given class, and the 
inferior number represents the percentage of those samples 
related to the total of samples.  

The error of the ANN models is represented by the red 
cells in the matrixes and it might be considered (false positive 
or false negative) for each given class. [2] 

7.2. Unsupervised Neural Network  

Input matrix 
The matrices used in tool for SOM are characterized by the 

complete matrix without one row. The reason of the form of 
these matrices is related to use of the tool. Indeed the tool 
works in a different way from Neural Net Clustering APP and 
the user must insert manually a row in the matrix. 

A script been made for recreate n-matrix, where n is the 
passes number of the selected test, with the respective rows. 
This script use two for loop to select the matrix and row and it 
make n-matrix and n-rows. The files made are saved as .mat 

file in a folder made by the script. 
 
Output matrix 
The output matrices for SOM tool are the vector extracted 

from the general matrix. Figures 11 and 12 show respectively 
TEST 1 COUNTS Self-Organizing Map and its labels. In 
Figure 12 it is possible to see where the Neural Network 
arrange a DE row called DE_TEST. 

 

 

Fig. 5. TEST 1 COUNTS confusion matrix. 

 

Fig. 6. TEST 1 ROP confusion matrix. 

 

Fig. 7. TEST 2 COUNTS confusion matrix. 
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Fig. 8. TEST 2 ROP confusion matrix. 

 

Fig. 9. TEST 3 COUNTS confusion matrix. 

 

Fig. 10. TEST 3 ROP confusion matrix. 

 

 

 

 

 

 

 

Fig. 11. TEST 1 COUNTS Self-Organizing Map. 

 

 

 

 

 

 

 

Fig. 12. TEST 1 COUNTS Labels of Self-Organizing Map 

8. Conclusions 

This paper analyze the possibility of find the right moment 
to stop single-point dressing the grinding wheel. The ANNs 
used to determinate this moment are the SOM and the Back 
Propagation Neural Network. It is possible to see that Back 
Propagation works very well for COUNTS and ROP. The 
percentage of success is between 80% and 94,1%. 

The SOM offer us the possibility to see where the Neural 
Network puts a row inside a matrix. The efficiency is high 
with all rows insert in the right area of main matrix.  
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