
A Refinement of the µ-measure

for Stack Programs

Emanuele Covino 1 ,2

Dipartimento di Informatica
Universitá di Bari

Bari, Italy

Giovanni Pani3

Dipartimento di Informatica
Universitá di Bari

Bari, Italy

Abstract

We analyze the complexity of a programming language operating on stacks, introducing a syn-
tactical measure σ such that to each program P a natural number σ(P) is assigned; the measure
considers the influence on the complexity of programs of nesting loops and, simultaneously, of
sequences of non-size-increasing subprograms. We prove that functions computed by stack pro-
grams of σ measure n have a length bound b ∈ En+2 (the n + 2-th Grzegorczyk class), that is
|f(~w)| ≤ b(|~w|). This result represents an improvement with respect to the bound obtained via the
µ-measure presented in [6].

Keywords: Refinement, µ-measure, stack programs

1 Introduction

In the recent years a number of characterizations of complexity classes has been
given (among them, Linspace and Logspace in [5], functions computable

1 We would like to thank the referees for their suggestions and comments to the preliminary
drafts of this paper.
2 Email: covino@di.uniba.it
3 Email: pani@di.uniba.it

Electronic Notes in Theoretical Computer Science 90 (2003) 37–44

1571-0661 © 2003 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/S1571-0661(03)00006-9
CC BY-NC-ND license. Open access under

mailto:covino@di.uniba.it
mailto:pani@di.uniba.it
www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

within polynomial time in [1], those computable in polynomial space in [8]
and [10], the elementary functions in [10], non-size-increasing computations
in [2]), showing that all these classes can be captured by means of ramified
recursion, without any explicitly bounded scheme of recursion. A different
approach can be found in [3], [4], [6], and [7]; starting from the analysis of the
syntax of simple programming languages, their properties are investigated,
such as complexity, resource utilization, termination.

The properties of a stack programming language over a fixed alphabet are
studied in [6]; this language supports loops over stacks, conditionals and con-
catenation, besides the usual pop and push operations (see section 2 for the
detailed semantics). The natural concept of µ-measure is then introduced;
it is a syntactical method by which one is able to assign to each program
P a number µ(P). It is proved the following bounding theorem: functions
computed by stack programs of µ measure n have a length bound b ∈ En+2

(the n + 2-th Grzegorczyk class), that is |f(~w)| ≤ b(|~w|); as a consequence,
stack programs of measure 0 have polynomial running time, and programs of
measure n compute functions in the n + 2-th finite level of the Grzegorczyk
hierarchy. This result provides a measure of the impact of nesting loops on
computational complexity; as reported in [6], this happens because a stack Z
is updated into a loop controlled by a stack Y and, afterwards, Y is updated
into a loop controlled by Z; this kind of circular reference between stacks is
called top circle, and when it occurs into an external loop, a blow up in the
complexity of the program is produced. The µ-measure is a syntactical way
to detect top circles; each time one of them appears in the body of a loop, the
µ measure is increased by 1 (see below, definition 2.1).

There are numerous ways of improving measure µ (see [7]), since it is an
undecidable problem whether or not a function computed by a given stack
program lies in a given complexity class. In this paper we provide a refinement
of µ, starting from the following consideration: a program whose structure
leads the µ-measure to be equal to n contains n nested top circles, and this
implies that, by the bounding theorem, the program has a length bound b ∈
En+2. Suppose now that some of the sequences of pop and push (or, in general,
some of the subprograms) iterated into the main program leave unchanged
the overall space used; since not increasing programs can be iterated without
leading to any growth in space, the effective space bound is lower than the
bound obtained via the µ measure, and it can be evaluated by an alternative
measure σ. While µ grows each time a top circle appears in the body of
a loop, σ grows only for increasing top circles. In other words, the new
measure doesn’t take into consideration all the situations in which a number
of operations are performed, and their overall balance is negative. We prove

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–4438

a new bounding theorem using the σ-measure, providing a more appropriate
bound to the complexity of stacks programs.

2 Stack programs, µ-measure, and Kristiansen and Niggl’s

result

In this section we briefly recall the main results presented in [6]; the reader
is referred to the same paper for the complete set of definitions and proofs,
and to [11] for basic facts about the Grzegorczyk hierarchy. We recall that the
principal functions E1, E2, E3, . . . are defined by E1(x) = x2+2 and En+2(x) =
Ex

n+1(2) (the x-th iterate of En+1); and that the n-th Grzegorczyk class En

is the least class of functions containing the initial functions zero, successor,
projections, maximum and En−1, and closed under composition and bounded
recursion.
Stack programs operate on variables serving as stacks; they contain arbitrary
words over a fixed alphabet Σ, and are manipulated by running a program built
from imperatives (push(a,X), pop(X), and nil(X)) by sequencing, conditional
and loop statements (respectively, P;Q, if top(X)≡a then [P], foreach X [P]).
The notation {A}P{B} means that if the condition expressed by the sentence
A holds before the execution of P, then the condition expressed by the sentence
B holds after the execution of P. The intuitive operational semantics of stack
programs have the following definition:

(i) push(a,X) pushes a letter a on the top of the stack X;

(ii) pop(X) removes the top of X, if any; it leaves X unchanged, otherwise;

(iii) nil(X) empties the stack X;

(iv) if top(X)≡a [P] executes P if the top of X is equal to a;

(v) P1;. . .;Pk are executed from left to right;

(vi) foreach X [P] executes P for |X| times.

The only syntactical restriction is that no imperatives over X may occur in
the body of a loop foreach X [P] (i.e., in P), and that the loop is executed call-
by-value; X is the control stack of the loop. A stack program P computes a
function f : (Σ∗)n → (Σ∗) if P has an output variable O and n input variables
X̄ = Xi1 , . . . , Xin among stacks X1, . . . , Xm such that {X̄ = ~w}P{O = f(~w)},
for all ~w = w1, . . . , wn ∈ (Σ∗)n. For a fixed program P, two sets of variables
are considered in [6]:

U(P) = {X|P contains an imperative push(a,X)}

C(P) = {X|P contains a loop foreach X [Q], and U(Q) 6= ∅}.

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–44 39

Informally, X belongs to U(P) if it can be changed by a push during a run of
P, while X is in C(P) if it controls a loop in P. The two sets are not disjoint. X
controls Y in the program P (denoted with X ≺P Y) if P contains a loop foreach

X [Q], with Y ∈ U(Q); the transitive closure of ≺P is denoted by
P

→. Starting
from this relation, a measure over the set of stack programs is introduced.

Definition 2.1 Let P be a stack program. The µ-measure of P (denoted
with µ(P)) is defined as follows, inductively:

(i) µ(pop) = µ(push) = µ(nil) := 0;

(ii) µ(if top(X)≡a [Q]) := µ(Q);

(iii) µ(P; Q) := max(µ(P); µ(Q));

(iv) µ(foreach X [Q]) := µ(Q)+1, if Q is a sequence Q1; . . . ; Ql with a top circle

(that is, if there exists Qi such that µ(Qi) = µ(Q), some Y controls some Z
in Qi, and Z controls Y in Q1; . . . ; Qi−1; Qi+1; . . . ; Ql); µ(foreach X [Q]) :=
µ(Q), otherwise.

The core of [6] is the bounding theorem for stack programs.

Lemma 2.2 Every function f computed by a stack program of µ-measure n

has length bound b ∈ En+2 satisfying |f(~w)| ≤ b(|~w|), for all ~w. In particular,

if P computes a function f , and µ(P) = 0, then f has a polynomial length

bound, that is, there exists a polynomial p satisfying |f(~w)| ≤ p(|~w|).

Let Ln be the class of all functions which can be computed by a stack program
of µ-measure n ≥ 0, and let Gn be the class of all functions which can be com-
puted by a Turing machine in time b(|~w|), for some b ∈ En. As a consequence
of the bounding lemma, the following result is proved.

Theorem 2.3 For n ≥ 0: Ln = Gn+2.

3 The σ measure

In the rest of the paper, we denote with imp(Y) an imperative pop(Y), push(a,Y),
or nil(Y); we denote with mod(X̄) a modifier, that is a sequence of imperatives
operating on the variables occurring in X̄. We introduce a slight modified
definition of circle which better matches our new measure.

Definition 3.1 Let Q be a sequence in the form Q1; . . . ; Ql. There is a circle

in Q if there exists a sequence of variables Z1,Z2,. . . ,Zl, and a permutation π of

{1, . . . , l} such that Z1

Qπ(1)

→ Z2

Qπ(2)

→ . . .Zl

Qπ(l)

→ Z1. We say that the subprograms
Q1, . . . , Ql and the variables Z1, . . . , Zl are involved in the circle.

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–4440

For sake of simplicity, we will consider π(i) = i, that is the case Z1
Q1→ Z2

Q2→

. . .Zl
Ql→ Z1; proofs and definitions holds in the general case too.

Definition 3.2 Let P be a stack program and Y a fixed variable. The σ-

measure of P with respect to Y (denoted with σY(P)) is defined as follows,
inductively (with sg(z) = 1 if z ≥ 1, sg(z) = 0 otherwise):

(i) σY(mod(X̄)) := sg(
∑

σ̂Y(imp(Y))), for each imp(Y) ∈ mod(X̄), where

σ̂Y(push(a,Y)) := 1;
σ̂Y(pop(Y)) := −1;
σ̂Y(nil(Y)) := −∞;
σ̂Y(imp(X)) := 0, with Y 6=X;

(ii) σY(if top Z ≡a [P]) := σY(P);

(iii) σY(P1;P2) := max(σY(P1), σY(P2)), with P1;P2 not a modifier;

(iv) σY(foreach X [Q]) := σY(Q)+1, if there exists a circle in Q, and a subpro-
gram Qi s.t.
(a) Y and Qi are involved in the circle;
(b) σY(Q) = σY(Qi);
(c) the circle is increasing;
σY(foreach X [Q]) := σY(Q), otherwise

where the circle is not increasing if, denoted with Q1,Q2,. . . ,Ql and with
Z1,Z2,. . . ,Zl the sequences of subprograms and, respectively, of variables in-
volved in the circle, we have that σZi

(Qj) = 0, for each i := 1 . . . l and
j := 1 . . . l. If the previous condition doesn’t hold, we say that the circle
is increasing.

Note that the σY-measure of a modifier (see (i) in the previous definition) is
equal to 1 only when, in absence of nil’s, the overall number of push’s over Y
is greater than the number of pop’s over the same variable, that is, only when
a growth in the length of Y is produced. Moreover, note that the ”otherwise”
case in (iv) can be split in three different cases. First, there are no circles in
which Y is involved. Second, Y is involved, together with a subprogram Qi,
in a circle in Q, but it happens that σY(Qi) is lower than σY(Q) (this means
that there is a blow-up in the complexity of Y in σY(Qi), but this growth
is in any case bounded by the complexity of Y in a different subprogram of
Q). Third, suppose that Y is involved in some circles in Q, but each of them
is not increasing (that is, according to the previous definition, each variable
Zi involved in each circle doesn’t produce a growth in the complexity of the
subprograms Qj involved in the same circle). This implies that the space
consumed during the execution of the external loop foreach X [Q] is basically

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–44 41

the same used by Q (this is not a surprising fact: one can freely iterate a not
increasing program without leading an harmful growth). In all three cases the
σ-measure must remain unchanged: it is increased when a top circle occurs
and when, simultaneously, at least one of the variables involved in that circle
causes a growth in the space complexity of the related subprogram (that is, if
there exists a p such that σZp

(Qp) > 0). In the following definition, we extend
the measure to the whole set of variables occurring in a stack program.

Definition 3.3 Let P be a stack program. The σ-measure of P (denoted
with σ(P)) is defined as follows:

(i) σ̃(mod(X̄)) := 0

(ii) σ̃(if top Z ≡a [Q]) := max(σY(if top Z ≡a [Q])), for all Y occurring in P;

(iii) σ̃(P1;P2) := max(σY(P1;P2)), for all Y occurring in P, with P1;P2 not a
modifier;

(iv) σ̃(foreach X [Q]) := max(σY(foreach X [Q])), for all Y occurring in P.

(v) σ(P) := σ̃(P)−̇1

where −̇ is the usual cut-off subtraction.

Note that σ(P) ≤ µ(P), for each stack program P. Note also that, roughly
speaking, we use σ̂Y to detect all the increasing modifiers, for a given variable
Y (this is done setting σ̂Y equal to 1); but, once detected, we don’t have to
consider them in the evaluation of the σ-measure; this is the reason of the
”−̇1” part in the previous definition. In the rest of the paper we introduce a
reduction procedure between stack programs, and we prove a new bounding
theorem.

Definition 3.4 P and Q are space equivalent if {X̄ = ~w}P{|X̄| = m} implies
that {X̄ = ~w}Q{|X̄| = O(m)}. This is denoted with P≈sQ.

Definition of : let A be a stack program such that µ(A) = n + 1, and
σ(A) = m, with m < n+1; the program A is obtained in the following way:

(i) if A=foreach X [R], with µ(R) = σ(R) = n, and denoted with C1, . . . , Cl

the top circles in R, and with Ai1, . . . , Aip the variables involved in Ci,
for each i, we have that A is the result of changing each imp(Aij) into
nop(Aij) (a no-operation imperative);

(ii) if A=foreach X [R], with µ(R) > σ(R), , we have that A is equal to
foreach X [R];

(iii) if A=A1;A2 and max(µ(A1), µ(A2)) = µ(A1), we have that A= A1;A2;
simmetrically, if max(µ(A1), µ(A2)) = µ(A2), we have that A= A1; A2;
if µ(A1) = µ(A2), we have that A= A1; A2;

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–4442

(iv) if A=if top(X)≡a [R], we have that A=if top(X)≡a [R].

Lemma 3.5 Given a stack program P, with µ(P) = n+1 and σ(P) = n, there

exists a stack program P such that µ(P) = n, σ(P) = n, and P≈s P.

Proof. (by induction on n). Base. Let µ(P) = 1 and σ(P) = 0. In the
main case, P is in the form foreach X [Q], with a not-incresing circle occurring
in Q. Applying to P, we obtain a program P′ whose σ-measure is still 0,
and whose µ-measure is reduced to 0, because has broken off the circle
in P that leads µ from 0 to 1 (i.e., in P′, there are no more push’s on the
variables involved in the circle). Note that P can decrease the length of the
stacks involved in the circle, while P′ does not perform any operation in the
same circle. Thus, P′ can increase its variables only by a linear factor; indeed,
if {X̄ = ~w}P{|X̄| = m} we have that {X̄ = ~w}P′{|X̄| = cm}, where c is a
constant depending on the structure of P: thus, P≈sP

′.
Step. Let µ(P) = n + 2 and σ(P) = n + 1. Let P be in the form foreach X
[Q], and let C be a top circle occurring in Q, with µ(Q) = n + 1; we have two
cases: (1) σ(Q) = n + 1, or (2) σ(Q) = n.
(1) In this case C is a not-increasing circle, because it has been detected
by µ, but not by σ. Applying to P, we obtain a program P′ such that
σ(P′) = n + 1, µ(P′) = n + 1, and P≈sP

′.
(2) In this case C is an increasing circle, detected by µ and σ. We have that
(by the inductive hypothesis) there exists a program Q′ such that µ(Q′) = n,
σ(Q′) = n, and Q≈sQ

′. Starting from P, we build a new program P′=foreach
X [Q’] . We have that µ(P′) = µ(Q′) + 1 = n + 1, σ(P′) = σ(Q′) + 1 = n + 1,
and P≈sP

′ as expected.
The cases P1;P2;. . . ;Pk and if top(X)≡a [P] can be proved in a similar way.2

Theorem 3.6 Every function f computed by a stack program P such that

µ(P) = n and σ(P) = m has a length bound b ∈ Em+2 satisfying |f(~w)| ≤
b(|~w|).

Proof. Let k be µ(P)−σ(P). Then by k applications of Lemma 3.5, we obtain
a sequence P =: P0, P1, . . . , Pk of stack programs such that for all i < k,

µ(Pi+1) = µ(P) − i, σ(Pi) = σ(Pi+1), and Pi ≈s Pi+1.

By Kristiansen and Niggl’s bounding theorem, Pk has a length bound in

Eσ(P)+2, and so does P by transitivity of ≈s. 2

References

[1] S. Bellantoni and S. Cook, A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity 2(1992)97-110.

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–44 43

[2] M. Hofmann, The strength of non-size-increasing computations. Principles of Programming
Languages, POPL’02, Portland, Oregon, January 16-18th, 2002.

[3] N. Jones, Program analysis for implicit computational complexity. Third International
Workshop on Implicit Computational Complexity (ICC’01), Aarhus.

[4] N. Jones, logspace and ptime characterized by programming languages. Theoretical Computer
Science 228(1999)151-174.

[5] Lars Kristiansen, New recursion-theoretic characterizations of well known complexity classes.
Fourth International Workshop on Implicit Computational Complexity (ICC’02), Copenhagen.

[6] L. Kristiansen and K.-H. Niggl, On the computational complexity of imperative programming
languages. Theoretical Computer Science, to appear.

[7] L. Kristiansen and K.-H. Niggl, The garland measure and computational complexity of
imperative programs. Fifth International Workshop on Implicit Computational Complexity,
(ICC ’03), Ottawa.

[8] D. Leivant and J.-Y. Marion, Ramified recurrence and computational complexity II: substitution
and polyspace, in J. Tiuryn and L. Pocholsky (eds), Computer Science Logic, LNCS 933(1995)
486-500.

[9] Karl-Heinz Niggl, Control structures in programs and computational complexity. Fourth Implicit
Computational Complexity Workshop (ICC’02), Copenhagen.

[10] I. Oitavem, New recursive characterization of the elementary functions and the functions
computable in polynomial space, Revista Matematica de la Universidad Complutense de
Madrid, 10.1(1997)109-125.

[11] H. E. Rose, Subrecursion: functions and hierarchies. Oxford University Press, Oxford, 1984.

E. Covino, G. Pani / Electronic Notes in Theoretical Computer Science 90 (2003) 37–4444

	Introduction
	Stack programs, -measure, and Kristiansen and Niggl's result
	The measure
	References

