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REARRANGED DURING TRANSFECTION (RET) 
RECEPTOR AT A GLANCE

Receptor tyrosine kinases (RTK) are transmembrane (TM) pro-

teins featuring an intracellular domain containing the tyrosine ki-

nase (TK) enzyme. RTKs are often involved in cancer formation [1-

3]. Notable examples are epidermal growth factor receptor (EGFR/

HER1) and anaplastic lymphoma kinase (ALK) in non-small cell 

lung carcinoma (NSCLC) [4], KIT in gastrointestinal stromal tumors 

(GIST) [5], FLT3 in acute myeloid leukemia (AML) [6], and HER2/

ERBB2/neu in breast cancer [7].

In some cases, cancer cells up-regulate expression of the RTK (as 

an example HER2 in breast cancer), its cognate growth factor or 

both, in other cases, structural alterations such as chromosomal re-

arrangements leading to the RTK recombination to heterologous 

genes (as an example EML4-ALK in lung adenocarcinoma) or point 

mutations (as EGFR, KIT or FLT3 mutations in NSCLC, GIST, or 

AML, respectively), lead to unchecked kinase and oncogenic activ-

ity [1-3].

This notion has stimulated the search for agents, such as mono-

clonal antibodies against the RTK extracellular domain (like trastu-

zumab for HER2 or cetuximab for EGFR) or ATP-competitive small 

molecule protein kinase inhibitors (PKIs) (like gefitinib and erlo-

tinib for EGFR or crizotinib for ALK), to combat cancers driven by 

oncogenic RTKs [1-3].

The RET RTK was originally identified as an oncogene activated 

by a rearrangement occurred in vitro during transfection of NIH3T3 

cells with human lymphoma DNA [8]. RET protein belongs to a 

cell-surface complex able to bind glial-derived neurotrophic factor 

(GDNF) ligands (GDNF, neurturin, artemin, and persephin) in con-

junction with co-receptors of the GDNF receptor α family, desig-

nated GFRα 1-4 [9]. Binding to the ligand-co-receptor complex leads 

to RET dimerization and kinase activation. RET expression is tightly 

regulated during development and in the adulthood is limited to 

specific tissues, including neural crest-derived cells. RET is essen-

tial for the development of the enteric neurvous system and kidney, 

and germline loss-of-function mutations in RET cause Hirschsprung 

disease (aganglionic megacolon) and congenital anomalies of the 

kidney or lower urinary tract [10,11].

RET gene maps to chromosome 10q11.2. Fig. 1 shows that it is 

splitted in 21 coding exons. Exons 1-10 code for the extracellular 

region; exon 11 codes for the COOH-terminal part of the extracel-

lular region, the TM domain, and the intracellular juxtamembrane 

domain. Finally, exons 12-21 code for the intracellular domain. An 

alternative splicing at exon 19 determine the synthesis of three RET 

protein isoforms with different C-terminal tails. In RET9 (1072 aa), 

exon 19 is unspliced; in RET51 (1114 aa), exon 19 is spliced to exon 

20; in RET43 (1106 aa), exon 19 is spliced to to exon 21 [12-15]. RET9 

and RET51 are the most abundant and well characterized isoforms 

(Fig. 1). RET protein features an extracellular portion (RET-EC) that 
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includes the cleavable signal peptide (SP), four cadherin-like re-

peats (CLD1-4) and a cysteine-rich domain (CRD), a TM portion 

and an intracellular portion with the TK (RET-TK) domain split in 

two subdomains by a short insert (Fig. 1) [16,17].

The intracellular region of RET contains several tyrosine residues 

that undergo phosphorylation upon RET activation (Fig. 1) [18,19]. 

Tyrosine 905 map in the kinase A-loop (activation loop) and con-

tributes to RET kinase activation; Y1015 is a docking site for phos-

pholipase Cγ; Y1062 acts as a binding site for different proteins, in-

cluding Shc, ShcC, IRS1/2, FRS2, and DOK1/4/5, that, in turn, lead 

to stimulation of the RAS/MAPK and phosphatidylinositol-3-kinase/ 

AKT pathways [18-22].

RET POINT MUTATIONS IN CANCER

Activating point mutations of RET have been identified as a ma-

jor driver for medullary thyroid carcinoma (MTC) [19,23-25]. MTC 

(about 5% of thyroid cancers) is a malignant tumor arising from 

neural crest derived thyroid parafollicular C cells. MTC occurs spo-

radically in 75% of the cases; in about 25% of cases, MTC is inher-

ited as a component of the autosomal dominant multiple endo-

crine neoplasia type 2 (MEN2A, MEN2B, FMTC) syndromes [19,23-

25]. MTC has full penetrance in all MEN subtypes and it is usually 

the first manifestation of the syndrome. MEN2A is the most com-

mon (80-90% of cases) subtype and is characterized by MTC, 

pheochromocytoma, and hyperparathyroidism. More rarely, MEN2A 

patients develop aganglionic megacolon (Hirschsprung disease) or 

cutaneous lichen [19]. MEN2B is the least common (5-10% of the 

cases) MEN2 subtype and it is characterized by aggressive MTC, 

pheochromocytoma, ganglioneuromatosis of the intestine, thicken-

ing of corneal nerves and marfanoid habitus. FMTC features MTC 

as the only phenotype and it is currently regarded as a low pene-

trance MEN2A subtype [24,25].

Germline RET mutations are responsible for virtually all MEN2 

cases. Most common mutations target exons 10 and 11 encoding 

CRD of the RET extracellular domain or exons 13-16 encoding part 

Fig. 1. Schematic drawing of the RET gene (upper) and protein (lower). RET gene structure with coding exons is represented; nucleotide (nt) positions are marked. 
An alternative splicing in exon 19 generate two alternative mRNAs, coding for RET-51 (1,114 residues), when exon 19 is spliced to exon 20, or RET-9 (1,072 resi-
dues), when exon 19 remains unspliced. Last coding exon (exon 21) that encodes the C-terminal part of another less abundant RET isoform, RET (43), is not repre-
sented. Position of the STOP codons for RET-51 and RET-9 is marked. RET protein is represented in the bottom part of the figure. The extracellular RET domain (with 
the signal peptide [SP], four cadherin-like repeats [CLD1-4] and a cysteine-rich domain [CRD]), the transmembrane domain (TM), and the intracellular tyrosine kinase 
domain (TK) are represented. The RET-TK is split into two subdomains (TK1 and 2) by an insert region (KI). The position of most common RET point mutations associ-
ated to familial and sporadic MTC is shown. The breakpoint in RET (at the boundary between exons 11 and 12), that is involved in RET gene rearrangements in pap-
illary thyroid carcinoma, lung adenocarcinoma, and chronic myelomonocytic leukemia, is represented. All these informations were retrieved from National Center 
for Biotechnology Information, with the exception of RET kinase insert boundaries that were retrieved from Knowles et al. [17] and cadherin-like domain boundaries 
that were retrieved from Scott et al. [16].
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of the TK domain of RET (Fig. 1). Most frequent (85% of the cases) 

MEN2A mutations affect cysteine 634 (in exon 11) in the CRD; less 

commonly, MEN2A is caused by mutations of cysteines C609, C611, 

C618, C620 (in exon 10), or C630 (in exon 11) [19]. Other rare single 

or double mutations, small insertions or deletions, have been de-

scribed in MEN2A cases [19]. FMTC mutations are evenly distrib-

uted among the various cysteines of CRD [19]. FMTC can be also 

associated to mutations of the RET-TK (E768D, L790F, Y791F, V804L, 

V804M, and S891A) (Fig. 1). MEN2B mutation is caused in most  

(> 97%) of the cases by M918T mutation in RET-TK (exon 16); 

more rarely (2%), MEN2B patients harbor the A883F substitution 

(exon 15), or double mutations (Fig. 1) [19]. Importantly, RET muta-

tions (mainly M918T) occur at the somatic level in about half spo-

radic MTC.

MTC-associated RET mutations have a gain-of-function effect 

and convert RET into an oncogene. Extracellular cysteine RET mu-

tants form covalent dimers stabilized by disulfide-bonds and dis-

play growth factor independent kinase activity [26]. In unstimu-

lated conditions, the RET-TK adopts a trans-inhibited head-to-tail 

inactive dimer conformation in which the substrate-binding site of 

each monomer is occluded by the contralateral one [17]. Some mu-

tations targeting the TK domain (most notably M918T) hit trans-in-

hibited dimer contact points and may therefore destabilize this in-

active dimer conformation and activate RET [17]. Moreover, methio-

nine 918 localizes in the P + 1 kinase loop, a site that is involved in 

substrate binding. Accordingly, its replacement by a threonine resi-

due modifies RET signaling specificity [26,27].

RET REARRANGEMENTS IN CANCER 

At least three types of human cancer (papillary thyroid carci-

noma [PTC], lung adenocarcinoma, and chronic myelomonocytic 

leukemia [CMML]) feature genomic rearrangements leading to the 

recombination of the RET-TK domain to heterologous proteins. 

Breakpoint in RET is virtually always in intron 11, so that RET exon 

12 (encoding the N-ter of the RET-TK) is fused to the 5’-end of het-

erologous genes (Fig. 1). Fusion to heterologous proteins contain-

ing protein homodimerization motives results in constitutive RET 

kinase dimerization, growth factor independent activation, and 

signalling. Furthermore, replacement of the RET transcriptional 

promoter with those of the RET fusion partners likely de-regulates 

RET expression. The expression of a constitutively dimerized and 

active RET kinase leads to chronic exposure of cancer cells to the 

activation of intracellular signalling pathways, such as the RAS-RAF-

MAPK, that are activated by RET [18]. Intriguingly, this pathway in-

cludes RAS and BRAF that are very commonly mutated in the same 

cancer types in which RET is involved [4,28].

RET gene rearrangements were initially discovered in PTC [29]. 

PTC arises from follicular thyroid cells and is the most prevalent 

thyroid cancer type [28]. In PTC, chromosomal aberrations, most 

commonly a paracentric inversion of the long arm of chromosome 

10, cause the illegitimate recombination of the RET-TK (from exon 

12 to the 3 -́end) to the promoter sequence and 5́ -terminal exons 

of heterologous genes [28]. Most common RET/PTC rearrangements 

(90% of the cases) are RET/PTC1 (CCDC6-RET) and RET/PTC3 

(NCOA4-RET) [30,31]. RET/PTC3 is particularly frequent in PTC 

consequent to the Chernobyl disaster and in young patients [28]. 

Close proximity of the fusion partners in thyrocyte chromatin may 

favour their recombination [32,33]. RET/PTC prevalence (average 

25% of the cases) varies considerably in different patient series [28]. 

An important factor for this variability is methodology used for the 

detection [34].

More recently, RET has been demonstrated to play an important 

role also in a subset of NSCLC cases, in particular in lung adenocar-

cinoma. In about 1% NSCLC, inversions of chromosome 10 cause 

the fusion of the RET-TK domain to different 5́ -terminal exons (15, 

16, 22, 23, or 24) of KIF5B (kinesin family member 5B) gene [35-

37]. The RET/PTC1 (CCDC6-RET chimera) oncogene has been 

found in one lung adenocarcinoma sample [38]. As in the case of 

RET/PTC, also KIF5B-RET fusion proteins likely form active ho-

modimers through the coiled-coil domain present in the NH2-ter 

portion of KIF5B. It is important to note that lung adenocarcinoma 

is commonly associated to mutations targeting also RTKs other 

than RET, such as EGFR, ROS1, and ALK [4]. Mutations in EGFR, 

ROS1, ALK, and RET are mutually exclusive.

CMML is a neoplastic myeloid disorder [39]. Very recently, gene 

rearrangements causing the fusion of the RET-encoding TK domain 

(from exon 12) in one case to the 5́ -terminal four exons of break-

point cluster region (BCR) and in another case to the 5́ -terminal 

12 exons of fibroblast growth factor receptor 1 oncogenic partner 

(FGFR1OP) genes have been described in CMML [40]. Prevalence 

of RET rearrangements in CMML is still unknown.

RET OVER-EXPRESSION IN CANCER

In some cancers, RET upregulation rather than structural altera-
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tion has been reported. This is worthmentioning in the case of 

breast and pancreatic adenocarcinoma. A positive correlation was 

demonstrated between RET over-expression and estrogen recep-

tor-positive breast carcinoma [41,42]. Importantly, RET inhibition 

restored a hormone-sensitive phenotype in anti-estrogen resistant 

breast cancer cells [43]. Furthermore, RET protein was overexpressed 

in pancreatic carcinoma and involved in neural invasion of pancre-

atic cancer cells [44,45].

RET AS A TUMOR SUPPRESSOR

In contrast to its well-established role as an oncogene for several 

cancer types, RET has been recently proposed to play tumor sup-

pressor roles in colorectal cancer (CRC) and pituitary adenoma [46, 

47]. Such tumor suppressor role might be functionally linked to a 

pro-apoptotic role exerted by RET by behaving as a “dependence” 

receptor [48]. Dependence receptors display pro-apoptotic activity 

when not bound to cognate growth factor; in the case of RET, this 

leads to caspase-3-mediated cleavage of its cytosolic portion (after 

aspartic acid residues 707 and 1017) which, in turn, releases a cyto-

solic peptide (aa 708-1016) that is able to induce cell death [48]. 

Thus, loss-of-function of RET may abrogate this effect and foster 

tumor development.

In CRC, RET promoter methylation commonly silenced RET ex-

pression [47]. Moreover, in rare CRC samples, somatic mutations 

(V145G, R360W, and G593E) in RET extracellular domain impaired 

RET-mediated apoptosis of colon epithelial cells; thus, either RET 

downregulation or mutations causing loss of RET-mediated apop-

tosis may be selected during CRC formation [47].

Similarly, RET was expressed in somatotroph-derived pituitary 

adenomas, where it acted as a two-sided tumor regulator. When 

stimulated by GDNF, it behaved as as an oncogene able to activate 

intracellular signaling and cell survival. Instead, in the absence of 

GDNF, RET behaved as a tumor suppressor; caspase-mediated RET 

processing induced Pit-1 expression, that, in turn, caused p19Arf 

and p53 upregulation and apoptosis [46,49].

RET KINASE INHIBITORS FOR CANCER TREATMENT

The advent of small-molecule drugs and monoclonal antibodies 

made RTK targeting a feasible cancer therapeutic strategy [2]. Most 

RTK-directed small-molecule drugs are PKIs that obstruct kinase 

activity by binding to the ATP pocket of the kinase in competition 

with cellular ATP [2,3]. Prototypic examples of anti-neoplastic PKIs 

are imatinib, an inhibitor of ABL, KIT and platelet-derived growth 

factor receptor (PDGFR), in BCR-ABL-positive chronic myeloge-

nous leukemia and KIT or PDGFR-α mutant GISTs and EGFR-di-

rected inhibitors (gefitinib and erlotinib) for EGFR mutant lung ad-

enocarcinoma [4,50].

Several small-molecules have been identified at the preclinical 

level to target cancer cells showing increased RET activity [51-53]. 

These agents are multitargeted and able to inhibit several kinases 

besides RET. Vandetanib (ZD6474) is an anilinoquinazoline that 

docks in the ATP-binding pocket of the RET kinase and inhibits 

RET kinase with an inhibitory concentration 50 of 100-130 nM [17, 

54]. Some RET mutations, like V804M/L, and Y806C cause resis-

tance to [55,56]. Other compounds with anti-RET activity inlcude 

sorafenib, sunitinib, lenvatinib (E7080), and cabozantinib (XL-184) 

[57-60]. Some of them already entered clinical experimentation [61-

63]. These compounds share with vandetanib the capability of tar-

geting vascular endothelial growth factor receptors (VEGFR2/KDR; 

VEGFR3/Flt-4, VEGFR1/Flt-1) [64,65]. In addition, vandetanib tar-

gets the EGFR [66]. Based on the results of the ZETA trial, vande-

tanib has been recently registered for locally advanced or metastatic 

MTC [62] and may represent a promising agent for other RET-driven 

cancers.

As most cancers are the result of a number of mutations and fea-

ture multiple altered signaling pathways, it may be anticipated that 

PKIs able to target multiple kinases or a rational combination of 

them will be more clinically effective than agents blocking a single 

kinase. Multi-targeting or combination therapies may also attenu-

ate resistance formation [67]. By using a chemical genetic approach 

and a Drosophila model of MEN2 new PKIs able to inhibit simulta-

neously RET, RAF, SRC, and S6K have shown increased potency 

and reduced toxicity [68].

CONCLUSIONS

After about three decades since its discovery [8], RET has raised 

a great interest as a gene involved in human developmental dis-

eases as well as epithelial, neuroendocrine and hematological can-

cers. This knowledge has been already transferred to the bed of 

patients, as illustrated by RET genotyping to identify MEN2 carriers 

[69]. Moreover, this knowledge has also led to the use of RET-di-

rected therapeutics for the treatment of thyroid cancer.
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