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ABSTRACT Twitter is currently one of the most popular platforms for disseminating information about
events happening around the world. Especially but not only for emergency events, it is crucial to know when
and where the events are taking place. Unfortunately, identifying the geo-location of an event discussed in
Twitter is a very challenging task mainly due to the brevity of the messages (i.e., tweets) and their subjective
nature. In the literature, some efforts have been made to address this task, but they are characterized by
substantial limitations such as the use of exclusively text analysis techniques, or the need for keywords
or possible candidate locations. This paper proposes a new process for automatic event geo-localization
which relies on both textual and spatial/temporal use of content posted on Twitter without using some prior
knowledge about the event to be located. As shown by experimental results, our proposal achieves a good
accuracy rate and outperforms two well-known baseline approaches related to the geo-location of events in
Twitter.

INDEX TERMS Big data, data-mining, event-localization, Twitter.

I. INTRODUCTION
Microblogging is a broadcast medium that allows users to
create small digital content such as short texts, links, images,
or videos and share it with an online audience. Although this
communication medium is relatively new with respect to tra-
ditional media, it has gained increased attention among online
users thanks to its immediacy and portability. Indeed, online
users can instantly respond and spread information by using
a variety of computing devices, including smartphones and
tablets. Among the existing microblogging services, Twitter
is currently the most popular one with 330 million monthly
active users as of the fourth quarter of 2017. In particular,
Twitter enables users to post text messages, known as tweets,
no longer than 280-characters (until November 2017, this
limit was 140-characters) into a digital space, known as the
Twittersphere [1]. People use Twitter to express their feel-
ings, thoughts, and comments about an event that they have
witnessed or heard about [2]. In several studies, an event
is defined as a unique thing that happens at a specific time
[3], attracting people’s attention, thus generating a mes-
sage traffic [2]. Therefore, monitoring and analyzing Twitter
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streams can enable individuals, corporations, and govern-
ment organizations to stay informed of ‘‘what is happening
now’’ [4]. Hence, there is a fervent field of research aimed
at developing event detection tools from Twitter streams.
However, in several scenarios, it would be useful to enrich
the information ‘‘what is happening now’’ with the infor-
mation ‘‘where it is happening’’. As a consequence, in this
work, an event is defined as a unique thing that happens
at a specific time and place. Unfortunately, identifying the
location where events are taking place is one of the biggest
challenges in this new field of research. The complexity of
event geo-localization is related to a set of factors which
include: a) not all tweets written during the discussion of an
event contain information about the location of that event; b)
only a very small part of the tweets (about 2% of the posted
tweets [5]) are geo-located, indeed, not necessarily a user
in describing an event must also indicate the place where
it occurred; c) the information contained in the tweets may
be inconsistent (e.g., inaccurate, badly written, ambiguous).
Because of its underlying complexity, in the literature, only
few efforts, characterized by crucial limitations, have been
carried out to address the geo-localization problem. The main
limitations of these approaches can be resumed in: i) using
keywords that reduce the space of the search; ii) relying
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on information often unknown such as a set of candidate
locations; iii) getting locations through an exclusively textual
analysis of the tweets. Starting from these considerations,
this work proposes a new approach to geo-localize an event
discussed in Twitter which relies on both textual and spa-
tial/temporal use of content posted on Twitter without using
some prior knowledge about the event to be located. Broadly,
the proposed process exploits 1) text analysis techniques and
clustering for identifying tweets related to the same event;
2) a time frequency analysis to identify the most significant
tweets related to a given event 3) data cleaning techniques
based on vocabularies and Google Maps API for defining the
area in which to geo-localize an event.

The proposed approach can be used to identify places in
the world where events such as concerts, festivals, sports and
disasters have been occurring. Hence, no limitation on the
space window or the kind of event is considered. However,
it is worth noting that the proposed approach is an offline
method to extract knowledge. Hence, it starts after collecting
a set of tweets in an any time period of interest and achieves
the information about the localization of the events in the
considered time period. Therefore, it is fair to say that the
proposed approach is not suitable to be used in situations
where real-time features are required such as identification
of disaster locations for supporting emergency management.

In order to evaluate the proposed process, three datasets
were collected, respectively, in three different days between
April 17 and June 6, 2016. As shown by the results of our
experiments, the proposed process successfully geo-locates
approximately 80% of events. This result shows the suitabil-
ity of our proposal in the automatic geo-localization of events
in Twitter.

The remaining of the paper is as follows. Section II dis-
cusses state-of-the-art approaches in the literature. Section III
describes our proposal to geo-locate events in Twitter. The
settings and results of the carried out experiments are reported
in Section IV. Conclusion and future work are outlined in
Section V.

II. RELATED WORK
In the literature, several works have been developed to man-
age Twitter data [6], [7], but the most part of them focuses
on solving the event detection problem [1], [4], [8]–[11] or
the geo-localization of users [12]–[18], whereas, to the best
of our knowledge, only recently researches are devoted to
geo-locate Twitter events [2].

The first efforts in this field are devoted to geo-localize
emergency events [19]. For example, Ao et al. [20] propose
a system to estimate the location of emergency events from
Twitter-like data captured from SinaWeibo, the most popular
microblogging service in China. The system takes in input
a keyword to characterize an event such as an earthquake
or a tsunami and computes the location of this event by
using information about the content of weibos, the Global
Positioning System (GPS) location of a weibo and the reg-
istration location of the user who has written the weibo.

Also Giridhar et al. [21] propose a system to localize a
Twitter event starting from a keyword for the event given
by the user. In detail, this system identifies distinct event
signatures in the blogosphere, clusters microblogs based on
events they describe, and analyzes the resulting clusters to
extract the locations. This information is then translated using
the Google Maps API for geo-location, offering a real-time
view of ongoing events on a map. Both the systems presented
in [20] and [21] surely share with our approach the final goal
of computing the location of an event, but they are charac-
terized by a different starting point. Indeed, these systems
require the user to specify a keyword, i.e., the topic of the
event to be geo-located. However, this approach can reduce
the search space by removing useful information to better
geo-locate the event. On the contrary, our method is able to
geo-locate an event by considering all the related tweets and
without the need to specify a keyword or topic.

Among the other literature approaches, the work by
Ozdikis et al. [22] deserves to be discussed. This work applies
for the first time the Demspter-Shafer Theory (DST) for this
problem. In detail, given a set of tweets and a set of cities,
the proposed approach aims to extract evidence in tweets
and generate belief intervals for cities where the event might
have happened. However, also for this system, the starting
point is very different from our approach. Indeed, this system
works by having in input a set of possible cities, instead,
our approach computes the location of a Twitter event from
scratch. Another interesting work [23] presents the tool Twit-
terTagger. This tool is capable of geo-tagging tweets by using
their textual content. In particular, the tool tags the content of
each tweet and, then performs two disambiguations in order
to clarify the connotations of the noun phrases in each tweet
and to associate correct locations with each tweet. The final
goal of this approach is to show relevant tweets to a user based
on his/her physical location. Even if this approach is related
to geo-location in Twitter, it is characterized by a different
goal with respect to our method. Indeed, TwitterTagger tries
to geo-tag each single tweet to detect which are those relevant
for a user, instead, our approach is devoted to geo-localize
a set of related tweets in order to provide users with the
geo-location of events discussed in Twitter.

Finally, Khanwalkar et al. [24] present a content-
based, geo-location detection approach that is capable of
geo-locating multilingual tweets, within a time window,
by exclusively using the textual content of the considered
tweets. The choice of using a time window is based on the
intuition that Twitter users post tweets on specific trend-
ing topics and move on to other topics within a certain
temporal window. Initially, the system converts the set of
tweets captured during a time-delineated window into a
set of documents, where each document contains multiple
tweet posts from a specific user. Then, the system manages
the multilingual tweets by translating all tweets in English.
Finally, the system uses a named entity detection algorithm
and k-means clustering to detect a geographic location for
each document. Therefore, the system identifies the location
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FIGURE 1. The proposed process to geo-locate events in Twitter.

related to a set of tweets contained in a document rather than
the location of an event. Indeed, there is not a system compo-
nent devoted to guarantee that the set of tweets in a document
represents an event or that two documents represent the same
event. Instead, our approach identifies the location of an event
by clustering different tweets that share the same content.

Starting from this discussion, the approach proposed
in this work has the important benefit of performing the
geo-localization of a set of related tweets characterizing an
event without using keywords and possible candidate loca-
tions.

III. OUR PROPOSAL TO THE GEO-LOCATION
OF EVENTS IN TWITTER
The goal of our proposal is to compute the geo-location
of the events discussed in Twitter. The proposed approach
detects events in Twitter by clustering individual tweets and
computes the geo-location of these events by analyzing the
obtained clusters by means of the Google Maps geo-location
services.

The main process underlying our approach is composed
of seven phases (see Fig. 1): tweet capturing, noise reduc-
tion, tweet indexing, clustering, key tweet selection, candidate
location detection and target area computation. Hereafter,
details about each one of these phases will be discussed.

A. TWEET CAPTURING
The tweet capturing phase works by using the Streaming
API,1 provided by Twitter. In particular, this API allows to
obtain contents of Twitter under the format of a streaming in
real time and with a low latency. The request and the transfer
of contents is through an HTTP persistent connection, whilst
contents are structured by using the format JavaScript Object
Notation (JSON).2 For each tweet the following information
is extracted:

1https://developer.twitter.com/en/docs/tutorials/consuming-streaming-
data

2https://www.json.org

• id: an integer number representing a unique identifier for
the tweet;

• text: the text of the tweet in UTF-8 encoding;
• iso_language_code: the language of the tweet in stan-
dard ISO 639-1;

• created_at: Coordinated Universal Time (UTC) when
the tweet was created;

• place.name: the name of a location which the tweet is
associated to by the user when the tweet is posted. Being
set by the user, this attribute is not always present.

It is worth noting that the proposed approach does not exploit
all geo-spatial tweet metadata. In particular, as well as the
tweet location (the attribute place.name), geo-located infor-
mation is also contained in the user’s location attribute (set
by users during the creation of their profile). Some works
[20], [22] take into account the user’s location due to the
assumption that users tend to post tweets about events near
to their location [2]. However, to be honest, users can dis-
cuss about everything located everywhere, therefore, user’s
location could be misleading in the event location detec-
tion. Hence, the proposed approach does not exploit this
geo-spatial information.

B. NOISE REDUCTION
In order to reduce the amount of data and improve the per-
formance, the goal of the noise reduction phase is to remove
tweets that can provide wrong information. In particular,
the factors taken into account to remove these tweets are:

• the number of words: the tweets composed of only one
word are deleted because it is highly unlikely that they
can contain useful information;

• the retweets: the retweets are deleted because they do
not add further information with respect to those already
posted by other users. Retweets are easily identifiable
because they start with the word ‘‘RT’’;

• Public messages: public messages for a specific user are
deleted because they are related to personal conversa-
tions and, as a consequence, it is highly unlikely that they
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can contain information about an event. These tweets
are easily recognizable because they start with a Twitter
mention.

C. TWEET INDEXING
This phase performs the indexing of the tweets provided as
output by the noise reduction phase. The indexing procedure
consists of representing each tweet in the Vector SpaceModel
(VSM) [25]. Before indexing tweets, they are undergone
to a normalization procedure aimed at cleaning them from
non-standard words written both intentionally and uninten-
tionally by people. Hereafter, details about the normalization
and indexing procedures are given.

1) NORMALIZATION PROCEDURE
This procedure is performed during the tweet indexing phase.
It consists of the following steps:

• Removal of emojis, numbers and other non-alphanumeric
symbols: the emojis are non-alphanumeric symbols (i.e.,
not composed of numbers and letters) that are used in
tweets (see an example in Fig. 2). These are different
smiles and symbols that allow users to give a tone
and emotion to the messages. Although the emojis
can be an important element to describe emotions and
moods about personal events and events featured on
Twitter [26], we remove them together with numbers and
non-alphanumeric symbols since they cannot contain
useful information for the purpose of detecting and
geo-localizing events.

• Removal of the stop words: the stop words are the most
common words in a language and we remove them
because of their poor influence in identifying a docu-
ment uniquely. Each language is characterized by a list
of different stop words including articles, conjunctions,
prepositions and auxiliary verbs.

• Removal of hyper-textual links: each link introduced in
a Twitter text message is automatically converted in a
special format. Thus, they can be easily identified and
removed since they cannot contain useful information
for detecting and geo-localizing events.

• Removal of mentions: using mentions is a method to
draw attention of a specific user to a message. Amention
is characterized by the following format: the symbol @
followed by the user name. Therefore, a mention is not
useful for detecting and geo-localizing events and, for
this reason, we remove it.

• Removal of two-characters words: it has been chosen
to remove these words because it is assumed that it is
highly unlikely that they contain useful information for
our purpose.

FIGURE 2. Some emojis in Twitter.

• White Space Strip: spaces in excess (i.e., spaces at the
beginning or the ending of the tweets or multiple spaces
among words) are removed.

• Case-folding: all the words have been converted in lower
case in order to facilitate their comparison.

• Stemming: a stemming process to reduce words to their
word stem, base or root form is used. This step is useful
to shorten the vocabulary space and, as a consequence,
drastically improve the indexing process. The used stem-
ming is a consolidated approach proposed by Porter [27]
in 1980. Fig. 3 shows an example for the used stemming
process.

FIGURE 3. An example of the used stemming process.

After the normalization procedure, the proposed process
performs the tokenization, i.e., the breaking up of the text of
the tweets into terms. This task is executed by locating word
boundaries delimited by white spaces. Once the texts of the
tweets are divided in terms, the tweet indexing phase includes
the indexing process discussed below.

2) INDEXING PROCESS
The indexing process consists of representing each tweet in
theVector SpaceModel (VSM), a feature space typically used
in the Information Retrieval (IR) field. In detail, each tweet is
stored as a vector of terms, each one characterized by aweight
representing its importance in the tweet and within the whole
set of tweets. Formally,

Edj = (w1j,w2j, . . . ,wkj) (1)

where Edj is the vector of the j-th tweet, wij is the weight
of the i-th term of the j-th tweet, and k is the number of
the terms in the j-th tweet. The weight of a term in a tweet
vector can be determined in many ways. We use one of the
most typical methods in IR that has been demonstrated to be
very efficient [28], the Term Frequency - Inverse Document
Frequency (TF-IDF) method. This technique allows the com-
putation of the weight of a term by using two factors: how
often the term i occurs in the tweet j and how often it occurs
in the whole set of tweets. Formally, the weight of a term i in
tweet j is:

wij = tfij × idfi (2)
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where tfij is computed by using the term frequency fij (i.e.,
the number of times that the term i appears in tweet j) as
follows:

tfij =

{
1+ log(fij) if fij > 0
0 if fij = 0

(3)

and idfi stands for the so-called inverse document frequency
and is computed as follows:

idfi = 1+ log(N/dfi) (4)

where N is the number of tweets and dfi is the number
of tweets that contain the term i. Intuitively, the method
assigns high weights to terms that appear frequently in a
small number of tweets in the set (because they have a strong
discriminant power) and low weights to terms that appear
seldom in a tweet or frequently in the set of tweets (because
in this case the terms are not very useful for distinguishing a
tweet from others).

Once the term weights are determined, it is necessary
to select a ranking function to measure similarity between
each couple of tweets. A common similarity measure in IR
successfully applied together with TF-IDF method is known
as the cosine similarity measure. This measure is based on
the computation of the angle between two tweet vectors. The
cosine of 0 is 1, whereas, the cosine of 90 is 0. Since the
maximum angle between two tweet vectors is 90, the cosine
similarity measure ranges from 0 to 1. In detail, if the two
vectors are not so similar, the angle between them is very
large and the cosine tends to 0; if the vectors are very similar,
the angle between them is small and the cosine tends to 1.
Formally, the cosine similarity measure simcos between two
tweet vectors Ed1 and Ed2 is computed as follows:

simcos( Ed1, Ed2) =
Ed1 · Ed2

|| Ed1|| · || Ed2||
. (5)

Starting from the cosine similarity measure, it is possible to
define also the cosine dissimilarity measure discos between
two tweet vectors Ed1 and Ed2 as follows:

discos( Ed1, Ed2) = 1− simcos( Ed1, Ed2) (6)

that will be used in the clustering process described in the
next section.

D. CLUSTERING
The clustering phase is devoted to divide the set of tweets in
groups, where each one of them contains the tweets related to
a single Twitter event. In order to achieve this aim, the clus-
tering process executes the Partition Around Medoids (PAM)
method, a partitional algorithm proposed by Leonard Kauf-
man and Peter J. Rousseeuw in 1987 [29]. This algorithm is
similar to K-means, since both the algorithms separate data
into k clusters by trying to minimize the distance between
the points associated with a cluster and a point designated
as the center of that cluster. However, they differ for the
choice of the center of the clusters. Indeed, K-means uses

centroids, whereas, PAM works with medoids. A medoid
is the most centrally located point in the cluster, whereas,
a centroid is a point artificially created by computing the
mean distance between points in the cluster. The choice of
the PAM algorithm is motivated by the fact that PAM is more
robust than K-means since the exploitation of medoids is
less affected than centroids by the presence of outliers. The
PAM algorithm works as follows. Initially, it selects from the
dataset an initial set of k medoids arbitrarily. After finding k
medoids, k clusters are constructed by assigning each point
to the nearest medoid. The goal is to find k medoids which
minimize the sum of the dissimilarities of the points to their
closest representative medoids. Then, it replaces one of the
medoids with another point in the dataset if this minimizes
further the sum of the dissimilarities to all the points in the
cluster. This step is repeated until no change in medoids
will decrease the sum of the dissimilarities. In our context,
points of the dataset will be tweets. Therefore, our clustering
phase uses the PAM algorithm with the following inputs
1) the dataset of n tweets to be separated, 2) the cosine
dissimilarity matrix computed during the indexing process
phase and 3) the value k representing the number of clusters to
obtain (i.e., the number of Twitter events present in the set of
tweets).

In order to obtain the best value for k , the proposed process
executes the silhouette method [30]. Formally, the clustering
process computes the PAM algorithm for different values
of k , with k ≥ 3, by obtaining k different separations of the
set of the tweets. Then, it computes the silhouette value for
each one of the k separations silk as follows:

silk =

∑n
i=1 si,k
n

(7)

where n is the number of the tweets and si,k is the silhouette
coefficient of the i-th tweet in the k-th separation. In turn,
the value si,k is obtained as follows:

si,k =
bi,k − ai,k

max(bi,k , ai,k )
(8)

where bi,k is the lowest average dissimilarity of the i-th tweet
of the k-th separation to any other cluster present in the
separation but not containing that tweet, whereas, ai,k is the
average dissimilarity of the i-th tweet of the k-th separation
with all other tweets within the same cluster. After computing
the values silk for each one of the k separations, the clustering
process selects the separation with the highest value. It is
worth noting that, during the setting of the different values
for k , the clustering process leaves out the base case k = 2.
This choice depends on the consideration that it is highly
unlikely that only two events are discussed in Twitter at the
same time. Moreover, it is worth noting that the exploitation
of the silhouette method allows clustering tweets collected
during time windows of any length. Indeed, the silhouette
method allows dividing the tweets in the most suitable num-
ber of events regardless of the number of tweets.
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E. KEY-TWEET SELECTION
After computing the clustering of the set of tweets collected
in the time window of interest, each cluster can contain a
large number of tweets identifying an event. In this amount
of tweets our approach must search information useful to
obtain the geo-location of that event. In order to facilitate
this task, the key tweet selection phase tries to reduce the
amount of tweets related to an event by selecting the most
representative ones contained in the corresponding cluster.
The selection of the key tweets is based on an important
observation: when an event occurs, the number of tweets
widely increases [1]. Therefore, the tweets contained around
a temporal peak of the Twitter activity can be considered the
most relevant for that event. Starting from this consideration,
the key tweet selection phase sorts the tweets contained in
a cluster for tweet-arrival time and, then, selects the tweets
contained in the temporal peak area as key tweets (see Fig. 4).
In detail, the proposed process identifies the temporal peak
area associated with a cluster of tweets by means of the
exploitation of the Offline Peak-Finding Algorithm (OPFA)
proposed in [31]. This algorithm bins the tweets belonging to
a cluster into a histogram by time (in our case, by minutes).
Then, the OPFA algorithm calculates a historically weighted
running average of tweet rate and identifies rates that are sig-
nificantly higher than the mean tweet rate [31]. For these rate
spikes, the OPFA algorithm finds the local maximum of tweet
rate and identifies a window surrounding the local maximum.
The tweets contained in this window are considered to be the
most representative ones.

FIGURE 4. An example of the temporal peaks identified by the OPFA
algorithm.

F. CANDIDATE LOCATION COMPUTATION
Starting from the most important tweets related to each event,
during the candidate location computation phase, the pro-
posed process extracts a set of candidate locations for the
event. In detail, during this phase, a textual analysis of the key
tweets is performed by removing all terms that are not related
to a location with high probability. In order to achieve this
aim, the tweet terms are compared with the words contained
in a set of dictionaries: if the tweet term is found in one of
the used dictionaries, it is removed. The used dictionaries

are: 1) the dictionary of the language of the tweet3; 2) the
English dictionary4 because the use of anglicisms is a com-
mon routine; 3) a dictionary of the Internet slang5 containing
the most common abbreviations used in the Internet. The
tweet terms that are not filtered are considered to be names for
candidate locations. Moreover, since the name of a location
could be composed of more than one word, other candidate
location names are created by combining the unfiltered tweet
terms that are consecutive. The set of candidate location
names obtained by the textual analysis of the key tweets
is enriched with the location names indicated by the users
during the publication of the key tweets (i.e., JSON field
place.name). However, unfortunately, this information that is
very useful is seldom provided by the users, as highlighted
in [32]. Therefore, in the most part of the cases, the candidate
location names will be originated only by the textual analysis
of the key tweets.

Once computed the set of candidate location names, it uses
the Google Maps API6 to verify whether the candidate loca-
tion names correspond to effective locations. In particular, for
each candidate location name, the Google Maps API verifies
whether there exists an exact, partial or null match with real
locations. In this way, only the geographic coordinates of
the locations with an exact match with one of the candidate
location names are stored.

G. TARGET AREA COMPUTATION
Once the candidate location computation phase is ended,
the resulting set of locations (with their geographic coordi-
nates) is given in input to the target area computation phase.
During this phase, these locations are analyzed to identify the
geographic area where the event is occurred (i.e., the event
area). In order to achieve its goal, the proposed process
performs a modified version of the Kruskal algorithm [33]
for the minimum spanning tree problem. Briefly, given an
indirect, connected andweighed graph, the Kruskal algorithm
finds a minimum spanning tree, i.e., a subset of the edges of
a connected, edge-weighted undirected graph that connects
all the vertices together, without any cycle and with the
minimum possible total edge weight.

In detail, during the candidate location computation phase
the Kruskal algorithm is applied by considering the avail-
able geographic locations as vertices and the edges between
the geographic locations as arcs. The trigonometric formula
of Haversine [34] is used to assign a weight to each arc.
In particular, it calculates the airline distance between two
points on the Earth starting from their latitude and longitude.
In order to remove outlier locations and obtain a specific
target geographic area, the arcs with a weight greater than
the average weight computed by considering all arcs, are

3https://github.com/michmech/lemmatization-
lists/blob/master/lemmatization-it.txt

4https://github.com/michmech/lemmatization-
lists/blob/master/lemmatization-en.txt

5https://www.urbandictionary.com/
6https://cloud.google.com/maps-platform/
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deleted from the graph. The Kruskal algorithm initially sorts
the arcs in ascending order according to their weight. Then,
it analyzes them sequentially and inserts an arc into the final
solution if it does not form cycles with previously selected
arcs. The original Kruskal algorithm ends when the number
of arcs included in the final solution is equal to the num-
ber of vertices minus one. However, during the target area
computation phase, the executed Kruskal algorithm uses a
different termination criterion. In detail, it stops the execution
as soon as the final solution represents a tree with a number
of vertices greater than a given percentage σ of the number of
vertices, with σ a threshold chosen by the user. All vertices,
i.e., the geographic locations, composing the final solution
define the target geographic area where the event occurred.
In order to identify this area, the Rectangle function in the
Google Maps Javascript API7 is used. This function allows
one to define a rectangle on a map that includes all the
coordinates given in input. An example of the geographic area
defined by the function Rectangle is shown in Fig. 5. The
red markers represent the vertices/locations inserted in the
final solution computed by the Kruskal algorithm, whereas,
the orange markers represent locations that are not inserted in
the final solution and, as a consequence, they are considered
outliers. The red rectangle represents the target geographic
area computed by our approach by taking into account the
red markers.

FIGURE 5. An example of a geographical area determined by red markers
and the orange outlier markers.

IV. EXPERIMENTS AND RESULTS
This section is devoted to study the performance of the pro-
posed process by means of a set of preliminary experiments.

A. DATASETS
The experiments involve three datasets collected by capturing
Italian tweets in three time windows from April to June 2016.
The capturing procedure has exploited the Phirehose library,8

7https://developers.google.com/maps/documentation/javascript/tutorial
8https://github.com/fennb/phirehose/wiki/Introduction

i.e., an open-source PHP implementation of the Twitter
Stream API requirements. As other Twitter Stream APIs,
Phirehose library enables to get a small amount, i.e. less than
1%, out of the total flow of tweets. The extraction of Italian
tweets has been performed off-line in order to avoid to lose
further tweets because of data processing. Table 1 shows the
features of these datasets including day and time in which the
datasets have been captured and the number of tweets that
they contain. These datasets have been analyzed manually
in order to obtain the ground truth data, i.e., the real events
and the corresponding geo-locations. In detail, the collected
tweets in each dataset have been analysed by two annotators.
Each annotator gave the own list of events with the corre-
sponding geo-locations for each set of tweets contained in the
collected datasets. Annotators selected geo-locations accord-
ing to the common geographic taxonomy such as city, country
and so on since it is difficult for humans to produce a geospa-
tial area outlined by coordinates. Starting from the two lists
of events, the ground truth has been built by considering only
the events identified by both annotators whose the identified
geo-locationswere the same. It is worth noting that annotators
were aware of that an event is defined as a unique thing that
happens at a specific time and place. Therefore, they left out
the tweets that were not associated to a place such as those
that describe user emotional states and those associated to
more places such as, for instance, the women’s day. As a
consequence, these tweets were removed also by the anal-
ysis performed by the automatic proposed approach. Table 2
reports the events identified in each dataset together with their
description and their geo-locations.

TABLE 1. Features related to the collected datasets of tweets.

TABLE 2. Ground truth manually obtained starting from collected
datasets.

B. EXPERIMENT CONFIGURATION
All phases of the proposed process have been implemented in
PHP9 except for the tweet indexing phase and the clustering
process that have been developed with the R10 programming
language. The proposed process has been executed on a lap-
top Macbook Pro 2010 with 4Gb of RAM and a processor
Intel Core duo 2. As described in the previous section, our

9http://www.php.net
10https://www.r-project.org
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FIGURE 6. In each figure, there is the geographic area computed by our approach in red and the effective geo-location of the event in blue.

approach requires only the specification of a value of the
threshold σ . In these preliminary experiments, this value σ
has been set to 20% experimentally by using toy datasets.

In order to evaluate our approach, we consider a hit when
the computed geographic area contains the effective loca-
tion of the event. In order to deepen the evaluation of our
approach, similarly to other works [17], [24], in the case of
a hit, we use an error metric to evaluate the quality of the
computed geographic area. More in detail, we use the maxi-
mum distance of error, denoted asMaxDist , which represents
the airline distance in kilometers between the point where
the event is effectively located and the farthest point in the
geographic area computed by our method. Formally, let p(E)
be the point where the event E is effectively located and
area(E) = {p1, p2, . . . , pn} the set of points of the perimeter
of the geographic area computed by our approach for the
event E , then the maximum distance of error for the event
E , MaxDist(E), is defined as follows:

MaxDist(E) = max
1≤j≤n

(dist(p(E), pj)) with pj ∈ area(E) (9)

where dist is a function which computes the airline distance
in kilometers between two points.

In order to further enrich the study of the performance of
our approach, we also consider the metric Accd . It represents

the accuracy of the proposed approach when the following
consideration is made: an event E is correctly identified if
MaxDist(E) is less than a certain value d . Formally,

Accd =
|{e|MaxDist(e) <= d}|

N
(10)

where N is the number of events. In our experimentation,
we use three values for d , i.e., 250, 500 and 750, similarly
to the work in [24].

C. RESULTS
Fig. 6 shows the geographic areas computed for each event
contained in the collected data, whereas, Table 3 shows the
performance of the proposed approach in terms of the metrics
described above.

TABLE 3. Evaluation of the performance of our approach (km stands for
kilometers).

By analysing the Table 3, it is possible to state that the
proposed process succeeds in the geo-localization of 4 out
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of 5 events. In particular, the location of the event E3 is
erroneously computed because the information about the real
location is not present in the content of tweets. Moreover,
it is not even present in the geo-located metadata attribute
place.name.

To deepen the evaluation, Table 4 shows the accuracy
Accd values. As shown in the Table, the proposed approach
achieves an accuracy of about 80% by considering an error
of 750 kilometers in the computation of the geographic area.
Since 750 kilometers can be considered a reasonable value
with respect to the earth surface, these preliminary experi-
ments highlight the suitability of the proposed approach in
geo-locating events discussed in Twitter.

TABLE 4. Performance in terms of accuracy in percentage.

TABLE 5. Evaluation of the performance of our approach with respect to
literature approaches (km stands for kilometers).

D. COMPARISON WITH LITERATURE APPROACHES
In this last subsection, we compare the results obtained using
the proposed approach with the results of two baseline meth-
ods existing in the literature in order to further show the
feasibility of our proposal. In particular, we consider the
following existing methods:
• Maximum Profile Frequency (ProFreq): this approach
consists of finding the frequencies of locations specified
in the profiles of the users that posted a tweet about an
event. The location mostly referred to in users’ profiles
is assigned as the event location. The implementation of
this method is inspired to the work of Giridhar et al. [35]
and it is already used as baseline in [36];

• Maximum Location Frequency (LocFreq): this approach
consists of finding the frequencies of locations spec-
ified by the users when they posted a tweet about
an event, namely the frequencies of the values of the
attribute place.name. The location value mostly spec-
ified is assigned as the event location. This method
is a variant of the baseline approach already used in
Sakaki et al. [37] where the mean of GPS coordinates
are considered. In this work, we use the values in the
attribute place.name being this attribute more typically
set by users rather than GPS coordinates.

By running themethods ProFreq and LocFreq, the obtained
location for the events is almost always the region area
‘‘Italy’’. Indeed, Italian users usually enter ‘‘Italy’’ for their
own locations during the registration procedure or for the
location in the place.name because they want to speed up the

writing of the tweets or they do not want to give informa-
tion about themselves. For this reason, with respect to our
approach, the two baseline methods obtain a hit also for the
event E3. On the other hand, themaxDist obtained by ProFreq
and LocFreq are always worse or equal than those obtained
by our approach. By speaking about the accuracy, as shown
in Table 6, our approach is characterized by 80% of accuracy
by considering 750 km for maxDist , whereas, ProFreq and
LocFreq methods are characterized by 60% of accuracy.

TABLE 6. Comparison with literature approaches in terms of accuracy in
percentage.

V. CONCLUSION
This paper proposes a new approach to geo-localize events
discussed in Twitter which relies on both textual and spa-
tial/temporal use of content posted on Twitter without using
some prior knowledge about the events to be located.
As shown by a set of experiments, the proposed approach
achieves an accuracy of 80% by considering a tolerable error
in the computation of the geographic areas. The proposed
approach outperforms two existing methods in terms of accu-
racy. In the future, we plan some improvements of the pro-
posed approach with respect to the following aspects:
• Removal of tweets starts from bots and spammers: the
approach could detect bots and spammers accounts and
then eliminate tweets published by them with the pur-
pose of reducing noise.

• Control and correction of the text: the approach could
consider the frequency of incorrect spelling in the
tweets.

• Normalization of hashtags: in the proposed approach
hashtags are simply treated as common words.
An improvement could perform an hashtag normaliza-
tion in order to segment these hashtags into more words.

• Scalability: by analysing the steps of our procedure,
the most computationally expensive phases are the clus-
tering procedure and the candidate location extraction
that includes a comparison with words contained in a
set of dictionaries. The computational effort of these
two steps could increase when the system will be put
in production (i.e., by considering a larger number of
tweets). To address this issue, emerging big-data frame-
works such as Apache Hadoop11 could be used.

• Sentiment analysis: a data source like the one provided
by Twitter, lends itself well to the application of sen-
timent analysis, i.e., applying techniques to identify
and evaluate subjective elements within a written text.
It could be interesting to use these techniques to identify
the users’ emotions and opinions with respect to an
event.

11https://www.ibm.com/analytics/hadoop
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