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Abstract This paper is devoted to calculating the
Cartesian stiffness matrix of a translational parallel
manipulator with elastic joints. The calculation takes into
account the contribution of the Jacobian variation because
of the change of manipulator configuration due to the
elasticity and it covers the entire theoretical workspace of
the manipulator. Three kineto-static adimensional indices
are proposed to measure the response of the manipulator
in terms of stiffness.

Keywords Stiffness Matrix, elastic joints, translational
parallel manipulators

1. Introduction

Stiffness is one of the most important properties of a
mechanism. Broadly speaking, the stiffness matrix maps the
applied loads with the displacements of the rigid bodies in static
conditions. As a result, stiffness clearly affects the accuracy
and repeatability of the location of the end-effector.
Stiffness depends on the manipulator configuration and on
the direction of the applied loads. In the literature, the

www.intechopen.com

methods of calculating stiffness can be classified as follows:

a) finite element analysis (FEA) b) matrix structural analysis

(MSA) and c¢) the virtual joint method (VJM).

a) The FEA method, extensively used in structural
mechanics, is reliable and accurate as the numerical
model can duplicate the entire mechanism faithfully
[1, 2]. Its accuracy is limited by the intrinsic
parameters of the discretization mesh. On account of
its reliability and accuracy, this method is used for
validating other stiffness analysis techniques [3, 4, 5]
and for comparative studies [6]. However, because of
the repeated re-meshing routines required to cover
the entire mechanism workspace, it has high
computational costs. Moreover, it does not establish
the analytical relationship between stiffness,
dimensions and the free shape of the mechanism.

b) The MSA method incorporates the main ideas of
FEA. The structural model of a mechanism is
obtained as a combination of beam elements and
nodes. Therefore, the MSA can be thought of as a
simplification of the FEA, as it brings about a
reduction of the computational expenses and, in
some cases, allows the analytical stiffness matrix to
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be obtained formally. A single element is represented
by the Euler-Bernoulli beam with a 12 x 12 stiffness
matrix. Much like FEA, the assembly of the stiffness
matrices produces the desired 6 x 6 matrix for the
whole mechanism. In [7], under the assumption that
the links are not subject to bending, this approach
was used for the calculation of the stiffness of a
Stewart platform. This approach was also used in [8,
9] and, recently, for the Delta-type mechanism [10].

¢) The V] method (lumped model method) is based on
the development of the standard rigid model to which
virtual joints (localized springs) are added, which
describe the elastic deformations of the mechanism
components (links, joints and actuators). This
approach was originally followed by Gosselin [11],
who calculated the stiffness by
considering the actuators one-dimensional linear
springs, the links rigid and the passive joints perfect
(standard calculation). The same author developed the
method by modelling the links” flexibility as lumped
linear/torsional springs connecting rigid bodies [12]. In
general,
modifications or simplifications of this method [13, 14,
15, 16, 17, 18]. In [19, 20, 21] a 6 degrees of freedom
(DOFs) lumped virtual spring is proposed to model
the link flexibility in order to consider the coupling
between the linear and rotational deflections.

mechanism

there are numerous works based on

In the literature pertaining to the stiffness matrix of
mechanisms there are also several papers whose main goal
was to inspect the mathematical nature, symmetry, positive-
definiteness, of the Cartesian stiffness. Griffis and Duffy [22],
Ciblak and Lipkin [23], among others, discussed the
asymmetric nature of the Cartesian stiffness matrix.
Howard et al. [24], Zefran and Kumar [25, 26] investigated
the symmetry of the Cartesian matrix and derived such a
matrix by a formulation based on Lie groups. These
researchers concluded that the Cartesian stiffness matrix of
the elastic structure coupling two rigid bodies is
asymmetric in general and becomes symmetric if the
connection is not subjected to any pre-loading. Chakarov
[27] studied the impedance control problems of
manipulators touching the environment and developed a
formulation of the Cartesian stiffness matrix without fully
explicating all its terms. More recently, the same author
developed the earlier work by Freeman et al. [28, 29, 30]
and focused his attention on the antagonistic stiffness of
redundantly actuated mechanisms [31]. Kévecses-Angeles
[32] and Quennouelle-Gosselin [33] discussed the Cartesian
stiffness matrix of the mechanisms in a detailed manner
and ascertained that the Cartesian stiffness matrix still
remains symmetric even when loading the end-effector.

Conversely, there are not many papers providing the
formulation of the mechanism stiffness matrix in the joint
space (a.k.a. Lagrangian) and the relationship with the
Cartesian matrix. In the cited work Kovecses-Angeles and
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previously Chen and Kao [34], the latter who dealt with
serial manipulators and considered only the actuated
joints elastic, work explicitly on this topic.

In this paper the formulation of the Cartesian stiffness
matrix proposed by the same author in [41] is applied to a
translational parallel mechanism (TPM) to calculate the
Cartesian stiffness matrix in the entire workspace. The
formulation is general, as it is based on the development
of the principle of virtual work and on the definition of
the Cartesian stiffness matrix. Besides, three kineto-static
indices are proposed and calculated in all points of the
workspace with the aim of measuring different aspects of
the stiffness property of the TPM.

2. Kinematic equations

The manipulator under study is a not-overconstrained
TPM [37, 38, 39], a variant of the 3 — RRPRR ! architecture.
Each leg is composed of the PU P R kinematic chain with
the P joints connected to the base along with

Leg3

Figure 1. The 1-PU P R manipulator (all the joints are elastic).

orthogonal directions. The manipulator is shown in
Figure 1. As proved in [40], to have zero angular velocity
of the end-effector (E.E., a.k.a. moving platform) the joint
variables of each leg has to guarantee the following
conditions:

7:=0, A =-0 i=1,2,3 (1)
Thus, the vector of the remaining joint variables can be
partitioned in a vector qof independent (Lagrangian)
coordinates and in a vector § of dependent (constrained)
coordinates. The number of independent coordinates is to
be equal to the number of the E.E. degrees of freedom
(DOFs). However, the choice of which joint variables to

L In this paper, R and P denote a revolute and prismatic
joint, respectively, whereas U denotes a universal joint.
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include in q and & is arbitrary:

q=( a 6 d; )T
‘5:(“2 0, dy a3 0y d; )T

2.1 Position Equations

These equations map the Lagrangian vector space into the
Cartesian one:

¥(x,q)=0 )

X = (xy z)T is the vector of the Cartesian coordinates
of the reference point P of the E.E. Equations (2) are scalar
equations obtained from the vector loop-equation
involving leg 1: OA; + A;B; + B;P - OP =0.

Y, =x—-a,+b,c,=0
V,=y—bps,+ds, =0
V,=z-dc, =0

With b, =|B, P|, ¢, =cos(z / 4), s, = sin(z / 4). cZand s/
indicate cos(£) and sin(Z), respectively. Time
derivative of the location equations leads easily to:
ov) ' ow

. . Ay - .

== Zg= = 3

X [6x] oq 1 JxJ4a=TJq ®)
with

1 0 0

J=|0 —dicy; —sp
0 —disy; ¢y

J is the Jacobian of the TPM.

2.2 Constraint Equations

These equations generate the subspace of the
configuration space of the TPM and can be expressed as:

®(q, &)=0 “

More explicitly they are the geometric loop conditions:

OA, + A;B; + BB, -OA, - A,B, =0
OA; + A;B; + BBy —OA; - A;B; =0

which lead to:

D =a;—bc, —dysp, =0
D, =—d;sy, +bs, —a, =0
@y =dicyy —dycp =0

Dy =disg + d35(93+7r/4) =0
D5 =dicy;—a;3=0
g =a;=b—ds(g , /4) =0
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Time derivative of the constraint equations leads to:

-1
. (oY . g
--|=| Z=q=-D:'D g=D 5
3 [&J 5q 4~ PePya=Pa ®)

Because of the intrinsic nature (multiple closed chains) of
parallel mechanisms, Dg and D& can be partitioned as:

Dq _ Dqlz
DqlS

D 0
D; _| e 3x3
0 D

3x3 &13
such that:
-1
D= _Dgiz _Dqlz
_D§13 _Dqlz
where:
1 0 0 0 dicy, sy,
Do =|0 —dicgr —Sg1 || Dyiz =0 ~disy ¢y
0 —dsy; ¢, 1 0 0

0 ~d3C(g,121a) ~S(0,42/4)
D1 0 0

0 dygy sp
D=1 0 0
0 —dysgy Cop

0 —~3S(g,inra)  (0,+714)

3. Cartesian stiffness matrix

The Cartesian stiffness matrix is defined as the linear
transformation between a variation of the force f applied
on the E.E. and a variation of x :

df

= (6)

Kc
K- can be expressed as follows.

Let’s consider the Principle of Virtual Work [42] which a
parallel constituted by
connected by elastic joints and subjected to
external force on the E.E., has to obey:

mechanism,

rigid bodies

flox - qu 5q—f{6E=0 7)
where f, andf, are the conservative forces exerted by
the springs (including the pre-loads) to obtain the virtual
displacements, dq and 8§, respectively:

T
f,= (kql(ql —4i0) k292 =42,) kyp3(93 =45, ))

T (8)
£ = (kil(fl —a1,) Kol _56\0))
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qi‘o (i=12,3) and f]»‘o (j=1 - , 6) are the
coordinates at the unloaded configuration of the
manipulator, kqi,kéj are the constants associated to the
extension-compression of the springs along g; and ;. It
can be noticed here that fis not subjected to any
restriction and thus it can be non-conservative. When
using Egs. (3) and (5) in Eq. (7) then f can be expressed
as:

f=)7T (fq +DTf§) ©)

and, by using the chain rule in the derivation process, Eq.
(6) leads to:

d (t-T¢ 1-TpTe |71
KC—Lq(] £47D fé)}] (10)
Finally, Eq. (10) can be written as follows:
_1T dD" T ' |
K-=] [Kq+dqf¢+D KéD_Ef J 1)

where

dfq ] ]
Kq = W =diag ( ]g]i), (i=1,2,3)

and

K :di:diug(k ) (=1, - ,6)
§ dé 5] 7 7 7

according to the definitions of f~and f.; and

=T T
Ay
dq dq

4. Measures of the stiffness property

The Cartesian stiffness matrix of a mechanism is a
symmetric (positive semi-definite) matrix. To obtain K-

allows one to know the 6 coefficients of the linear
transformation between df and dxin a such
configuration (i.e.,, a point of the workspace). However,
this does not mean we are able to express an
unambiguous measure of the stiffness property of the
manipulator in that configuration.

Similarly to the kineto-static performance indices [43]
which involve the Jacobian J to measure the kinematic
and static (with no elastic joints) properties of the
manipulator, here, some indices are proposed to estimate
the stiffness properties of the manipulator by using K.
As much as J, also K- can have elements with non-
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homogenous dimensions and, thus, one should be careful
in manipulating the matrix and proposing performance
indices. This issue is completely skipped in this case
where all the elements of K- have a dimension of
Newton per unit length. Therefore, three measures of the
static properties of the manipulator in a point of the
workspace are proposed. In general, these measures are
valid for manipulators with only one task.?

4.1 Averaged stiffness:

Suwg :g(a1 +0,+03) (12)
o,,(i=1,2,3) are the eigenvalues of K-. o;, in a such
point of the Cartesian workspace, is the factor mapping
the elongation ds; along the principal direction i

(eigenvector) into the variation of the force in that direction
df;, such that:

o ds; =df;

As the principal direction is defined as the direction along
with the matrix becomes diagonal according to the
standard eigenvalue problem. It is worth noting that
numerically S, ,is equivalent to 1/3tr(K.) However,
og 18 the

full stiffness property of the manipulator along the

avg

they have different physical meanings. Indeed, S

principal directions, whereas the measure 1/3tr(K.)
exclude the out-of-diagonal elements thus neglecting the
stiffness coupling effects.

4.2 Stiffness uniformity:

N (13)

With o,,, =min (0;)and ,,, = max(o;). ¢ is identical to
the measure proposed by Gosselin [11] with only the
independent joints considered elastic. It provides an
adimensional measure of the uniformity of the stiffness of
the manipulator in a such configuration.

4.3 Energy of deformation:

de, )
sD=|—-2| 5q
dq
where 0D is the energy of deformation stored in the

manipulator, ¢,is the function of the

r
manipulator, (i.e., associated with the conservative forces
fq,f - ). According to the Principle of Virtual Work, 6D

potential

can be equivalently written as:

2mixed-mode manipulators require the definition of some
parameters to match the elements’ matrix dimension [43].
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5D =fT5x (15)
f is obtained from Eq. (9) and x = K‘le .

5. Numerical calculation of Kc and of the indices

It is presented here the numerical procedure followed to
calculate, in the entire workspace of the manipulator, both
K- and three adimensional indices defined from the

proposed measures. Then, the results obtained are shown.
5.1 Procedure

a. A symbolic calculation of K is performed using Eq.
(11). All the matrices contributing to K are also
available formally;

b. For each step, i.e., a point x, y, z in the workspace, Eq.
(2) and Eq. (4) are used to obtain q and &,
respectively. Thereby, f, f. and f can be calculated.

c. For each step, K- is calculated the results from steps
a) and b). S,wg,
their definitions.

d. Steps a), b) and c) are repeated to span the entire
theoretical Cartesian workspace of the manipulator.

e. Once all points in the workspace were processed, Sm,g
and D were normalized to the maximum value

¢, D are calculated according to

reached in the workspace W to define the following
adimensional indices.

s _ Savg
8 max(Savg )IW
X = D
max ( D)IW

5.2 Results

A numerical example was carried out to apply the
procedure proposed. As ¢, s, and y are
adimensional, we do not need to provide geometrical and
spring numerical data in this section. In the example all
the prismatic joints were modelled as linear springs with
the same stiffness constant. Similarly, all the rotation
joints were modelled as torsional springs with the same
stiffness constant. The TPM unloaded configuration was
chosen to be atx=y =z= 0. In this position, according to
Egs. (2), (4), the values of the joints’ variables qi\u’é:]}o
were calculated. In Figures 2, 3, 4, as examples, the values
assumed by the indices on the planes z =0 and z=10 are
shown.

According to the symmetry of the TPM architecture, the
indices trends are symmetric in the workspace. Let’s first
consider the ¢ trends (Figure 2). Atx=y=0and z=0 or
z=10 (in general V(z)) { is smaller than at the rest of
workspace points.
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(b)

(b)

at z=0,b): Saug at z=10
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Indeed, K calculated in these points shows the value of
the diagonal element K -,; much larger than the others
That is

especially marked at the unloaded position where ¢

enlarging the gap between o, and o,,.

reaches its minimum in the entire workspace. Physically,
this agrees with the fact that at the wunloaded
configuration the stiffness of the TPM reaches its
maximum. Investigation on K- can also explain the ¢
values at x= z= 0 and y=z= 0. However, ¢ is larger
than 0.6 when z=0 and increases with z, when z=10 it is
very close to 1. In light of the previous discussion, the

understanding of the s trends is straightforward

avg

(Figure 3).

(b)
Figure4.a): ¥ at z=0,b): ¥ at z=10

At x=y= 0and z=0or z=10 (in general V(z))s_, is

avg
larger than at the rest of workspace points. Indeed, the

g and this fact is

especially marked at the unload position and also at

large value of K4 increases S

Xx=z= 0 and y=z= 0.In general, s,,, does not change
so much when varying z being always larger than 0.6.
Figure 4 shows the x trends. It can be noted that y
increases symmetrically with x and y. Indeed, the energy
of deformation stored in the elastic parts of the TPM rises
up in moving away from the unloaded position.
Accordingly, the yvalues at z=10, V(x,y)are larger
than those at z=0and the
deformationis x=y=z= 10.

point of maximum
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6. Conclusions

In this paper the author proposed a calculation of the
Cartesian stiffness matrix K- of a TPM in all points of the
theoretical workspace and three adimensional indices
with the aim of measuring the stiffness properties of the
manipulator. The calculation of K- is not standard as it
takes into account the contribution of the Jacobian
variation because of the change of configuration due to
the elasticity of the TPM. The symbolic calculation of K-
was implemented in a procedure running for all points of
the TPM workspace.
contribution to K is also available. The indices ¢, s

From the procedure, each

a
and ¥ provide some informations on the stiffnevsgs
properties of the TPM. Indeed, as proposed in the
previous section, their physical interpretation allows one
to better understand the behaviour of the TPM in terms of
stiffness.
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