
Flexible Logic-based Co-simulation
of Modelica Models

Luciano Baresi, Gianni Ferretti, Alberto Leva, and Matteo Rossi
Dipartimento di Elettronica e Informazione - Politecnico di Milano
20133 Milano, Italy - Email: baresi|ferretti|leva|rossi@elet.polimi.it

Abstract—The design of complex embedded software systems
requires the careful analysis of the system and of the environment
it interacts with. The different natures of these two elements
are difficult to address by means of a single all-encompassing
technique/notation. The paper proposes MCA, the MADES Co-
simulation Approach, which allows designers to combine differ-
ent, complementary formalisms in a seamless manner: the system
is rendered through logic formulae, while the environment is
demanded to Modelica. These two models are input to MCA to
produce an execution trace that is “compatible” with them, that
is, that does not violate either model. The paper introduces the
theoretical basis of MCA and exemplifies it on a case study.

I. INTRODUCTION

The design of complex embedded software systems requires
a careful analysis of all involved elements. The software
components, oftentimes referred to as the system, must be
strictly aligned with the environment it must interact with.
Strong timing requirements and complex interactions with
controlled elements may further complicate the design as in
the case of factory automation or manufacturing systems. The
logic sequencing of operations must deal with motion control
dynamics. In particular, robot cells are a clear example where
the need for a verification of the integration between control
software systems and motion control dynamic behavior is
important for a safe and correct work-cycle programming.

The different natures of these two elements are difficult
to address by means of a single all-encompassing tech-
nique/notation (e.g., hybrid automata [1]). The different parts
require dedicated skills and also special-purpose modeling
means. Hence, most approaches to the design of complex
embedded software systems rely on different modeling and
development tools for the system and the environment, and
on co-simulation for assessing their coordinated behavior.

Co-simulation [2] allows individual components to be sim-
ulated by different simulation tools running simultaneously
and exchanging information in a collaborative manner. A
number of tools exist (e.g., [10], [12]) to realize co-simulation
among different simulation environments in different appli-
cation fields. Modeling techniques for the environment have
been consolidated over the years: the environment is usually
modeled as a continuous system by means of two well-known
conceptual approaches. The causal approach —e.g., adopted
by Simulink— decomposes the environment into a set of
blocks, each modeled by an ordinary differential equation sys-
tem, related through (sometimes artificially generated) causal
relations between input and output variables. The acausal

approach, supported by the object-oriented modeling language
Modelica [3], requires that each (physical) component be spec-
ified through a differential algebraic equation system; their
connections, which correspond to physical principles, are set
by equating effort variables and by balancing flow variables. In
contrast, the problem of modeling and designing the software
control has been approached by means of different techniques.
Informal approaches better match domain expertise, but they
can only be partially analyzed, while formal methods are
usually more difficult for the domain expert, but they typically
provide richer support to analysis and verification.

Although the problem of integrating different approaches
for modeling, designing, and analyzing embedded software
systems together with the environment in which they operate
has been widely studied, no conclusive solutions have been
proposed, yet. The paper proposes MCA, the MADES Co-
simulation Approach1. MCA aims to provide an innovative
solution that blends the acausal modeling of the environment
and a logic-based representation of the control to foster the
formal verification of the resulting system. MCA is lightweight
in that it allows designers to combine different, complemen-
tary formalisms (differential equations, logic formulae) in a
seamless manner, instead of requiring them to fit their models
to a single, all-encompassing notation, thus leveraging the
respective strengths of involved formalisms. MCA leverages
well-known modeling tools and standards, hides the formal
representation used for verification to domain experts, and
provides a comprehensive simulation environment to support
both what-if analyses and the run of complete scenarios.

The MADES approach [20] proposes the use of a con-
strained version of UML, suitably enriched with some el-
ements of MARTE (Modeling and Analysis of Real-Time
and Embedded Systems [4]) for the design of the system.
Designed models are automatically translated into predicates
and axioms written in TRIO [5], which is a first-order linear
temporal logic that supports a metric on time. Zot [6], a
bounded model/satisfiability checker, provides the verification
capabilities. The definition of the environment is demanded to
Modelica, which promotes non-proprietary and open source
modeling of the environment. Moreover, it allows the user
to describe components as differential algebraic equation
systems, while more common and commercial tools (e.g.,
Matlab/Simulink) require that the system be described in

1The approach is named after the project in which it was developed.

978-1-4673-0311-8/12/$31.00 ©2012 IEEE 635

the state space form, which requires additional mathematical
manipulations —and consequent waste of time— to the user.
Since the paper presents MCA, we do not describe the UML
models of the systems, and how they can be transformed
into logic. Interested readers can refer to [20] for an in-depth
presentation of the translation.

MCA is not yet another co-simulation solution, but comes
with some key features. MCA supports the simulation of
nondeterministic models, and thus the simulator tries different
alternatives. MCA allows the user to specify logical constraints
in a “descriptive” way, transforms them in the way required
by the two verification engines, and guides the simulator to
check them. For example, one may want to check wether a
given condition is true every 5 time units (t.u. for short). It can
also handle numeric values (in the domain of real numbers)
and it can assign them nondeterministically to variables. This
means we can define statements such as “a variable v must
assume a value between 2 and 3 within 5 t.u.”, and the tool
picks the value randomly within the interval.

In order to focus on the architecture of the approach rather
than on the complexity of the particular application, the
approach is exemplified on a simple example, namely the
motion control of a two d.o.f. radar. This example, relevant
to the mechatronic field, was chosen as representative of more
general mechatronic systems, such as robots or machine tools
(with respect to the motion control problem only).

The rest of this paper is organized as follows. Section II
presents the formal basis of the MADES Co-simulation Ap-
proach, and sketches the prototype simulation tool. Section III
illustrates a simple case study to exemplify the main charac-
teristics of the proposed solution. Section IV surveys related
approaches and Section V concludes the paper.

II. INTEGRATED SIMULATION

In a nutshell, the goal of simulation is, given models of the
behavior of the system being developed and of its environment,
to produce a trace that is “compatible” with both models, i.e.,
that does not violate either model. A trace is a sequence of
values over a time interval, which correspond to the values
assumed over that time interval by a set of quantities (or
variables) of interest (physical quantities, such as temperature,
velocity, altitude, or logical ones, such as a switch being turned
on or off, etc.). Suppose, for example, that the variables of in-
terest are the temperature Tp in a room and the state St on/off
of a fan, and that the time interval is the discrete one [0, 5];
then a trace could be [〈Tp = 25,St = off〉, 〈Tp = 26,St =
off〉, 〈Tp = 27,St = on〉, 〈Tp = 28,St = on〉, 〈Tp =
27,St = on〉, 〈Tp = 27,St = on〉]. Usually, the model S of
the system and the model E of its environment are expressed
through different formalisms and using different notions of
time. Model S is typically described through formalisms such
as automata or logics, using a discrete notion of time (in which
case interval [0, 5] is, as in the example above, the sequence
[0, 1, 2, 3, 4, 5]); the behavior of its physical environment E,
on the other hand, is normally described through differential
equations, using a continuous notion of time. Then, a notion

of “hybrid” simulation is necessary, one that seamlessly mixes
the concepts above.

The basic premise of MCA is that the system and envi-
ronment models communicate with each other through shared
variables. The reference model is the one depicted in Figure
1, which was originally proposed in [7]: the system and
environment models have private variables (spvi’s and epvj’s
in Figure 1), whose values are not visible outside of the model
itself, and also some shared variables (ssvi’s and esvj’s) that
are accessible to both models and are used to communicate
information between them. Each variable belongs to a model
(e.g., shared system variables ssvi belong to the system
model), which is used to compute the variable’s value. In the
MCA, variables can be real-valued quantities such as a speed
or an acceleration, or discrete, finite (e.g., Boolean) signals
such as a switch being turned on or off.

SystemEnvironment
epv1

epv2

spv1

spv2

spv3

ssv1
esv1

esv2

Fig. 1. A reference model.

In MCA, the dynamics of environment variables is gov-
erned by differential equations or algebraic laws expressed in
the Modelica [3] language, and use a continuous notion of
time. We assume that the differential equations defining the
dynamics of environment variables admit a unique solution,
hence the model E is deterministic [8]; that is, given an initial
condition and a trace of the shared system variables, the trace
of the environment variables is uniquely determined.

Model S, instead, is described as a set of constraints defined
through temporal logic formulae in the TRIO syntax [5] that
use a discrete notion of time. S can include constraints on
shared variables. For example, one can define through TRIO
formulae that “if the voltage remained greater than 3 for the
last 2 t.u.’s, then a switch is turned on within 2 t.u.’s, and
it stays on for 4 t.u.’s”. The two different notions of time
(continuous for the environment model, discrete for the system
model) are reconciled through the notion of sampling [9]. If
the “sampling period” is δ, every discrete t.u. k corresponds to
a continuous time instant kδ. Sampling, however, introduces
approximations that must be dealt with carefully. Consider,
for instance, the trace of variable v depicted in Figure 2.
Its sampling satisfies, at instant 12, the condition “variable

1 2 3 4 5 6 7 98 10 11 12 13 140 t

v

3

Fig. 2. Example of sampled variable.

v remained greater than 3 for 2 t.u.’s”, but only because the

636

dip below 3 that occurred between samples 11 and 12 went
undetected. To avoid such pitfalls we introduce a “regularity
constraint” called non-berkeleyness [9], which requires that
the conditions on environment shared variables appearing in
model S do not change faster than δ continuous-time units
(i.e., the distance between two changes in the conditions
cannot be less than δ t.u.’s). Condition v ≥ 3 in the trace
of Figure 2 does not satisfy the non-berkeleyness constraint
between sampling instants 11 and 12.

We consider a trace valid when the conditions on shared
environment variables satisfy the non-berkeleyness regular-
ity constraint, and we reject as unacceptable any trace that
violates it, even if the sampled trace satisfies the system
model. The non-berkeleyness constraint is introduced also
as a “robustness” condition. In fact, it guarantees that, even
if the sampling instants have an offset with respect to the
ideal ones (e.g., values of the environment shared variables
are taken at time instants kδ − ε, with ε < δ, instead of at
times δk, which could be due to a small processing time of
the collected data), conditions that are slightly weaker than
the desired ones still hold, a less-than-ideal, but often still
acceptable approximation. Consider, for example, condition
C = “the value of v was greater than 3 for the last 3 t.u.’s
(current one included)”, which holds at instant 8 in the trace of
Figure 2. Suppose the actual sampling instant fell in between
ideal instants 7 and 8. If the offset between actual and ideal
sampling instants is big enough (though less than δ), condition
C does not hold at the actual sampling instant. Nevertheless,
a weaker condition C ′ = “the value of v was greater than 3
between 1 and 2 t.u.’s ago” is still guaranteed to hold. This can
correspond to the fact that the system is reacting to imprecise
information, which can still be deemed acceptable as there is
a bound on the imprecision (the bound being 2 t.u.’s, as shown
by the approximation functions of [9]).

Temporal logic models are naturally nondeterministic, that
is each model defines a set of traces even given the same trace
of the environment shared variables. For example, consider
constraint “if the voltage remained greater than 3 for the
last 2 t.u.’s, then a switch is turned on within 2 t.u.’s, and
it stays on for 4 t.u.’s”: the system can react to condition
“the voltage remained greater than 3 for the last 2 t.u.’s” by
turning the switch on either 1 or 2 instants after the condition
becomes true, which is a form of nondeterminism. Combined
with the fact that, as mentioned above, the environment model
is deterministic, this suggests the following algorithm for the
advancement of the simulation from the state σk at sampling
instant k to the state σk+1 at sampling instant k+1 (where σi
denotes the value of all variables at sampling instant i, which
in turn corresponds to the continuous-time instant iδ if δ is
the sampling period):

1) From the values σk(ΣE) of the variables that are
visible to the environment model (where, w.r.t. the
reference model of Figure 1, ΣE is the union of all
variables accessible by the environment, i.e. {epvi}i ∪
{esvj}j∪{ssvl}l), using the Modelica interpreter, com-
pute σk+1(ΣE − ΛS) (where ΛS = {ssvl}l are the

system shared variables), i.e., the part of the new state
that is “owned” by the environment. Also, in this step
the simulator checks that Boolean conditions on envi-
ronment variables (e.g., v > 3) appearing in the model
S satisfy the non-berkeleyness constraint. If the trace
produced is not non-berkeley, then state σk+1(ΣE−ΛS)
is discarded, and the algorithm continues from step 4.

2) Check, using a satisfiability checker for metric
temporal logic formulae, whether there exists a
discrete-time trace of the system model S that has
〈σ0(Σ), σ1(Σ), . . . σk(Σ), σk+1(ΣE − ΛS)〉 as prefix
(where Σ is the set of all variables); if there is, complete
state σk+1 with σk+1(ΣS − ΛE) (where ΣS is the set
of all variables visible to the system, and ΛE are the
environment shared variables), and repeat from step 1.

3) If the satisfiability checker cannot complete the prefix
〈σ0(Σ), . . . , σk+1(ΣE−ΛS)〉, then the simulation back-
tracks to σk−1(Σ), and repeats from step 1, but feeding
the satisfiability checker constraints to avoid producing
again the same state σk(Σ) that led to the dead-end.

4) If the Modelica interpreter determined that the trace
of the environment variables is not non-berkeley, then
the simulation backtracks to 〈σ0(Σ), σ1(Σ), ...σk(ΣE −
ΛS)〉, feeding the satisfiability checker constraints that
avoid producing σk(ΣS − ΛE) that led to the non-
berkeleyness.

A. Tool support

We implemented a tool2 realizing the schema outlined
above. The tool, whose architecture is outlined in Figure
3, is based on a coordinator that sends commands to the
interpreters of the environment and of the system model. These

Environment
Model

System
Model

ΛE

ΛS

Simulation
coordinator

Simulation
commands

Simulation
commands

Simulation
module

Simulation
module

Fig. 3. Simulation architecture.

commands are essentially “advance one step” and “backtrack”,
plus suitable constraints (e.g., initial conditions, values to be
avoided) to guide the two simulation modules.

The architecture depicted in Figure 3 comprises:
• The simulation module for the environment, which is

based on the OpenModelica interpreter3.
• The simulation module for the system based on the Zot4

tool, which can function as a satisfiability solver for
temporal logic formulae.

• The coordinator, a stand-alone Java application which
takes as input the environment and system models and
some suitable parameters (e.g., sampling interval δ, length

2The tool is available from http://code.google.com/p/mades/downloads/list.
3http://openmodelica.org
4http://zot.googlecode.com

637

Fig. 4. Modelica scheme for the example.

of the trace to be produced measured in number of t.u.’s)
then executes the algorithm described above to produce
a trace of the overall system.

III. EXAMPLE SIMULATION

In this section we discuss a case of simulation carried out on
an example radar system. The environment model represents
a motorized axis of a type compatible with typical radar
pointing applications. An electric motor drives a flexible joint,
and is endowed with cascade velocity-position control. The
position set point and the gain of the outer controller are the
manipulated inputs: the role of the former is obvious, while
the latter can be modified if for example there is the necessity
of smoothing the control actions to avoid over-currents. The
motor angular velocity, the axis position and the motor torque
(proportional to the current) are the output variables. Figure 4
shows the corresponding Modelica scheme.

The software system interacting with the radar reads the
current positioning error with respect to the desired set point
and the motor current, and sets the controller gain depending
on its internal logic; it also takes as input requests for
set point change made by the user, and sets the set point
depending on these. The model of the software system is
expressed as a collection of temporal constraints which provide
a high-level, partial description of the desired behavior of
the software being designed. These constraints, which in a
way represent requirements on the system under design, set
rather loose boundaries on the design space, but leave many
choices open, so the resulting system model is in many points
nondeterministic. For example, one of the constraints defines
that in each instant (i.e., “always”), if the user requests a set
point change, then she does not ask again for a new set point
for the next 5 t.u.’s (where a t.u. corresponds to a second).
This is expressed by the following temporal logic formula [5],
where reqSp is a predicate that holds in the instants in which
the user asks for a set point change:

Alw(reqSp→ Lasts(¬reqSp, 5)) . (1)

We also require that, whenever the user requests a set point
change, after the request the system will actually change the

(a)

(b)

Fig. 5. Results of the first simulation: error 5(a) and set point 5(b).

set point within the next 2 t.u.’s, as formalized by the next
formula, where spChg is a predicate that holds in time instants
in which the “set point change” command is issued; reqSpV
and spV are variables representing, respectively, the value of
the requested set point, and the current set point:

Alw(reqSp→WithinF(spChg ∧ reqSpV = spV, 2)) .
(2)

A similar logic formula, shown next, expresses the requirement
that a set point change occur only if the user has previously
issued a change request that has not yet produced a change of
set point since then.

Alw(spChg→ Since(¬spChg, reqSp)) . (3)

Other constraints have been imposed on the system, but they
are not shown here for the sake of brevity.

Thanks to the logic-based nature of the MCA we can use
temporal logic constraints also to “guide” the simulation by
restricting the behavior of some variables. For example, for a
first simulation we imposed the following constraints on the
trace to be produced.

• One of the first 10 instants the set point must be 40, and
one of the first 15 it must be -30 (notice that the constraint
does not impose an ordering between the values: the set

638

point might be −30 before it becomes 40):

WithinF(spV = 40, 10) ∧WithinF(spV = −30, 15) .
(4)

• The gain of the controller changes only once during the
simulation (noChG is a predicate that holds in those
instants in which the gain does not change):

Until(noChG,¬noChG ∧AlwF(noChG)) . (5)

Figure 5 shows the results of the first simulation, which was
carried out with a sampling period of δ = 0.5 over a period
of 30 t.u.’s. In particular, Figure 5(a) shows the window of the
simulation tool with the set point error; Figure 5(b) shows the
set point. We notice that the set point changes twice before 15
t.u.’s have elapsed, once when it is set to 40, and once when
it is set to -30. In addition, the set point is changed one more
time before the simulation ends, at time 29.

For a second simulation we also introduced a set of formulae
that constrain the controller gain to remain within certain
ranges depending on the value of the error in the last 2 t.u.’s.
For example, we imposed that if the error (represented by
variable err) was between 60 and 90 degrees for the last
2 t.u.’s, then the gain (represented by variable g) must be
between 1.6 and 2 (other formulae stating similar constraints
are not shown for brevity):

Alw(Lasted(60 < err ≤ 90, 2)→ 1.6 < g ≤ 2) (6)

For this second simulation, we changed the set of constraints
that are used to guide the simulation. In particular, we replaced
formulae (4)-(5), with the following ones:
• Within the first 25 t.u.’s of the simulation, there must be

a request of set point change from the user, which asks
for a set point of −50.

• Within instants 25 ad 33 there must be also another set
point change request, whose value is left unconstrained.

Figure 6 shows the results of the second simulation, which
was carried out with δ = 1 and a horizon of 40 t.u.’s. In
particular, it shows that, due to constraint (6) (and similar
ones not shown here), as the error changes (Figure 6(a)), the
gain also changes (Figure 6(b)).

For a third simulation we added a further constraint on the
rate of change for the gain, a variable that is controlled by the
software system. More precisely, we introduced the following
formula, which states that between two changes of the gain
there must be at least 4 t.u.’s:

Alw(¬noChG→ Lasts(noChG, 4)) . (7)

However, with this new constraint the simulator was not able
to produce a trace, and it stopped after it reached the maximum
numbers of retries and backtracks (both parameters of the
simulation, as seen in Figure 5(a)). This is due to the fact
that in the trace produced by the simulator the gain was
changed right before a set point change request, which requires
a further change in the gain, thus violating constraint (7). As
the simulator does not explore the whole state space of the
possible executions, this does not necessarily mean that the

(a)

(b)

Fig. 6. Results of the first simulation: error 6(a) and gain 6(b).

closed-loop system is unfeasible, but it highlights a source
of potential problems in the set of constraints. In this case, if
one cannot predict when the user will decide to change the set
point of the radar, imposing minimum delays between changes
in the controller’s gain might produce a situation of conflict.

The MCA can be used not only to carry out simulation
activities of the closed-loop system including both the soft-
ware being designed and its environment, but also to prove
properties on the former. In particular, one can, from the set
of temporal logic constraints describing the desired behavior
of the software system, prove (or disprove) properties on its
internal mechanisms (hence, independent of the behavior of
the environment). Hence, we used the Zot tool to prove some
properties for the radar example discussed in this section.
The properties to be checked are, as usual in formal ver-
ification approaches, expressed as temporal logic formulae;
in the MADES approach, the TRIO [5] logic is used to
formalize both the system constraints and the properties to
be proved. Hereafter, we present an example of verification
activity carried out on the radar system.

More precisely, we proved that there cannot be two consec-
utive set point change requests without a set point change in
between, which is formalized by the following formula:

Alw(reqSp→ Until(¬reqSp, spChg)) . (8)

We fed formula (8) to the Zot tool, together with the set of
constraints describing the system, and the tool determined that
in fact the property holds for the system. Intuitively, the reason
for this lies in the timing of change requests and set point
changes: change requests cannot occur more often than every 5
t.u.’s, per constraint (1), while set point changes follow change
requests after 2 t.u.’s, per constraint (2).

IV. RELATED WORK

Co-simulation has been widely studied over the years. For
example, Stateflow, developed by MathWorks [10], is a control

639

logic tool used to model reactive systems via state charts
and flow diagrams within a Simulink model. Stateflow uses
a variant of the finite-state machine notation established by
Harel [11], enabling the representation of hierarchy, paral-
lelism and history within a state chart. Using add-on code
generation products, a Stateflow user can automatically gen-
erate C, HDL, and PLC code from a Stateflow chart.

While Simulink actually implements a causal approach
to modeling, where sub-models are connected by input and
output ports, AMESim [12] pushes the idea that the variables,
which are shared at the ports between sub-models, are physical
entities and operate in both directions, thanks to a Bond
graph theory approach. This solution facilitates the link among
different physical domains.

The Modelica standard library StateGraph [13] also pro-
vides components to model discrete event and reactive systems
in a convenient way. It is based on the JGraphChart [14]
method and takes advantage of Modelica features for the
action language. JGraphChart is an evolution of Grafcet [15]
to include elements of StateCharts [11] that are not present in
Grafcet/Sequential Function Charts. Therefore, the StateGraph
library has a similar modeling power as StateCharts, but it
avoids some of its deficiencies. Some improvements have
been recently added to the new library StateGraph2 [16].
Note however that the model is always deterministic due to
Modelica’s single assignment rule.

ModelicaDEVS [17], which is a free library for modeling
discrete event-oriented systems using the DEVS methodology,
has also been developed in the Modelica/Dymola environ-
ment [18] as an implementation of a Modelica version of Pow-
erDEVS [19]. However, it adopts a quite different approach for
the numerical integration of the environment model: it adopts
state quantization rather than applying time discretization to
the solution of the DAE system describing the environment.
Thus, state variables evolve individually, with no need to
update them simultaneously.

As already said, the main difference between the MCA
approach and the other mixed discrete events/continuous time
simulation tools is the description of nondeterministic models,
entailing the need for a mechanism that allows the exploration
of different alternatives for the coupled discrete/continuous
simulation, in case of constraint violation. MCA also allows,
from the system side of the architecture, a formal verification
of the software system, which is also not considered by more
traditional approaches.

V. CONCLUSIONS AND FUTURE WORK

The paper presents MCA, the MADES Co-simulation Ap-
proach, an innovative proposal for the co-simulation of the
software system and its surrounding environment. The former
is modeled through metric temporal logic formulae; the latter
is rendered by using Modelica, along with its eco-system.
The result can be seen as a lightweight solution where users
can combine different complementary formalisms (differential
equations, logic formalisms) and expertise in a seamless
manner. These two models are the inputs for MCA to produce

an execution trace that is “compatible” with them, that is,
that does not violate either model. In the MADES approach,
logic formulae can be derived from UML models, suitably
augmented with a temporal logic semantics [20].

The paper introduces the theoretical basis of MCA and ex-
emplifies them on a simple case study. The flexibility provided
by the approach and its key characteristics are interesting and
encouraging, but they also demand for further analyses and
experiments. This is the main gaol of our future work. A
more thorough assessment will provide us the opportunity
to conduct further experiments with the flexibility of the
approach, and it will also give us more insights about it.

Acknowledgments: Work supported by the European Com-
munity’s Seventh Framework Program (FP7/2007-2013) under
grant agreement n. 248864 (MADES). We thank Michele
Sama for his work on the co-simulator.

REFERENCES

[1] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HYTECH: A model
checker for hybrid systems,” Int. J. on STTT, vol. 1, no. 1–2, 1997.

[2] K. Hines and G. Borriello, “Dynamic communication models in embed-
ded system co-simulation,” in Proc. of DAC, 1997, pp. 395–400.

[3] P. A. Fritzson, Principles of object-oriented modeling and simulation
with Modelica 2.1. John Wiley and Sons, 2004.

[4] Object Management Group, “UML Profile for Modeling and Analysis of
Real-Time Embedded Systems,” Tech. Rep., 2009, formal/2009-11-02.

[5] E. Ciapessoni, P. Mirandola, A. Coen-Porisini, D. Mandrioli, and
A. Morzenti, “From formal models to formally based methods: An
industrial experience,” ACM TOSEM, vol. 8, no. 1, pp. 79–113, 1999.

[6] M. Pradella, A. Morzenti, and P. San Pietro, “The symmetry of the
past and of the future: bi-infinite time in the verification of temporal
properties,” in Proceedings of ESEC/SIGSOFT FSE, 2007, pp. 312–320.

[7] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference model
for requirements and specifications,” Software, IEEE, vol. 17, no. 3, pp.
37 –43, 2000.

[8] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, “Modeling time in
computing: a taxonomy and a comparative survey,” ACM CSUR, vol. 42,
no. 2, pp. 6:1–59, 2010.

[9] C. A. Furia and M. Rossi, “A theory of sampling for continuous-time
metric temporal logic,” ACM TOCL, vol. 12, no. 1, pp. 8:1–8:40, 2010.

[10] MATLAB, version 7.10.0 (R2010a). The MathWorks Inc., 2010.
[11] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.

Comput. Program., vol. 8, pp. 231–274, June 1987.
[12] W. Jere, Amesim. International Book Marketing Service Ltd, 2011.
[13] M. Otter, K. E. Årzén, and I. Dressler, “Stategraph-a modelica library

for hierarchical state machines,” in Proc. of the Int. Modelica Conf.,
2005, pp. 569–578.

[14] K. E. Årzén, R. Olsson, and J. Akesson, “Grafchart for procedural
operator support tasks,” in Proc. of the IFAC World Congress, 2002.

[15] R. David and H. Alla, Petri Nets and Grafcet: Tools for Modelling
Discrete Event Systems. Prentice Hall, 1992.

[16] M. Otter, M. Malmheden, H. Elmqvist, S. E. Mattsson, and C. Johnsson,
“A new formalism for modeling of reactive and hybrid systems,” in Proc.
of the Modelica Conf., 2008.

[17] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, Second Edition, 2nd ed. Academic Press, 2000.

[18] T. Beltrame, Design and development of a Dymola/Modelica library for
discrete event-oriented systems using DEVS methodology. ETH Zürich,
2006.

[19] F. Bergero and E. Kofman, “Powerdevs: a tool for hybrid system
modeling and real-time simulation,” SIMULATION, 2010.

[20] L. Baresi, A. Morzenti, A. Motta, and M. Rossi, “Towards the uml-based
formal verification of timed systems,” in Proc. of FMCO, ser. LNCS,
vol. 6957, 2010, pp. 267–286.

640

Powered by TCPDF (www.tcpdf.org)

