
Wrong Turn – No Dead End: a Stochastic Pedestrian Motion Model

Stefano Pellegrini1 Andreas Ess1 Marko Tanaskovic1 Luc Van Gool1,2
1Computer Vision Laboratory 2ESAT-PSI / IBBT

ETH Zurich KU Leuven
{stefpell,aess,vangool}@vision.ee.ethz.ch tmarko@student.ethz.ch

Abstract

This paper addresses the use of social behavior mod-
els for the prediction of a pedestrian’s future motion. Re-
cently, such models have been shown to outperform sim-
ple constant velocity models in cases where data associa-
tion becomes ambiguous, e.g. in case of occlusion, bad im-
age quality, or low frame rates. However, to account for
the multiple alternatives a pedestrian can choose from, one
has to go beyond the currently available deterministic mod-
els. To this end, we propose a stochastic extension of a re-
cently proposed simulation-based motion model. This new
instantiation can cater for the possible behaviors in an en-
tire scene in a multi-hypothesis approach, using a princi-
pled modeling of uncertainties. In a set of experiments for
prediction and template-based tracking, we compare it to a
deterministic instantiation and investigate the general value
of using an advanced motion prior in tracking.

1. Introduction

The fact that people proactively anticipate future states
of their environment during path planning, rather than only
react to others once a collision is imminent, has been used
for quite some time in other communities, such as in Com-
puter Graphics [6, 7] or Social Science [5, 10, 12]. Re-
searchers in Computer Vision, on the other hand, have of-
ten resorted to using a simple constant velocity assumption
for pedestrians, especially in applications such as tracking.
Recently however, more advanced models, often inspired
by social simulations, received considerable attention. An-
tonini et al. [2] were one of the first to use a behavioral
motion prior in a tracker, using a Discrete Choice Model to
select the next position for each pedestrian. Ali and Shah [1]
use scene-specific “floor field” models to make tracking
in extremely crowded situations tractable. In our previous
work [9] we built the motion prior on the assumption that
each subject predicts the other pedestrians’ trajectories with
a simple linear extrapolation, calculating the next velocity

Figure 1. When moving through a scene, a person takes a variety
of factors into account, such as steering clear of other people. In
many cases, the prediction of the motion cannot be well described
by a deterministic algorithm: in the above example the pedestrian
on the left hand side could either evade the group by going on its
left or right side, as indicated by the yellow lines. We therefore
propose a stochastic, simulation-based motion model that can deal
with the uncertain future motion of a pedestrian.

based on this prediction. [13] focus on learning the param-
eters of a space-continuous time-discrete model that is op-
timized with a gradient-descent technique. Outside the area
of tracking, Mehran et al. [8] use the social force model to
detect abnormal behavior in crowded scenes.

When scene-specific knowledge is not available, a mi-
croscopic model (handling pedestrians separately) is usu-
ally preferred over a macroscopic one (focusing on a
crowd’s behavior, rather than its individual members). Mi-
croscopic models usually account for interactions among
individuals, destinations, and desired velocities. However,
accurately modeling a pedestrian’s future path in a deter-
ministic way is almost impossible: on the one hand, the
observed information is incomplete, either because it is in-
visible to the camera (but visible to the pedestrian in the
scene), or because it is part of a pedestrian’s individual
preferences (some people like to walk in the shade, others
do not). On the other hand, model complexity is limited
by computational power. Instead of trying to model more
and more factors, we therefore propose to use a determinis-
tic motion model, in this case Linear Trajectory Avoidance
(LTA) [9], and extend it to allow multiple hypotheses. The
ensuing novel stochastic formulation can then handle such
unaccounted factors in a probabilistic way.
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In this paper, we therefore introduce a stochastic exten-
sion of LTA, in order to make the motion prior more robust
to this kind of failures, Fig. 1. We term the ensuing new
model stochastic LTA, or sLTA. sLTA uses the same energy
potential formulation as the original LTA model, but in a
Gibbs form to turn the potential into a probability. Multi-
ple modes (i.e., alternatives in choosing a path) in the en-
suing distribution are then approximated by a mixture of
Gaussians, each giving rise to another set of possible fu-
ture world state. For each further time step, this recursively
yields a tree of possible future locations, with an uncertainty
defined through mathematically sound error propagation.

One specific question that is then addressed is the usabil-
ity of the motion model for tracking. In [9], it has already
been shown that a motion prior has better predictive power
than linear extrapolation and that a tracker can benefit from
its use in situations where the observation is unreliable (e.g.,
during occlusions). In this paper, we investigate this issue
further by conducting a set of systematic experiments using
an appearance-based tracker.

The paper is structured as follows. After briefly introduc-
ing the basic motion model (LTA) in Sec. 2, we introduce its
novel stochastic extension in Sec. 3. Experiments are pre-
sented in Sec. 4, before the paper is concluded in Sec. 5.

2. LTA, a Pedestrian Motion Model
LTA (linear trajectory avoidance) is a simulation-based

motion model [9] . It predicts a pedestrian’s current veloc-
ity1 vt

i based on the previous positions xt−1
j and the veloc-

ities vt−1
j of all the N pedestrians j in the scene, as well

as on the pedestrians’ desired destinations rj and desired
speeds uj , and on the static obstacles represented by an
obstacle map I. Similar to other simulation-based motion
models, LTA assumes that pedestrians interact with each
other, trying to keep a certain distance while walking to a
desired destination with a certain speed. These social fac-
tors are included into an energy potential

E(vt
i |St−1,U,R, I) , (1)

where

St−1 = [xt−1
0 ,vt−1

0 , . . . xt−1
N ,vt−1

N ] (2)
U = [u0, . . . uN ] (3)
R = [r0, . . . rN ] . (4)

Taking the minimum of this potential yields a pedestrian’s
next desired velocity that is used to update the model.2 The

1As in physics, we use the term velocity for a two-dimensional motion
vector, as opposed to the scalar value speed.

2In the original model, the desired velocity is linearly filtered for
smoothness (see Eq. 14 in [9]). In this paper, we use an equivalent en-
ergy potential that includes already the same smoothing, by introducing a
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Figure 2. Principle of LTA: given the state of the current image
(red: pedestrians, green: obstacles), every pedestrian is simulated
in turn, assuming a simple path-planning behavior of each individ-
ual. After finding the most probable velocity for each pedestrian
(in a deterministic fashion), their position is updated in parallel. In
this paper, we extend the deterministic behavior with a stochastic
one, to account for the uncertainty of a person’s future motion.

procedure is repeated for each pedestrian independently in
parallel, and illustrated in Fig. 2. While in [9] we show
that taking into account these social factors improves pre-
diction and object tracking performance compared to a con-
stant velocity model, there are two main problems with the
formulation: firstly, deterministically choosing the mini-
mum of the energy function cannot account for the mul-
tiple options a pedestrian can choose from when walking
onto other people. Therefore, a deterministic instantiation
of the model sometimes commits big errors when avoiding
oncoming pedestrians on the wrong side. Secondly, uncer-
tainty propagation is handled only empirically.

To this end, we propose an improved version of LTA, ex-
tending it to handle the uncertainty in a still approximate but
more principled manner. Above all, rather than representing
the output of the algorithm with only a single value, we will
extend it to handling multiple choices for each pedestrian.

3. Stochastic LTA
To account for the uncertain future motion of a pedes-

trian, we extend LTA in a multi-hypothesis fashion. Based
on the energy potential from Eq. (1), we define the posterior
probability of a pedestrian’s velocity p(vt

i |St−1,U,R, I) as
a Gibbs potential,3 for each pedestrian as

p(vt
i |St−1) = Z−1e−ωE(vt

i |S
t−1) , (5)

simple coordinate transformation:

E(vt|St−1,U,R, I) = ELTA(
vt − α ∗ vt−1

1− α
)

where ELTA is the formulation of the energy given in [9]. Note that this
is an entirely equivalent formulation, but has the advantage of being more
compact.

3To reduce notational complexity, we will omit the dependency on
U,R, I in the rest of the paper.
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where Z is a normalization constant and ω is a free pa-
rameter that will be discussed later. We now assume that
a pedestrian, at each time step t, makes a decision for his
next velocity vt based on its past observations of the envi-
ronment. As opposed to standard LTA, we allow multiple
alternatives, or hypotheses. Therefore, rather than working
with Eq. (5), we fit a mixture of Gaussians

p(vt
i |St−1) ≈

K∑
k

wkN (vt
i |vt

LTA(k|St−1); Ψt
LTA(k|St−1)) ,

(6)
where the LTA subscript indicates that the quantity is es-
timated from LTA. This mixture could be fit with stan-
dard methods such as Expectation Maximization or iterative
function fitting techniques. However, to keep the system ap-
plicable to real-time scenarios, we opt to use the following
heuristic to estimate the mixture parameters:

1. Discretize the distribution of Eq. (5). The number of
components K of the mixture is decided by counting
the local maxima in the discretized distribution.

2. Run a (BFGS) minimization for each mode to refine
the mode estimate. These mode estimates are assumed
to be the locations of the means vt

LTA(k|St−1) of the
mixture components.

3. Label the (negative) basins of attraction of each max-
ima in the discretized grid and use this clustering to
estimate the covariances Ψt

LTA(k).

4. The weight wk of each mode is computed for each
component independently, by setting the kth compo-
nent’s mode of the mixture equal to the energy at that
point

wk =
exp(−ωE(vt

LTA(k|St−1)))/Z

N (vt
LTA(k|St−1); v

t
LTA(k|St−1),Ψ

t
LTA(k))

.

(7)
These weights are finally normalized so that their sum
is one (therefore, the equality in Eq. (7) does not nec-
essarily hold anymore (see also Fig. 3).

This is obviously a rough estimate of the parameters, that
will become worse the less the Gaussians are separated.
Nevertheless, it turned out to be sufficient for our purposes
(see Fig. 3 for an example fit). In Sec. 5, we explain why
the algorithm is robust in this respect.

Let us now assume that subject i’s position at time t−1 is
distributed as N (xt−1

i |µt−1
i ; Σt−1

i ), that is a single Gaus-
sian. Assuming a linear process of the form

xt−1
i = xt−1

i + ∆tvt−1
i + γ with γ ∼ (0; Γ) (8)

Figure 3. The energy potential is brought into an analytical form by
fitting a mixture of Gaussians using a fast approximative method
(see text).

and using Eq. (6), we can write

p(xt
i) =

∫
p(xt

i,S
t−1)dSt−1 (9)

=
K∑
n

wkN (xt
i|µt

ik
; Σt

ik
) , (10)

where for subject i

µt
k = µt−1

k + ∆tvt
LTA(k) (11)

Σt
k = Γ + Σt−1

k + ∆2
t Ψt

LTA(k) , (12)

(see App. A for more details about the derivation). In order
to make use of Eq. (10) for one subject we need, however, to
specify the positions and velocities of all other pedestrians,
i.e. St−1. At each time step though, we are only provided
with a distribution of the pedestrian position that, as shown
in Eq. (10), has the form of a Gaussian mixture.

Using only the mean of the distribution is not a suitable
statistic for a mixture of Gaussians. Alternatively, selecting
only the best mode would result in a deterministic model
with only a single hypothesis. Instead, we start at time t = 0
with a single gaussian per pedestrian and we compute the
probability for each of the M =

∏N
i Ki possible combi-

nations m of mixtures modes at time t as
∏N

i wim
, where

im is the index of the alternative that subject i chooses in
combination m. We assume that these combinations are in-
dependent from each other (see App. A). In each combina-
tion m, a subject is represented by its im − th mode, that
is a single Gaussian. By using Eq. (10) now, we can use
the values of the modes that participate in the combination
as the position of the pedestrians, while we can estimate
the velocity by backtracking the last position in the pedes-
trian’s past trajectory. Repeating this process at each time
step, for each combination, obviously leads to a combina-
torial explosion. Each combination indeed splits into new
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ones. To prevent this from happening, we limit the maxi-
mum number of combinations to a value M̂ . If the splitting
process at a certain time step generates more than M̂ com-
binations, the most likely M̂ are used, while the others are
discarded. Further, we only allow the splitting into multiple
modes of Eq. (10) when the probability of the combination
is > ε = 0.1. Since the probability of the combinations de-
creases with time because of the splitting, at a certain point
the splitting ceases.

Note that in the special case when M̂ = 1, the model is
deterministic and almost the same as the original LTA . The
main difference is that in the original LTA, the next velocity
v∗ was computed with a gradient descent over the energy
potential ELTA, while now the heuristic just described is
used.

Note also that this general approach of handling multi-
ple possible world states is conceptually similar to multi-
hypothesis tracking [11], in which each world corresponds
to a possible data association between trajectories and ob-
servations.

3.1. Why not a Particle Filter Framework?

Eq. (5) could be easily used in a particle filter framework
as a propagation function (see Fig. 4). It is reasonable to ex-
pect that the results, for a sufficient number of particles, are
more accurate than those obtained with an approximation
by a mixture of Gaussians. However, there are at least two
reasons why to refrain from taking this approach.

The first reason is related to computational requirements.
Since we want to represent the interactions between sub-
jects, the state space cannot be easily factored into indepen-
dent particle filters. The state should rather be represented
jointly by the positions and velocities of all the subjects.
With the ensuing rapidly growing state dimension, the num-
ber of particles increases exponentially. For each particle,
the basic LTA procedure should be evaluated for each sub-
ject, which is computationally prohibitive. In contrast, in
our formulation the LTA procedure is only invoked for each
mode of the mixture.

Even if a particle filter would be computationally feasi-
ble, we believe that the commonly used resampling stage [3]
introduces a higher logic that we assume a pedestrian to not
have in the LTA model: if a mode of the sampled distribu-
tion happens to die out at some point, e.g. due to higher like-
lihood of the other modes in the resampling stage, the his-
tory of the particles belonging to the cloud until that point is
meaningless. Once an alternative has been created, it cannot
cease to exist simply because, a posteriori, other alternatives
are more suited. This would imply that pedestrians predict
their complete possible future trajectories in advance, even
with information that is unavailable to them at present, and
then choose the feasible ones. This assumption is not part
of the LTA model and also does not seem to be realistic.
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Figure 5. Log-likelihood of number of combinations M̂ and free
parameter ω. Increasing the number of combinations always im-
proves the result.

3.2. Training

For training the underlying LTA, we employ the proce-
dure described in [9], using the training set provided by the
authors. The parameters for the stochastic version then re-
main the same, we inspect the effect of the remaining free
parameters (M̂ , ω) in the experiments section.

4. Experiments

In the following, we first evaluate the sLTA model by
itself, comparing its prediction capabilities for different pa-
rameter settings. We then show its application in a tracking
experiment, highlighting the importance of a good motion
model in data association. For these experiments, we use
annotated data provided by the authors of [6]. The video
shows part of a shopping street from an oblique view. A ho-
mography from image to ground plane was estimated from
four manually clicked points on the footpath to transfer im-
age to world coordinates. Standing and erratically moving
people were marked; for these, a simple extrapolation is
used. As destinations we chose two points far outside the
left and right image borders, which holds for most subjects.
Static obstacles (i.e., the building and the parked car) were
also annotated.

4.1. Prediction

To test the prediction capabilities of our model, we eval-
uate on a subsequence of about 3 minutes @ 2.5 fps, con-
taining 86 trajectories annotated with splines. We simu-
late all the subjects in parallel. Note that this is different
from the prediction experiment in [9], where each subject
was simulated in turn, while using the ground truth posi-
tions and velocities of all the others. Starting one simu-
lation every 1.2 seconds with a prediction horizon of 4.8
seconds yields ≈ 200 simulations. To highlight the im-
portance of using multiple modes, as well as the effect of
the parameter ω, we run multiple simulations over all sub-
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Figure 4. Particle filter experiment: when simulating a person (yellow circle) given the other people (green circles) using a particle filter
embodiment of the model, multiple modes (red particles) form naturally. While both options of steering clear of the oncoming persons are
found, such a solution is computationally prohibitive (see text).

jects, varying both the maximum number of combinations
M̂ , as well as the free parameter ω. For each simulation,
we report the log-likelihood log p(GT |M̂, ω) of M̂ and ω
based on the ground truth trajectoriesGT , Fig. 5. As can be
seen, increasing the number of combinations, and therefore
of modes, always improves the prediction result, irrespec-
tive of the chosen ω: this indicates that even with multiple
modes, the model is conservative enough as not too allow
completely improbable predictions. The parameter ω re-
lates to how certain each hypothesis is. When ω is zero, the
probability is uniform, while for bigger and bigger values
of ω, the uncertainty around each mode decreases. Fig. 5
shows a small yet interesting positive correlation between
the value of ω and M̂ . This can be interpreted saying that
when increasing the number of combinations, less uncer-
tainty per mode is allowed.

Some example images when using 10 modes are shown
in Fig. 6. Red lines indicate the ground truth, yellow lines
indicate the predicted path of a person, blue circles corre-
spond to the standard deviation of the fitted Gaussians at
the respective end positions. Green lines indicate the linear
extrapolations of people that are standing or moving errat-
ically, white boxes the set of used obstacle points. Please
note that the model operates in ground-plane coordinates,
hence all drawings correspond to people’s feet in the im-
age. For each image, we show the final image after 4 s of
extrapolation. As can be seen, the model manages to find
the correct extrapolation for almost all persons in one of its
modes, while keeping the number of modes at a minimum.
Multiple possibilities can be especially seen when people
are walking towards other groups of people, e.g., in the top
right and lower left image.

In the deterministic setting (M̂ = 1), extrapolations in
easy situations remain the same (Fig. 7, left; these images
correspond to the top line of Fig. 6). In more difficult situa-
tions, only the stronger mode remains, which can either be
correct (middle) or wrong (right). Thus, from a prediction
point of view, it is indeed beneficial to use multiple modes
in a stochastic fashion, as suggested by this paper.

Finally, Fig. 8 shows some typical failures of the model.
These are not all failures in the hard sense, as the stochastic
options often also includes the correct solution: in the first
image, the model splits too much because it is unsure what

to do with two persons walking with each other in a group,
but slightly changing positions to each other. It splits, but
keeps the correct hypothesis. In the middle image, another
person is wrongly extrapolated (green line in middle of im-
age), causing a split, but the correct hypothesis is also kept.
In the last image, the lower extrapolation is wrong, with
the correct solution (going above the standing group) not
identified: this is a special case of the first case, where two
people walking in a group feel repulsion rather than staying
together. Implementing the notion of groups would allevi-
ate such problems.

4.2. Tracking

To explore the effect of a stochastic motion prior on
tracking performance, we present the following experiment:
for each person, and for increasing time horizons, we per-
form an NCC-based template matching between a subject in
a reference frame and its possible location in a later frame.
The chosen motion model defines the search radius for the
matching; the solution is found as the peak NCC-response,
weighted by the motion models’ uncertainty. The error in
distance between this solution and the ground truth is accu-
mulated for all persons and by starting the tracking every
1.2 seconds. As the model is trained in steps of 0.4 seconds
(10 frames), we also keep this spacing for the experiment.

This experiment should highlight the advantage of a
good motion model: a correct search region should prevent
the tracker from drifting by guiding the data association.
Instead of including the model into a complicated tracker,
where many side-effects can influence the result, we there-
fore keep the experiment as simple as possible to see the
real merit of a motion model.

We specifically compare a simple Brownian motion
model with a constant velocity one, as well as different in-
stantiations of sLTA. For the experiment, we use templates
of 30 × 30 pixels on people’s head positions. As an ad-
ditional baseline, we use an adaptive tracker based on on-
line boosting [4] that uses all intermediate frames (as op-
posed to steps of 10 frames). In the given sequences, purely
appearance-based matching is especially tricky due to low
contrast, cast shadows, and interlacing and compression ar-
tifacts. The motion model uncertainty is chosen as follows:
for the Brownian model, the uncertainty is assumed uniform
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Figure 6. Example extrapolations. The possible paths for a given person are shown in yellow, with blue circles indicating the σ-confidence
of the fitted Gaussians. Note that the model operates in ground-plane coordinates, the lines and circles thus correspond to people’s feet.
Also note that all the subjects are simulated in parallel.

Figure 7. Extrapolations when just using one mode, corresponding to a deterministic model. (see text)

in the search region (which is bounded by a statistic on the
maximum walking speed); for the constant-velocity one, we
use a single Gaussian centered around the prediction (we
plot results for two choices of the uncertainty); for sLTA,
the mixture of Gaussians as introduced above is used. In
this systematic experiment, velocities are inferred from the
past frame’s ground-truth. While this does not reflect the
actual tracking application, it still allows for a fair compari-
son between the different models, and their (ideal) influence
on appearance-based tracking.

Fig. 9 (a) plots the mean error in meters for all ap-
proaches. We furthermore report the number of actual
tracking errors (deviation from ground truth > 0.5 m) in
Fig. 9 (b). For increasing frame gaps, an uninformed mo-
tion model makes tracking virtually impossible (“Brown-
ian”, mean error not plotted in (a) due to large error). For
small time horizons, the result of a constant velocity model
(“Const. vel.”) is virtually the same as with any more ad-
vanced model, as small motions can be sufficiently approx-
imated by a linear extrapolation. However, for increasing
time horizons, the positive effect of sLTA becomes more
pronounced. This is also in line with other researchers’ re-
sults [9], who mainly observed an effect of a strong motion
model in cases of missing data, e.g. due to occlusion.

As an additional baseline, we show the result of purely
appearance-based tracker, which uses all available interme-

diate frames while learning the model of the appearance
(“Boosting Tracker”). Using all available data from the im-
age produces fewer hard failures, still, the high mean er-
ror indicates that when the tracker starts drifting, it’s totally
lost. We therefore believe a strong motion model to be im-
portant for tracking.

Accounting for a pedestrian’s future motion in a prob-
abilistic manner, i.e., using M̂ = 10 instead of M̂ = 1,
does not seem to have a considerable effect on tracking per-
formance: both the mean error and the fraction of track-
ing errors seems to only improve slightly when allowing
multiple modes. The important thing to note here is that
in the presented sequence, there is only a limited number
of “splittings” in general, and only in a fraction of these,
the deterministic model chooses the wrong mode. While
the effect thus seems limited, this still means that in such
cases, the tracker would fail and lose an object for multi-
ple seconds, searching in the wrong location. Employing a
stochastic model therefore definitely helps in extreme situ-
ations, which can also be expected more frequently in more
crowded scenarios.

5. Discussion and Conclusions
This paper presented a sound stochastic extension of an

existing, simulation-based motion model for pedestrians.
The novel probabilistic formulation is based on using the
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Figure 8. Typical failures of the sLTA: (Left, middle) unnecessary splittings can occur due to other wrong extrapolations, but are handled
in the multi-hypothesis framework. (Right) without the knowledge of people walking in groups, wrong extrapolations can occur. (see text
for details)

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t [sec]

m
ea

n 
er

ro
r [

m
]

Boosting Tracker
Const. vel. (σ=0.1)
Const. vel. (σ=0.2)
sLTA (M=1)
sLTA (M=10)^

^

(a)

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [sec]

%
 fa

ilu
re

s 
(e

rr
 >

 0
.5

m
)

Boosting Tracker
Brownian
Const. vel. (σ=0.1)
Const. vel. (σ=0.2)
sLTA (M=1)
sLTA (M=10)

^

^

(b)

Figure 9. (a) Mean error (in meters) of tracking using different motion models, for increasing frame gaps. (b) Number of tracking failures
(error > 0.5 m) using different motion models, for increasing frame gaps.

original energy function as a Gibbs potential. Then, by us-
ing a multi-hypothesis approach with mathematically sound
uncertainty propagation, a set of possible future world states
is obtained. To achieve a good compromise between accu-
racy and tractability, we fit a gaussian mixture model to the
Gibbs potential. Although the fitting is rather approximate,
we found it to work well in our experiments. This is due
to the fact that the actual choices of pedestrians seem to be
limited to one or two, for each timestep. Therefore the po-
tential will have only one or two modes. Furthermore, the
modes corresponding to alternatives of a choice for a pedes-
trian, tend to separate apart with time. This allows us to wait
for the modes to be well separated before fitting the mixture
(when their distance is below an empirical threshold, we
group them and consider them as a single mode).

In our prediction experiments, we showed that the log-
likelihood of the prediction increases considerably as we go
from a deterministic instantiation to a stochastic one.

For tracking, a clear advantage over simpler motion
models was demonstrated, the effect of a stochastic model is
however not as pronounced as expected. While more com-
plicated scenes would probably show an advantage of using

a probabilistic formulation, this difference is only present
at higher frame gaps, which could be e.g. due to occlusion.
Generally, it thus seems that the prediction would be more
suited to tasks in, e.g., robot navigation, where safety is a
crucial issue.

Future work will therefore study the application of the
model to robot navigation. Furthermore, we plan to explore
the grouping behavior between pedestrians. As we showed
in a few examples, the knowledge of whether a person be-
longs to a group can influence her/his motion planning.
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A. Derivation of Empiric Covariance

The derivation of p(xt
i,v

t
i), and p(xt

i) for a given pedes-
trian i is shown in Tab. 1 We describe hereafter the simplify-
ing assumptions we make in order to obtain a tractable and
real-time capable solution. First, in Eq. (14), we assume
that the state space St−1 can be partitioned into M subsets
St−1

m . Each of the subsets encode a possible combination
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p(xt
i,v

t
i) =

∫
p(xt

i,v
t
i|St−1)p(St−1)dSt−1 (13)

=
M∑
m

∫
p(xt

i,v
t
i |St−1

m )p(St−1
m )dSt−1

m (14)

=
M∑
m

∫
N (xt

i|xt−1
im

+ ∆tvt
i ; Γ)

Km∑
km

wkmN (vt
i |vt

LTA(km); Ψt
LTA(km))

∏
jm

p(xt−1
jm

,vt−1
jm

)dvt−1
jm

dxt−1
jm

(15)

=
M∑
m

wm

Km∑
km

wkm

∫
N (xt

i|xt−1
im

+ ∆tvt
i ; Γ)N (vt

i |vt
LTA(km); Ψt

LTA(km))N (xt−1
im
|µt−1

im
; Σt−1

im
)dxt−1

jm
(16)

=
M∑
m

wm

Km∑
km

wkmN (xt
i|µt−1

im
+ ∆tvt

i ; Γ + Σt−1
im

)N (vt
i |vt

LTA(km); Ψt
LTA(km)) (17)

=
C∑
c

wcN (xt
i|µt−1

ic
+ ∆tvt

i ; Γ + Σt−1
ic

)N (vt
i |vt

LTA(c); Ψt
LTA(c)) (18)

p(xt
i) =

∫
p(xt

i,v
t
i)dv

t
i (19)

=
C∑
c

wcN (xt
i|µt−1

ic
+ ∆tvt

LTA(c)︸ ︷︷ ︸
µt

ic

; Γ + Σt−1
ic

+ ∆2
t Ψt

LTA(c)︸ ︷︷ ︸
Σt

ic

) (20)

Table 1. Derivation of p(xt
i,v

t
i) and p(xt

i)

for the state of the pedestrians at time t−1, each state being
described with a single Gaussian distribution (a multivari-
ate one, for position and velocity). Furthermore, we assume
that these combinations are well separated from each other,
so that we can consider them independently and not affect-
ing each other (imagine the typical case when being able to
avoid a pedestrian on either left or right side). In Eq. (15),
we therefore assume that the state space St−1 can be fac-
torized into individual factors, each depending only on the
position and velocity of a single pedestrian. Eq. (15) also
introduces the LTA model and consequently the approxi-
mation by a mixture of Gaussians (see Eq. (6)). Here we
use km to indicate the k− th alternative of subject i starting
from combination m, therefore dropping index i to reduce
notational clutter. In Eq. (16), all the variables but xt−1

jm
are

integrated out. Here, wm results from the multiplication of
the weights the p(xt−1

jm
,vt−1

jm
) components were carrying.

In both Eq. (17) and Eq. (20) the Gaussian marginalization
is applied. In Eq. (18), for notational simplicity, a new index
c is introduced (we omit the mapping Map(km,m)→ c.
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