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SUMMARY

Cerebellar granule cells (GCs) account for more than
half of all neurons in the CNS of vertebrates. Theoret-
ical work has suggested that the abundance of GCs
is advantageous for sparse coding during memory
formation. Here, we minimized the output of the
majority of GCs by selectively eliminating their
CaV2.1 (P/Q-type) Ca2+ channels, which mediate
the bulk of their neurotransmitter release. This
resulted in reduced GC output to Purkinje cells
(PCs) and stellate cells (SCs) as well as in impaired
long-term plasticity at GC-PC synapses. As a conse-
quence modulation amplitude and regularity of sim-
ple spike (SS) output were affected. Surprisingly,
the overall motor performance was intact, whereas
demanding motor learning and memory consolida-
tion tasks were compromised. Our findings indicate
that a minority of functionally intact GCs is sufficient
for the maintenance of basic motor performance,
whereas acquisition and stabilization of sophisti-
cated memories require higher numbers of normal
GCs controlling PC firing.

INTRODUCTION

Over half of all neurons of the CNS are cerebellar GCs (Williams

and Herrup, 1988). These densely packed, small cells constitute

the main input stage of the cerebellar cortex, and they are

characterized by a peculiar morphology, which has been pre-

served throughout vertebrate phylogeny (Eccles, 1969). Each

of the four short dendrites of a GC receives input from a single

afferent mossy fiber, and their cell body gives rise to an

ascending axon that bifurcates into two parallel fibers (PFs).

GCs’ unique design is probably essential to confer them high

sensitivity for individual afferents (Chadderton et al., 2004;
C

Ekerot and Jörntell, 2008; Rothman et al., 2009). However, the

functional consequence of their striking abundance remains

elusive. Theoreticians have hypothesized that it would allow

the cerebellum to exploit the advantages of sparse coding in

terms of memory storage capacity (Schweighofer et al., 2001).

Yet, it remains to be proven whether this extremeGC abundance

is indeed essential to encode the wide range of information pre-

sented to the cerebellar cortex into an adaptable output that

controls motor behavior.

Previous investigations have studied cerebellum-dependent

behavior in mouse models in which the output of the granular

layer was completely abolished, either by eliminating all GCs

(De Zeeuw et al., 2004; Sidman et al., 1965) or by blocking neuro-

transmitter release from all GCs (Kim et al., 2009; Wada et al.,

2007). These robust interventions induced severe behavioral

symptoms including ataxia and hypotonia (De Zeeuw et al.,

2004; Kim et al., 2009). Yet, by completely interrupting the flow

of information from the cerebellar input stage to the output stage,

these studies cannot address the question of why vertebrates

have this enormous amount of GCs. Thus, to better understand

the evolutionary preservation of the abundance of cerebellar

GCs, a preferable strategy would be to tackle the output of

most, but not all, GCs. Moreover, since a structural elimination

of granule cells, such as in theweavermouse mutant, can cause

structural, secondary pathological processes in their target neu-

rons (Maricich et al., 1997), it is probably advantageous to create

a mouse mutant in which the output of the majority of GCs is

affected functionally rather than structurally.

To achieve this goal, we took advantage of incomplete expres-

sion of Cre recombinase using theCre-LoxP system (Tymms and

Kola, 2001) and generated a subtotal conditional granule-cell-

specific knockout line of P/Q-type voltage-gated calcium

channels (VGCCs), which normally mediate �90% of neuro-

transmitter release from GC axons during adulthood (D’Angelo

et al., 1997; Mintz et al., 1995). By cross-breeding the floxed

mouse line targeted for exon 4 of Cacna1a, i.e., the gene encod-

ing the pore-forming a1 subunit of P/Q-type VGCCs (Todorov

et al., 2006), with mutant mice that specifically express Cre
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Figure 1. Cre-LoxP Strategy to Obtain Granule-Cell-Specific Cac-

na1a Knockout Mice

(A) Top: Representation of relevant part of Cacna1aflox allele; black boxes

indicate exons E3-E6, triangles indicate relative position of LoxP sites;
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recombinase in the majority of cerebellar GCs (a6Cre) (Aller et al.,

2003), we generated a6Cre-Cacna1a KO. Our data demonstrate

that subtotal a6Cre-Cacna1a KO mice show no defects at the

level of cytoarchitecture or motor performance, but have a

compromised capability for adaptation and consolidation,

thereby redefining the role of GCs in cerebellar function.

RESULTS

a6Cre-Cacna1a KOMice Lack Cacna1a Gene fromMost,
but Not All, GCs
Using the imperfect Cre-LoxP system (Tymms and Kola, 2001),

we generated a line of a6Cre-Cacna1a KO mice, in which most,

but not all, GCs express Cre recombinase (Figure 1A). There-

fore, a smaller portion of the a6Cre-Cacna1a KO granule cell

population still harbored the (floxed) Cacna1a gene and ex-

pressed P/Q-type VGCCs. To confirm presence of Cre-

negative neurons in a6Cre-Cacna1a KO mice, we performed

immunohistochemical staining using an antibody against Cre

recombinase. As expected, all GCs from wild-type (WT) mice

and a minority of the GCs in the a6Cre-Cacna1a KO mice

were Cre negative (Figure 1B). Quantification across various

cerebellar regions revealed that in a6Cre-Cacna1a KO mice

75% of GCs were Cre positive (Figure 1C). To confirm the func-

tionality of the expressed Cre recombinase, we performed a

real-time quantitative PCR on tissue samples of a6Cre-Cacna1a

KO mice and control littermates using primers designed to

detect alleles that incorporate two LoxP sites (i.e., nonrecom-

bined DNA with the endogenous Cacna1a gene) or alleles

that contain a single LoxP site (i.e., recombined DNA without

exon 4 of the Cacna1a gene). We did not detect recombined

DNA (i.e., <2%) in the cerebral cortex of either genotypes or

in the cerebellum of WT, while in the cerebellar cortex of

a6Cre-Cacna1a KO mice the predominant fraction was recom-

bined DNA (86.2% ± 3.5% recombined versus 13.8% ± 3.5%

nonrecombined; Figure 1D). Thus, we successfully created a

mouse line in which we had a mixture of GCs (ranging from

an average of 75% to 86%) that lack the gene coding for the
arrows indicate position of exotic primers. Bottom: RT-PCR of wild-type

cerebellar RNA amplified a 580 bp fragment. Global KO of Cacna1aflox was

induced by crossing with conditional EIIA-driven Cre mice (see Extended

Experimental Procedures), which resulted in 490 bp fragments that lack exon 4

in both forebrain and cerebellum. In a6Cre-Cacna1a KO mice, RT-PCR of

forebrain RNA amplified a wild-type 580 bp fragments; both 580 and 490 bp

fragments were found in the cerebellum, suggesting cell-specific deletion of

exon 4.

(B) Immunohistochemical staining using anti-Cre antibodies showGC-specific

expression of Cre. Top: Cre is specifically expressed in the granule cell layer in

a6Cre-Cacna1a KO. M, molecular layer; G, granule cell layer; W, white matter;

CN, cerebellar nuclei. Bottom: Cre is expressed inmost, but not all GCs. Arrow

indicates a Cre-negative GC.

(C) Quantification of GCs negative for Cre immunohistochemistry in tissue from

wild-type vermis and a6Cre-Cacna1a KO cerebellar vermis, hemisphere, and

flocculus. See also Figure S1 and Table S1.

(D) Quantitative RT-PCR products of cerebellar tissue show that in

a6Cre-Cacna1a KO mice the recombined DNA fraction dominates the non-

recombined fraction, in contrast to cerebral cortex tissue and lung tissue (data

not shown).

Values: mean ± SEM; p values are described in the main text.
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Figure 2. Cerebellar GCs’ Output Is Mini-

mized in a6Cre-Cacna1a KO Mice

(A, C, and E) Representation of connectivity within

cerebellar cortex and positions of recording (tri-

angle) and stimulus (diamond) pipettes. For a

detailed description of GC, PC, and SC intrinsic

properties and MF-GC synapse, see Figures S2,

S3, and Tables S2 and S3.

(A) Parallel fiber-Purkinje cell (PF-PC) output.

Insets: typical PC responses to a single-pulse PF

beam stimulation of 10 mA for wild-type (top) and

a6Cre-Cacna1a KO mice (bottom).

(B) Average amplitude of excitatory postsynaptic

currents (EPSCs) to stimuli of increasing intensity

for wild-type (black diamond, n = 13) and

a6Cre-Cacna1a KO mice (white triangle, n = 9).

(C) Parallel fiber-stellate cell (PF-SC) output.

Insets: averages of 30 repetitive PF-SC EPSC

recordings in response to train stimuli (five pulses

at 100 Hz) for wild-type (top) and a6Cre-Cacna1a

KO mice (bottom).

(D) Percentage of failures recorded in SCs in

response to PF stimulation is significantly

increased in a6Cre-Cacna1a KO mice (white trian-

gle, n = 12) compared towild-type (black diamond,

n = 9); number of failures to the first stimulus is set

at 80% (see Extended Experimental Procedures).

Miniature PF-SC EPSCs are shown in Figure S4

and quantified in Table S4.

(E) Granule cell-Purkinje cell output (GC-PC). In-

sets, top: traces of a connected GC-PC pair from

wild-type. A train of action potentials of �200 Hz

elicited by somatic current injection in the GC (red

trace) induced postsynaptic responses in the PC. Bottom: Red trace indicates the averaged response of ten repetitive sweeps (gray traces) of GC-PC EPSC.

(F) Left: summary of EPSC amplitudes in PCs evoked by activation of a single GC for wild-type (open circles and black diamond, n = 11 out of the total of 68 paired

recordings) and a6Cre-Cacna1aKO (open circles andwhite triangle, n = 4 out of the total of 81 paired recordings) using pairedGC-PCwhole-cell recordings. Right:

Percentage of connected GC-PC pairs with detectable EPSC responses.

Values: mean ± SEM; asterisks: significant differences; p values are described in the main text.
pore-forming subunit of P/Q-type VGCCs and GCs (ranging

from an average of 25%–14%) that still express this gene.

Impaired Neurotransmission in Most GC Axons
In mature granule cells, the P/Q-type VGCC is expressed only at

their axon terminals (D’Angelo et al., 1997), where it mediates

the bulk of the neurotransmitter release (Mintz et al., 1995).

Ablation of synaptic P/Q-type VGCC from the majority of

GCs caused no gross anatomical alteration in the cerebellar

circuitry of a6Cre-Cacna1a KO animals (Figure 1B) and the ultra-

structure, electroresponsiveness, and input integration proper-

ties of their GCs were intact (all p values > 0.1; Figures S1 and

S2; Tables S1 and S2). We next recorded excitatory postsyn-

aptic currents (EPSCs) in both PCs and stellate cells (SCs)

(Figures 2A–2D), which showed no sign of secondary compen-

satory mechanisms in their intrinsic activity (Figure S3; Table

S3). Whole-cell recordings showed that following stimulation

of PFs, EPSC amplitudes in PCs were significantly lower in

a6Cre-Cacna1a KO mice at stimulus intensities >2 mA (p <

0.001; repeated-measures ANOVA). Likewise, average postsyn-

aptic responses evoked by activation of PF-SC synapses were

smaller and the failure rate at PF-SC synapses was significantly

higher in a6Cre-Cacna1a KO mice (p = 0.04; repeated-measures

ANOVA). To investigate whether this reduction in postsynaptic
C

responses to GC activation was due to a decrease in the

output of all GCs or due to a lack of output of a subset of GCs,

we evoked a 200 ms train of action potentials at 200 Hz in individ-

ual GCs and recorded the responses in a surrounding PC using

paired whole-cell recordings (Figure 2E). Eleven of the 68 paired

GC-PC recordings in WTs showed an evoked synaptic response

in PCs, whereas in a6Cre-Cacna1a KO mice only four of the 81

paired recordings revealed an evoked response (WT versus

KO, p = 0.006; binomial test). Notably, the maximal evoked

response in a6Cre-Cacna1a KO mice did not differ from that in

WTs (p = 0.33; Figure 2F). These results are in line with the immu-

nohistochemical and genetic analysis (Figure 1) and indicate that

in a6Cre-Cacna1aKO animals the majority of GCs appears largely

disconnected from their downstream target neurons.

Remaining Neurotransmitter Release Arises Mainly
from Functionally Intact GCs
Our data described above not only show that in a6Cre-Cacna1a

KO mice the output of the GC layer is greatly reduced, but also

suggest that a subset of GCs remains at least partially, function-

ally intact. To verify these findings, we recorded the responses in

PCs to PF beam stimulation with two pulses separated by an

increasing time interval (Figure 3A). We found no significant dif-

ferences among these paired-pulse ratios of a6Cre-Cacna1a
ell Reports 3, 1239–1251, April 25, 2013 ª2013 The Authors 1241



Figure 3. Remaining GC Output Is Functionally Intact and the Lack of P/Q-type Channels Appears Uncompensated

(A) Parallel fiber to Purkinje cell (PF-PC) EPSC ratio between second and first response to double stimuli with 25–300ms interstimulus intervals in wild-type (black

diamond, n = 10) and a6Cre-Cacna1a KO (white triangle, n = 17) mice. Insets: examples at 50 ms interstimulus interval.

(B) PF-SC EPSC ratio between consecutive responses during a 100 Hz stimulus train of five pulses for wild-type (n = 9) and a6Cre-Cacna1a KO mice (n = 12).

Insets: typical examples.

(C) PF-PC EPSC amplitude in PCs before (1) and after (2) application of u-Agatoxin IVA (P/Q-type Ca2+-channel blocker). Insets: PF-PC EPSCs at indicated time

points for wild-type (top) and a6Cre-Cacna1a KO mice (bottom). Note the differences between wild-type and a6Cre-Cacna1a KO mice in initial amplitude and

absolute effects of toxins.

(D) The average PF-PC EPSC component sensitive to the direct application ofu-Agatoxin IVA in wild-type (black, n = 7) and a6Cre-Cacna1aKOmice (white, n = 9).

(E) Residual EPSC (in pA) for wild-type and a6Cre-Cacna1a KO mice after application of u-Agatoxin IVA.

(F) PF-PC EPSC amplitude in PCs before (1) and after application of u-Conotoxin GVIA (N-type-specific Ca2+-channel blocker) (2) and u-Agatoxin IVA (3).

(G) The average PF-PC EPSC component sensitive to application of u-Conotoxin GVIA (left) and additional application of u-Agatoxin IVA (right) in wild-type

(black, n = 8) and a6Cre-Cacna1a KO (white, n = 6) mice.

(H) Residual EPSC for wild-type and a6Cre-Cacna1a KO mice after co-application of u-Conotoxin GVIA and u-Agatoxin IVA.

(I) Similar to (F) for subsequent application of SNX-482 (R-type Ca2+-channel blocker) and u-Agatoxin IVA.

(J and K) Similar to (G) and (H) for subsequent application of SNX-482 and u-Agatoxin IVA for wild-type (black, n = 8) and a6Cre-Cacna1a KO mice (white, n = 8).

Values: mean ± SEM; asterisks: significant differences; p values are described in the main text.
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KOs and WT (p = 0.3; repeated-measures ANOVA; Figure 3A).

This form of short-term plasticity also appeared normal at GC-

SC synapses when tested for interstimulus intervals of 10 and

20 ms (all p values >0.15, repeated measures ANOVA; Figure 3B

shows 10 ms interval). These data suggest that those GC termi-

nals that revealed neurotransmission show normal levels of

Ca2+ homeostasis.

Next, we evaluated the contribution of each type of VGCC to

GC transmitter release (i.e., P/Q-, N-, and R-type; Mintz et al.,

1995; Myoga and Regehr, 2011) by applying channel-specific

blockers while recording from PCs and stimulating PFs (Figures

3C–3K). Application of u-Agatoxin-IVA, which blocks P/Q-type

channels, reduced PF-evoked EPSCs in WT significantly more

than in a6Cre-Cacna1a KO (p = 0.004), whereas the remaining

EPSC amplitude was not significantly different between a6Cre-

Cacna1a KO and WT (p = 0.23). In contrast, application of u-

Conotoxin-MVIIC (N-type blocker) or SNX-482 (R-type blocker)

revealed no significant differences between a6Cre-Cacna1a KO

and WT (p = 0.35 and p = 0.78, respectively), which suggests

that the lack of P/Q-type channels in a6Cre-Cacna1a KO did not

trigger a pronounced compensatory increase in N- or R-type-

mediated neurotransmitter release. While coapplication of u-

Conotoxin or SNX-482 with u-Agatoxin returned a significant

result in the relative residual component (p = 0.014 and p =

0.031, respectively), the absolute residual component measured

in pA did not differ between a6Cre-Cacna1a KO andWT (p = 0.40

andp= 0.45, respectively). Thus, although the source of these re-

sidual amplitudes remains to be identified in both a6Cre-Cacna1a

KOandWT, our data obtainedwith blockers are in linewith those

on paired-pulse ratios at GC-PC and GC-SC synapses, which

together indicate that the remaining neurotransmitter release

from GCs in a6Cre-Cacna1a KO’s appears largely intact.

Although a6Cre-Cacna1a KO mutants do not show an altered

contribution of non-P/Q-type channels to evoked neurotrans-

mitter release, hypothetically, the lack of functional P/Q-type

channels could alter the release machinery downstream of Ca2+

influx. To evaluate such a potentially compensatory effect we re-

cordedminiature (m)EPSCs inSCs,whichmostly occurasa result

of stochastic fusionof vesicleswith thesynapticmembrane, i.e., a

Ca2+-independent process (Chen andRegehr, 1997). In the pres-

ence of tetrodotoxin (TTX), which blocks action potential medi-

ated transmitter release, we found neither the frequency, nor

the amplitude or kinetics of such mEPSCs to be significantly

different in a6Cre-Cacna1aKOmice (all p values >0.16; Figure S4;

Table S4). Moreover, in the absence of TTX we occasionally re-

corded high-frequency EPSCs in both WT and a6Cre-Cacna1a

KOSCs (Figure S4), which are characteristic of normalGCactivity

(Chadderton et al., 2004) and thus provide further support for the

notion that the remaining transmitter release from GCs in a6Cre-

Cacna1a KO mice appears functionally intact.

No Changes in Motor Performance
To assess the impact of a substantially reduced GC output on

cerebellar-dependent behavior, we first studied baseline motor

performance of a6Cre-Cacna1a KOmice using a battery of quan-

titative tests. Remarkably, the performance of a6Cre-Cacna1a

KO mice was indistinguishable from that of WT littermates in

the open field (p = 0.21 for both distance traveled and average
C

speed), rotarod (4–40 rpm in 300 s: p = 0.83; 2–80 rpm in

300 s: p = 0.23), balance beam (p = 0.27, repeated-measures

ANOVA), and Erasmus Ladder task (p = 0.97, repeated-mea-

sures ANOVA) (Figures 4A–4D). In addition, we evaluated oculo-

motor activity, which is particularly sensitive to cerebellar deficits

(Schonewille et al., 2010). Both gain and phase values during the

optokinetic reflex (OKR) (p = 0.25 and p = 0.43, respectively;

repeated-measures ANOVA), vestibulo-ocular reflex (VOR) in

the dark (p = 0.49 and p = 0.35), and VOR in the light (visually

enhanced VOR [VVOR]; p = 0.52 and p = 0.74), all recorded at

0.1–1.0 Hz with 5� amplitude, did not differ significantly between

a6Cre-Cacna1a KO and WT mice (Figures 4E–4G). To further

challenge the animals, we increased the difficulty of the OKR

experiments, during which the mice were subjected to higher

stimulus frequencies (up to 1.6 Hz) and higher stimulus ampli-

tudes (up to 25�) while maintaining peak drum velocity (Fig-

ure 4H). Here, too, we observed no significant differences in

gain (p = 0.21) or phase (p = 0.54).

Deficits in Motor Learning and Consolidation
To find out to what extent the GC output is relevant for motor

learning and storage of procedural memories (De Zeeuw et al.,

2011), we studied the ability of a6Cre-Cacna1a KO mice to learn

to walk on a fast-accelerating rotarod and to adapt their VOR.

With regard to locomotion learning (Figures 5A–5C), a6Cre-

Cacna1a KO learned significantly less (p = 0.02; ANOVA for

repeated measures) than their wild-type littermates on a fast-

accelerating rotarod (4–80 rpm in 300 s) over eight consecutive

training days. In addition, we quantified the maximum speed

that was reached at the end of the training sessions and found

that a6Cre-Cacna1a KO mice reached a significantly lower level

(p = 0.02) than controls. With regard to VOR learning, the ampli-

tude of the VOR in a6Cre-Cacna1a KO mice decreased to similar

levels as that in WT mice (p = 0.9; repeated-measures ANOVA)

during the first session of gain-decrease training (Figures 5D

and 5E). However, when the animals were tested again after

spending 23 hr in the dark, the VOR gain of a6Cre-Cacna1a KO

mice had returned to near-baseline levels (p = 0.22; baseline

versus next day, paired Student’s t test), whereas that of WT

mice was consolidated for �60% (p = 0.02; a6Cre-Cacna1a KO

versus WT) (Figures 5E and 5F). During VOR gain-increase and

phase-increase training (Figures 5G–5L), which can be expected

to be more sensitive to disruptions in cerebellar circuitry function

(Hansel et al., 2006; Schonewille et al., 2010), a6Cre-Cacna1a KO

mice showed immediate significant impairments in acquisition

and consolidation compared to WT mice (p = 0.005 and p =

0.045 for gain-increase and phase-increase training, respec-

tively; p = 0.046 for consolidation following phase-increase

training, repeated-measures ANOVA; gain-increase consolida-

tion values could not be determined for a6Cre-Cacna1a KO due

to lack of learning). Moreover, when we subjected animals to

an extended training with a phase-reversal paradigm repeated

for four consecutive days, a6Cre-Cacna1a KO mice not only

showed significantly impaired learning (p = 0.015 for days 3–5),

but also a persistent problem with consolidation (p = 0.036 for

days 2–5) (Figures 5M–5O and S5). Finally, given that OKR adap-

tation often occurs as a corollary effect of vestibular training (van

Alphen and De Zeeuw, 2002), we measured OKR gain at the end
ell Reports 3, 1239–1251, April 25, 2013 ª2013 The Authors 1243
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Figure 4. a6Cre-Cacna1a KOMice Show Normal Motor Performance

(A) Distance traveled and average speed in open field for wild-type (black,

n = 10) and a6Cre-Cacna1a KO mice (n = 11).

(B) Latency to fall from a rotating rod that accelerates in 300 s to either

40 rpm (left) or 80 rpm (right) for wild-type (n = 5 and n = 7, respectively) and

a6Cre-Cacna1a KO mice (n = 5 and n = 6, respectively).
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of our VOR training. In a6Cre-Cacna1a KO mice, both the VOR

gain-increase and VOR phase-reversal protocol resulted in

increased OKR gain values (VOR gain increase, p < 0.001; VOR

phase reversal, p = 0.06; repeated-measures ANOVA), but these

increases were significantly less than those in WT mice (all p

value < 0.015; repeated-measures ANOVA) (Figure S5).

PF-PC Synaptic Plasticity Is Impaired While PC Intrinsic
Plasticity Is Intact
The observation that some forms of motor learning are impaired

in a6Cre-Cacna1a KO mice raises the possibility that plasticity is

impaired at the PF-PC synapse, which is regarded as one of the

key synapses for cerebellar learning (Gao et al., 2012; Ito, 2002).

The induction of postsynaptic long-term potentiation (LTP) and

that of postsynaptic long-term depression (LTD) at the PF-PC

synapse of a6Cre-Cacna1a KO mice were both significantly

impaired (for LTP in a6Cre-Cacna1a KO mice versus that in WT,

p = 0.01; for LTD, p = 0.02; Figures 6A and 6B). Instead, following

induction of intrinsic plasticity (Belmeguenai et al., 2010) PCs in

a6Cre-Cacna1a KO and WT showed similar changes in response

to injected currents (p = 0.6) (Figure 6C). Our results show

that postsynaptic plasticity at PF-PC inputs is minimal in

a6Cre-Cacna1a KO, but that PCs are still able to respond to those

inputs with a plastic change of their electroresponsiveness.

Both Modulation and Regularity of Purkinje Cell Activity
Are Affected
To better understand the relation between the cell physiological

abnormalities and deficits in motor learning, we studied the

electrophysiological properties of the output of the cerebellar

cortex by recording PC activity in alert animals (Figure 7A). At

rest, simple spike (SS) activity in a6Cre-Cacna1a KO mice was

more regular than that of controls as quantified by a significantly

decreased coefficient of variance 2 value (CV2; p = 0.01;

Extended Experimental Procedures), whereas the average SS

firing frequency and length of the climbing fiber pause were

not significantly different (p = 0.12 and p = 0.59, respectively)

(Figure 7B). In contrast, firing frequency and regularity of com-

plex spike (CS) activity were both normal (all p values >0.5), indi-

cating that spiking activity in the inferior olive is within normal

ranges during spontaneous activity (De Zeeuw et al., 2011).

To assess visual processing in the flocculus, which drives

plasticity during VOR and OKR adaptation (Ito, 2002; Raymond

et al., 1996), we also recorded activity of vertical-axis PCs in alert

a6Cre-Cacna1a KO andWTmice during visual whole-field stimu-

lation at 0.1, 0.4, and 1.6 Hz (Figure 7C). Whereas the timing, i.e.,

phase, of SS activity relative to the optokinetic stimulus was

not significantly different among a6Cre-Cacna1a KO and WTs
(C) Quantification of number of missteps on a narrow beam for wild-type

(diamond, n = 9) and a6Cre-Cacna1a KO mice (triangle, n = 9).

(D) Quantification of number of missteps on Erasmus ladder for wild-type

(diamond, n = 8) and a6Cre-Cacna1a KO mice (triangle, n = 8).

(E–G) Baseline compensatory eye movements quantified by gain (left) and

phase (right) for wild-type (n = 13) and a6Cre-Cacna1a KO mice (n = 10): (E)

optokinetic reflex (OKR); (F) vestibulo-ocular reflex (VOR); (G) visually

enhanced VOR (VVOR).

(H) Fixed-velocity (8�/s) OKR.

Values: mean ± SEM; p values are described in the main text.
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Figure 5. a6Cre-Cacna1a KO Mice Show

Aberrant Acquisition and Consolidation of

Specific Motor Tasks

(A) Representation of rotarod test at 2–80 rpm for

300 s during 8 consecutive days.

(B) Latency to fall (or rotate 360� for three

consecutive rotations) for wild-type (black dia-

mond, n = 7) and a6Cre-Cacna1a KO mice (white

triangle, n = 6).

(C) Maximum rotation speed reached per mouse

over the complete training period.

(D) Representation of gain-decrease training

paradigm. Day 1: 5 3 10 min sinusoidal, in phase

drum and table rotation at 0.6 Hz, both with an

amplitude of 5�; day 2: VOR gain measurement at

0.6 Hz.

(E) Normalized gain for VOR recorded with 10 min

intervals during 50 min training session for wild-

type (black diamond, n = 8) and a6Cre-Cacna1a KO

mice (white triangle, n = 6) on day 1 and a single

measurement at day 2.

(F) Differences in consolidation (percentage

change carried forward from the previous day) for

gain-decrease training (day 1 to 2).

(G–I) Similar to D-F for gain-increase training for

wild-type (n = 8) and a6Cre-Cacna1a KO mice (n =

7) (day 1: 5 3 10 min sinusoidal, out-of-phase

drum and table rotation at 1.0 Hz, both with an

amplitude of 1.6�; day 2: VOR gain measurement

at 1.0 Hz).

(J–L) Similar to (D)–(F) for phase-increase training

for wild-type (n = 6) and a6Cre-Cacna1a KO mice

(n = 7) (day 1: 5 3 10 min sinusoidal, drum, and

table rotation at 0.6 Hz, and an amplitude of 5�,
drum leading table by 90�; day 2: VOR phase

measurement at 0.6 Hz).

(M–O), Similar to (D)–(F) for phase-reversal para-

digm for wild-type (n = 8) and a6Cre-Cacna1a KO

mice (n = 6) (following the gain-decrease protocol,

from day 2 to day 5: 53 10min sinusoidal in phase

drum and table rotation at 0.6 Hz, but with drum

amplitudes of 7.5� [days 2 and 3] and 10� [days 4

and 5], while the table amplitude was 5�; gain

values are shown in Figure S5A). Phase consoli-

dation over multiple days in O was calculated by

dividing the minimal gain or phase change carried

onward to day n + 1 by the maximal change ach-

ieved during day n.

The OKR values measured before and after the

VORadaptationareshown inFiguresS5BandS5C.

Values: mean ± SEM; asterisks: significant differ-

ences; p values are described in the main text.
(p = 0.68; repeated-measures ANOVA), both the mean firing rate

andmodulation amplitude of SS activity of PCs in a6Cre-Cacna1a

KO were significantly lower during stimulation than those in WT

(p < 0.0001 and p = 0.0014, respectively) (Figure 7D). In addition,

the magnitude sensitivity of SSs, which corresponds to the

spiking activity relative to the eye movement, was significantly

lower in a6Cre-Cacna1a KO compared to that in WT
Cell Reports 3, 1239–125
(p < 0.0001; repeated-measures ANOVA).

Moreover, CV and CV2 values of SS

activity during modulation were, similar
to those during spontaneous activity, significantly reduced (p =

0.0011 and p < 0.00001, respectively; repeated-measures

ANOVA). In contrast, the modulation amplitude (p = 0.99;

repeated-measures ANOVA), phase (p = 0.51), CV (p = 0.27),

and CV2 (p = 0.24) of CS activity during optokinetic stimulation

were not significantly different between a6Cre-Cacna1a KO and

controls, while its mean firing rate during modulation was mildly,
1, April 25, 2013 ª2013 The Authors 1245
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Figure 6. Absent Long-Term Synaptic Plasticity at Parallel Fiber-

Purkinje Cell (PF-PC) Synapses, but Normal Intrinsic Plasticity of PC

Excitability

(A) Long-term potentiation (LTP) was induced by PF stimulation at 1 Hz for

5 min in wild-type (n = 8) and a6Cre-Cacna1a KO (n = 6) PCs.

(B) Long-term depression (LTD) was induced by pairing PF and climbing fiber

stimulation at 1 Hz for 5 min wild-type (n = 7) and a6Cre-Cacna1a KO (n = 7).

(C) Plasticity of intrinsic PC excitability was assessed by quantifying the

number of action potentials evoked by somatic currents injections before and

1246 Cell Reports 3, 1239–1251, April 25, 2013 ª2013 The Authors
but significantly, reduced in a6Cre-Cacna1a KO PCs (p = 0.04;

repeated-measures ANOVA) (Figure 7E). These data indicate

that altered SS modulation of PC activity in the flocculus does

not necessarily cause a change in motor performance, and they

raise the possibility that the deficits in VOR learning and consol-

idation in a6Cre-Cacna1a KO mice may result from changes in

modulation amplitude and/or regularity of their PC activity.

DISCUSSION

A relatively small subset of functionally intact GCs appears suf-

ficient to maintain basic motor performance, whereas it fails to

encode demanding forms of short-term learning and memory

consolidation. Toning down the output of the majority of GCs

affects induction of both LTP and LTD at the PF to PC synapse,

but not the potential of PCs to modify their intrinsic excitability.

Likewise, it affects the firing rate, amplitude, and regularity of

PC SS activity during modulation, but it does not change the

average firing frequency at rest. These findings provide impor-

tant experimental clues as to why vertebrates need an extreme

abundance of functional GCs in daily life and to what extent

this abundance is redundant.

Vast Majority of Granule Cells Is Silenced
We successfully generated a cell-specific mouse line that com-

prises both a minority of intact GCs in which neurotransmission

appears normal and a majority of GCs in which neurotransmis-

sion is largely impaired due to a lack of functional P/Q-type chan-

nels. Despite the fact that this latter defect in GCs did not affect

their spontaneous dendritic and somatic activity or that of their

postsynaptic target neurons, we found a significant decrease

in the overall responses of SCs and PCs to PF beam stimulation.

This reduced response level can, in principle, result from a

reduced number of functional GCs and/or from a reduced func-

tion of GCs. Our blocking experiments with Agatoxin raise the

possibility that in the Cre-positive neurons, which lack P/Q-

type channels, some fraction of neurotransmitter release might

still be functionally intact due to the activation of non-P/Q-type

channels. Yet, we have not been able to find direct signs of

compensation by N- and R-type channels. In addition, the

paired-pulse ratios at both the GC-PC and GC-SC synapses in

a6Cre-Cacna1aKO were not different from those in WT, which

probably would not have occurred if the release of neurotrans-

mitters from GCs was mediated by a heterogeneous population

of calcium channels (Inchauspe et al., 2004). Moreover, the GC-

PC double whole-cell recordings showed that the percentage of

connectivity is highly reduced in KO, while there was no signifi-

cant difference in the amplitude of unitary PC responses to single

GC activation. Thus, together with the immunocytochemical and

PCR data, which indicated that 75% to 86% of the GCs was

affected, our results imply that the reductions in response level

of SCs and PCs result mainly from a vastly reduced number of

functional GCs.
after PF stimulation at 1 Hz for 5 min in wild-type (n = 8) and a6Cre-Cacna1a KO

(n = 7) PCs.

Values: mean ± SEM; asterisks: significant differences; p values are described

in the main text.



Figure 7. a6Cre-Cacna1a KO Mice Show

More Regular PC SS Firing and Decreased

Modulation of SSs in Response to Optoki-

netic Stimulation

(A) Example traces of extracellularly recorded

PC activity from alert wild-type (left) and

a6Cre-Cacna1a KO mice (right). Both traces show

negative deflections (SSs) and a single positive

deflection (CS; arrow) of which the latter is

consistently followed by a pause confirming the

single-unit character of the recordings.

(B) Average SS firing frequency (FF) and coeffi-

cient of variance 2 value (CV2) for wild-type (black,

n = 26) and a6Cre-Cacna1aKOmice (white, n = 33).

Average CS firing frequency and coefficient of

variance (CV) and pause in SS firing following CSs,

i.e., climbing fiber pause, for the same recordings.

(C) Representative single-unit activity recorded

from Purkinje cells in the flocculus of a wild-type

(left) and a a6Cre-Cacna1a KO (right) mouse during

fixed velocity (8�/s, 0.4 Hz) OKR stimulation. The

visual stimulus and eye position are shown

together with histograms of SS and CS fre-

quencies and corresponding raster plots.

(D) Left: amplitude of SS modulation recorded in

response to optokinetic stimulation at 0.1 Hz (WT:

n = 11; KO: n = 9), 0.4 Hz (WT: n = 13; KO: n = 13),

and 1.6 Hz (WT: n = 8; KO: n = 9). Middle: mean SS

firing rate during modulation. Right: phase of SS

modulation relative to the stimulus.

(E) CS amplitude, mean firing rate, and phase of

modulation.

Significance was tested using a nonorthogonal

repeated-measure ANOVA (Extended Experi-

mental Procedures).

Values: mean ± SEM; asterisks: significant differ-

ences; p values are described in the main text.
Abundance of Granule Cells Is Required for Dynamic
Range and Temporal Variation of PC Activity as Well as
Motor Learning and Consolidation
Our data show that one can substantially reduce the GC output

and yet merely induce deficits in particular forms of learning and

consolidation without causing deficits in motor performance.

This finding is particularly surprising if one takes into account

that the SS rate coding of floccular PCs in a6Cre-Cacna1a KOs

was affected during normal optokinetic eye movements. Prob-

ably, the decreases in mean firing rate and amplitude of the SS

activity result from both a reduction of GC output directly onto

Purkinje cells and a reduced inhibitory input onto PCs from

MLIs, which also received a reduced GC input. The reduction

in SS activity during modulation presumably disinhibits neurons

in the cerebellar and vestibular nuclei and thereby increases the

inhibitory input to olivary neurons (Best and Regehr, 2009; Chen

et al., 2010), which might explain the slight reduction of CS firing
Cell Reports 3, 1239–125
rate during modulation. Apparently, the

reduced SS activity and CS activity in

a6Cre-Cacna1a KO mice during natural

(i.e., nonmismatch, nontraining) visual

and vestibular stimulation were sufficient

to control the modulation in downstream
targets at such a level that the amplitude and timing of the move-

ments during baseline OKR and VOR were functionally

adequate. Possibly, compensatory mechanisms at the cere-

bellar nuclei facilitated by collateral input from mossy fibers

and/or climbing fibers play a conserving role during normal

motor performance (De Zeeuw et al., 2011). Yet, during more

challenging paradigms, such as locomotion learning on a fast-

accelerating rotarod or gain-increase and phase-reversal

learning of the VOR, the cerebellar system appears to need a

wider dynamic range of SS modulations of its PCs to entrain

its target neurons downstream (Aizenman and Linden, 2000;

Medina and Lisberger, 2008; Nelson et al., 2003). Similarly, the

difference in temporal variability (i.e., CV2 value) of SS activity

in a6Cre-Cacna1a KO mice was apparently not detrimental for

motor performance, whereas it might have contributed to

some of the learning and consolidation deficits (Seja et al.,

2012;Wulff et al., 2009). It is interesting to note thatmodifications
1, April 25, 2013 ª2013 The Authors 1247



of calcium kinetics in GCs with presumably opposite effects on

calcium influx can actually increase SS activity and concomi-

tantly affect motor performance (Bearzatto et al., 2006; Schiff-

mann et al., 1999). These modifications of calretinin expression

did not directly affect neurotransmission at the parallel fiber syn-

apses, but instead increased the excitability of GCs, while

altering the climbing fiber pause together with SS activity (Bear-

zatto et al., 2006; Gall et al., 2003; Schiffmann et al., 1999).

Our finding that abundant numbers of GCs are required to sus-

tain a sufficient dynamic range of SS modulation and temporal

variation, which can be called into play during cerebellar motor

learning and consolidation, is in line with various models. For

example, the Schweighofer model on unsupervised learning of

GC sparse coding predicts that basic motor performance can

be normal despite a lower number of GCs, whereas the level of

learning and stability of learned responses, i.e., consolidation,

should be affected as a consequence of a reduced capacity

for effective plasticity inside the granular layer (Andreescu

et al., 2011; Schweighofer et al., 2001; Seja et al., 2012). Like-

wise, the Marr-Albus-Ito model predicts that plasticity at the

PF-PC synapse is critical for motor learning (Ito, 2002), while

Lisberger’s model on VOR learning is consistent with a dynamic

role for rate coding in SS responses (Ramachandran and

Lisberger, 2008). Finally, a recent model from our own group

predicts that proper spatiotemporal patterns of SS activity may

contribute to consolidation of motor learning in the nuclei down-

stream (De Zeeuw et al., 2011; Wulff et al., 2009).

Emerging Hypothesis of Distributed Synergistic
Plasticity
A closer look at the precise cell physiological and behavioral

phenotypes in the current GC-specific a6Cre-Cacna1a KO

mouse and a direct comparison with those of other cerebellar

mouse mutants point toward a common hypothesis on distrib-

uted synergistic plasticity as the main mechanism underlying

cerebellar learning (Gao et al., 2012). For example, when we

blocked the induction of PF LTD by inhibiting PKC activity in

PCs we found, unlike in the a6Cre-Cacna1a KO, a phenotype in

VOR gain-decrease learning (De Zeeuw et al., 1998; van Alphen

and De Zeeuw, 2002). This discrepancy may be explained by the

fact that PKC operates at many sites inside PCs including its

dendrites, cell body, and axon terminals, and thus blockage of

PKC in PCs may have, apart from minimizing PF LTD, various

effects such as impairing plasticity at the MLI to PC synapse

and/or at the PC to cerebellar nucleus neuron synapse (Kano

et al., 1996; Pedroarena and Schwarz, 2003; Song and Messing,

2005). A similar argument of synergistic interactions with other

forms of plasticity may also explain why we did not find any

behavioral phenotype when we blocked the expression of LTD

by impairing internalization of AMPA receptors (Schonewille

et al., 2011); here, plasticity at the MLI to PC synapse was

probably unaffected and thus formed a potential site for

compensation. Or similarly, in L7-PP2B mice, in which both

postsynaptic PF-PC LTP and PC intrinsic plasticity are affected,

we found deficits not only in gain increase, but also, differently

from the a6Cre-Cacna1a KOs, in gain-decrease learning (Scho-

newille et al., 2010). Therefore, we hypothesize that plasticity

at PF-PC synapses may contribute to learning under normal
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physiological circumstances, but that it is not essential for it

and that its blockage can be compensated for by plasticity at

other synaptic sites and/or by plasticity of intrinsic excitability

of PCs or downstream neurons. This hypothesis of distributed

synergistic plasticity could also explain why we have both a

learning and consolidation phenotype in a6Cre-Cacna1a KOs.

In this mouse mutant, the direct route from GCs to PCs as well

as the indirect route via the interneurons to PCs is affected. In

this respect, it is interesting to note that L7-g2 KO mice, which

suffer from a block of inhibition onto PCs and, as a secondary

effect, a reduced PF excitatory input (Wulff et al., 2009), have a

deficit in eye-movement performance, whereas a6Cre-Cacna1a

KOs do not have such a deficit, but show instead a phenotype

in gain-increase learning.

Finally, the concept of distributed synergistic plasticity may

also help to explain why it is possible that a mouse mutant like

the a6Cre-Cacna1a KOdoes not show any deficit in regular motor

performance, while it does have impairments in motor learning.

One of the main reasons is probably that different forms of

plasticity require different periods of time to be fully induced

and expressed (Gao et al., 2012). As a consequence, behavioral

deficits can start to arise in the lab when animals are challenged

to learn a new task in a relatively short time, such as learning a

new gain and/or phase of its eye movements within a couple of

hours, during which only some forms of plasticity can be

engaged. Instead, in real life the mutant has weeks to compen-

sate and use all other forms of plasticity including those that

may operate slower than the specific type of plasticity affected

and those that do not even reside within the cerebellar cortex.

This implies that the mutant will learn at a slower pace, but even-

tually it can lead to a normal baseline motor performance. The

differences in learning deficits during short-term and long-term

training periods found for L7-PKCi mutants are in line with this

hypothesis (De Zeeuw et al., 1998; van Alphen and De Zeeuw,

2002). Thus, together with the phenotypes of other cell-specific

mutants of the cerebellar cortex, the current data obtained with

the a6Cre-Cacna1a KO point toward the possibility that the plas-

ticity mechanisms underlying cerebellar learning are distributed

in that they occur at multiple sites and operate over time in a syn-

ergistic fashion in that they can reinforce one another and allow

for compensation.

Implications of Sparse Coding Inside and Outside
the Cerebellum for Memory Formation
Apart from the numerical changes in connectivity of their

granular and molecular layer, configuration changes in the

network that affect sparse coding may also contribute to the

aberrant acquisition and consolidation of long-term memory in

a6Cre-Cacna1a KO mice. An important factor might be that

silencing GCs in a random fashion scatters the GC output to

PCs into a mosaic pattern. This scattering of GC output might

not only directly corrupt the potential of PCs to integrate spatio-

temporal encodings, but it may also contribute to the disrupted

synaptic plasticity between GCs and PCs, which may require a

specific clustering of inputs to be induced successfully (Eilers

et al., 1995). In principle, the putatively detrimental effects of a

lack of spatial clustering may apply to both LTD and LTP induc-

tion at the PF-PC synapses, both of which were affected in



a6Cre-Cacna1a KO mice. The reduction in spatial clustering of

GC output may thus push the cerebellar system to such an

extreme sparseness that it corrupts the formation of appropriate

activity patterns rather than being functional for memory storage

(Wilms and Hausser, 2010, FENS, abstract).

In the present study, the usefulness of cell-specific subtotal

genetic lesions is revealed by the fact that one of the main func-

tions of the cerebellum, i.e., control of motor performance, is not

affected by the lesion, whereas its other two main functions, i.e.,

motor learning and consolidation, are affected. These data stand

in contrast to those obtained with lesions of all GCs, which result

in severe ataxia and learning deficits (De Zeeuw et al., 2004; Kim

et al., 2009). The subtotal, but cell-specific, approach has also

provided interesting results in other memory systems. For

example, subtotal genetic lesions of the entorhinal cortex layer

III cells that provide input to the hippocampus impairs the

temporal association memory tasks, but not the acquisition,

recall, or consolidation of spatial reference memory (Suh et al.,

2011). Or at an even more precise quantitative level, fear-condi-

tioningmemory can be affected by a blockage of AMPA receptor

synaptic incorporation in as few as �15% of the neuronal

population in the lateral amygdala or by deleting a similarly small

subpopulation of CREB-expressing neurons in the same region

(Han et al., 2009; Rumpel et al., 2005). Thus, in line with these

studies on declarative memories formed by extracerebellar re-

gions, the current study on the granular layer of the cerebellum

shows that sparseness of coding is more relevant for formation

and consolidation of procedural memories than for other basic

cerebellar functions such as control of motor performance, for

which the network has a higher level of redundancy.
EXPERIMENTAL PROCEDURES

Generation of a6Cre-Cacna1a KO Mice

Mutant mice lacking P/Q-type VGCCs in GCs were obtained crossing mice

carrying a floxed Cacna1a allele (exon 4) (Todorov et al., 2006) with mice car-

rying the a6-Cre transgene (Aller et al., 2003). Mice of the following genotypes

were used for the experiments: Cacna1aLoxP/LoxP/Cre+ (i.e., a6Cre-Cacna1a

KO) and Cacna1aLoxP/LoxP/Cre�, Cacna1awt/wt/Cre+ and Cacna1awt/wt/Cre�
(i.e., wild-type). For all experiments, the researchers were blind to the

genotype of the animals (all older than P18, gender-matched for behavioral

experiments). All experiments were performed in accordance with the guide-

lines for animal experiments of the respective universities and the Dutch

national legislation.

Quantitative PCR

The efficiency of Cacna1a deletion was determined by performing quantitative

PCR on DNA isolated from cerebella, cortices, and lungs of Cacna1aLoxP/LoxP/

Cre+ and Cacna1aLoxP/LoxP/Cre mice. QPCR primer sets were chosen for the

identification of the first LoxP site (nonrecombined allele) and a reverse primer

set downstream of the second LoxP site (recombined allele).

Immunohistochemistry and Electron Microscopy

The primary antibody mouse anti-Cre (MMS-106P, Covance) was detected

with a biotinylated goat anti-mouse secondary antibody (Sigma-Aldrich,

Netherlands). The staining was visualized with the avidin-biotin-peroxidase

complex method (Vector Laboratories) and 0.05% diaminobenzidine as the

chromogen. Neuronal morphology was assessed using a rapid GolgiStain

Kit (FD Neurotechnologies) and Neurolucida software (Microbrightfield). For

electron microscopy sections were processed as described before (De Zeeuw

et al., 1998). Micrographs were taken at 2,6003 (granular layer) or at 25,0003
C

(distalmolecular layer). Quantitative analysis was performed with MetaVue 4.6

(Metavue Corporation).

In Vitro Electrophysiology

Sagittal slices of cerebellar vermis (250 mm) were made in ice-cold oxygenated

‘‘slicing’’ solution and kept at room temperature (RT, 21�C ± 2�C) in oxygen-

ated artificial cerebrospinal fluid (ACSF). Whole-cell patch-clamp recordings

were performed at RT using an Axopatch 700B (Molecular Devices, USA) or

an EPC-10 amplifier (HEKA, Germany) in the presence of 100 mM picrotoxin.

Using patch electrodes filled with ACSF, we stimulated PFs in the outer one-

third of the molecular layer, CFs in the granular layer and MFs in the white

matter. Recordings were excluded if series or input resistances (assessed

by �10 mV voltage steps following each test pulse) varied by >15%.

Motor Behavior

After a week of handling, the motor behavior was tested with four paradigms:

(1) locomotion in an open field, (2) motor coordination on an accelerating

rotating rod (40/80 rpm) for maximal eight consecutive days, (3) balancing

on a 1.5 cm wide beam, and (4) walking pattern for 4 consecutive days on

the Erasmus ladder.

Compensatory Eye Movements

After 5 days of recovery following placement of a skull pedestal, mice were

fixed onto the center of a turntable surrounded by a cylindrical screen. Base-

line OKR and (V)VORwere evoked by rotating either the screen with a constant

velocity of 8�/s or the turntable with a constant amplitude of 5�. Adaptation
protocols are listed in the figure legends.

In Vivo Electrophysiology

PCs were identified by their brief pause in SS activity following each CS and

recorded extracellularly from either the flocculus or nonfloccular regions in a

lighted surrounding. The optimal axis tomodulate floccular Purkinje cell activity

was determined by rotating the planetarium around the vertical axis or a

horizontal axis at 135� azimuth, ipsilateral to the side of recording (Schonewille

et al., 2010).

Data analysis

All values are represented as mean ± SEM; p values of <0.05 were considered

significant and are reported in the main text. Statistical analysis was done

using Student’s t test, unless stated otherwise.
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