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Abstract
This paper presents an optimisation methodology for simulating the integration of distributed generation and electric vehi-
cles (EVs) in a residential district. A model of a smart residential district is proposed. Different charging scenarios (CS) for 
private cars are considered for simulating different power demand distributions during the day. Four different case studies 
are investigated, namely the Base Case, in which no EVs are present in the district and three study cases with different CSs. 
A global optimisation method based on a genetic algorithm approach was applied on the model to find the total power from 
PV panels installed and co-generative micro gas turbines while minimising the annual energy cost in the district for the four 
different scenarios. In conclusion, the results showed that the use of EVs in the district introduces considerable savings with 
respect to the Base Case. Moreover, the impact of the chosen CS is nearly insignificant under a purely economic perspective 
even if it is relevant for grid management. Additionally, the optimum amounts of installed power vary in a limited range if 
the distance travelled by EVs, users’ departure and arrival time change broadly.

Keywords Distributed generation · Electric vehicles · EV charging strategy · Smart residential district · Photovoltaic 
panels · Micro-turbines · Co-generation · Genetic algorithm

Introduction

An energy system is defined as the totality of energy sources, 
energy conversion plants and storage devices together with 
users and infrastructures, which guarantee energy transmis-
sion and distribution [1].

Energy sources can be either renewable, with rates of 
regeneration which counterbalance their consumption, or 
non-renewable, with regeneration occurring in a time scale 
that is not comparable with that of human activities. Non-
renewable energy sources include fossil fuels such as oil 
and coal, and nuclear resources; renewable energy derives 
from sunlight, wind, rain, tide, geothermal heat and biomass.

In pre-industrial society, and until the second half of the 
nineteenth century, energy needs were extremely low. Wood 
and traditional biomass were principally employed as fuels, 

while wind and hydropower were exploited to drive simple 
machines. With the Industrial Revolution, these sources have 
progressively been substituted with coal, which became the 
dominant energy source by the beginning of the twentieth 
century. Since the twentieth century, the importance of oil 
has steadily increased, becoming the leading contributor to 
the world’s energy source by the 1970s. From the 1950s and 
especially in the last decades of the previous century, the use 
of natural gas, hydraulic and nuclear energy has increasingly 
become more popular [1].

Although not comparable to non-renewable energy, the 
exploitation of renewable energy sources (RES) became 
significant at the start of the twenty-first century. The 
disparate use of energy in the world’s macro regions is 
remarkable. Asia uses a huge amount of coal; China is 
the largest producer and consumer of coal in the world. 
In Africa and North America, natural gas and oil have 
a primary role; coal and hydropower are also present in 
the energy mix, together with nuclear and renewables in a 
small portion (mainly in North America). The Middle East 
relies almost completely on oil and natural gas, being a 
region with substantial reserves. Europe and Eurasia prove 
to be the regions where renewable energy is most widely 
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exploited, although its proportion in the energy mix is still 
not comparable to that of fossil fuels. Finally, South and 
Central America indicate a considerable consumption of 
hydroelectricity. According to EUROPE 2017 [2], “the 
2020 package is a set of binding legislations to ensure 
that EU meets its climate and energy targets for the year 
2020. The three key targets are: “20% cut in greenhouse 
gas emissions (from 1990 levels); 20% of EU energy from 
RES; 20% improvement in energy efficiency”. These tar-
gets had previously been set by EU leaders in 2007 and 
later enacted as legislation in 2009.

An overview about energy system has been provided: the 
reasons behind its non-sustainability have been pointed out 
together with the actions planned and taken by governments 
to face the consequences of such a development model and 
to propose a transition to a new one.

A transition to sustainable energy use can be achieved 
in many ways and through varied methods. This study con-
centrates on what can be done in cities, in particular using 
a residential district in Milan an Italian city, as case study. 
The city can be considered as a “social-economic innovat-
ing ecosystem” which is, according to Michele Vianello, 
“a place where different people interact creating products, 
innovative activities, influencing each other towards virtuous 
initiatives. All these behaviours and actions influence the 
urban environment modifying its aspect with respect to the 
past” [3]. The urban environment has its own peculiarities: it 
is densely populated and it is a space where different human 
activities take place, it has its specific needs of energy, 
transports and services. These are the three main sectors to 
which it is worth paying attention to make a district become 
“Smart”. As the study object is a part of Europe, it may be 
constituted by buildings, which have an historical, artistic 
and architectonic value, introducing constraints on interven-
tions that could be done to make them smarter.

The need of a transition to a more sustainable energy 
system leads to a deep change in the energy, building and 
transports sector. Power installation from RES is becoming 
more and more relevant, new mobility schemes, namely car 
sharing, are growing more popular and particular attention 
is paid to energy efficiency in buildings. Moreover, each of 
these aspects is related to another important concept that 
is energy storage. The greatest change in the energy sector 
has occurred due to the development of distributed (or dif-
fused) generation (DG). According to Ref. [1], DG consists 
of the totality of power plants having a nominal power lower 
than 10 MW and connected to the distribution network. DG 
plants exploit primary energy sources—in the majority of 
cases renewable—which are distributed on the territory [so 
the name distributed generation (DG)] and that could not 
otherwise be exploited in a traditional centralised plant; 
they supply local loads and they can be operated in a co-
generative mode. In an urban district, examples of DG are 

solar PV panels and/or solar thermal collectors mounted on 
top of buildings.

One of the drawbacks of DG is the high specific invest-
ment cost mainly due to the fact that, being medium or small 
plants, scale economy cannot be applied. Nevertheless, this 
can be faced as a result of a suitable incentive strategy: Refs. 
[2] and [3] are two examples in the Italian case. The real 
problem is the difficulty in predicting and controlling the 
power produced and put on the distribution network.

So the DG, together with other distributed energy 
resources such as electric vehicles (EVs) and energy stor-
age, is the main driver for the shift to a new paradigm in the 
management of the grid: the passage to a smart grid.

In Ref. [4], a smart grid is defined as a modern electric 
power grid infrastructure that guarantees the reliability of 
the system and the security of supply, allowing to face prob-
lems related to the distributed power generation from RES 
and to control the load, promoting energy efficiency and 
involving the passive final users. To do so, integration of the 
electrical grid with Information and communications tech-
nology (ICT) is needed. Therefore, the aim of this paper is to 
analyse all the sides of this concept: the changes introduced 
in the characteristics of the electrical network, the involve-
ment of the final user also through a smart metering system 
and the role of energy storage.

Several researchers have dealt with the integration of DG 
from RES and optimal operation of an energy management 
system for a grid-connected in smart buildings [4–6], EVs 
interacting with renewable energy in smart grid [7–14], sim-
ulation of future smart cities [15–18]. In recent times, a tran-
sition to a more sustainable energy and transport system has 
become necessary [19]. This paper addresses the subject at a 
district level by considering a residential neighbourhood of a 
big metropolitan area as case study, and ultimately proposing 
a model for a smart residential district that is efficiently run 
and optimises energy use [20, 21]. Generally, when studying 
a district, three main factors have to be taken into account. 
These are: energy production, mobility and energy efficiency 
in buildings. However, this paper is concerned only with the 
optimal integration.

For its energy requirements and energy generation, a 
smart district should include RES and combined heat and 
power (CHP) systems, leading to the presence of DG in 
the city block. These small plants inject amounts of power, 
which are difficult to predict and control on the low voltage 
network. Thus, a shift to an active grid model, i.e., a smart 
grid, is necessary. In this perspective, self-consumption 
assumes a fundamental role as it allows absorbing what has 
been produced locally, limiting possible congestions on the 
grid. Concerning transport sector, sustainable mobility is 
desirable. This can be done from a social point of view, for 
instance passing from a possess to a sharing logic, and from 
a technological point of view, due to low emissions fuels, 
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hybrid and EVs. Among the technological solutions, EVs 
are regarded as the most promising alternative since they can 
interact in a synergetic way with the electrical network in a 
self-consumption perspective. In effect, the electrification 
of the demand allows a better management of intermittent 
power fluxes related to DG. Nevertheless to the knowledge 
of the authors, they did not find any published works on the 
simulation and optimisation of the integration of DG and 
EVs in smart residential district in Italy. To the best knowl-
edge of the authors, the present investigation is original in 
proposing a model of a smart residential district accounting 
for the interaction and integration of DG and EVs with dif-
ferent realistic charging scenarios (CS) for an Italian resi-
dential district using an optimisation approach is the main 
innovation of this work.

The paper is organised as follows: In “Smart district 
model”, the smart district model development is presented 
and described in detail. “Optimisation procedure” focuses 
on the optimisation methodology based on genetic algorithm 
approach. The simulation cases and results are provided in 
“Numerical simulations and results”. Discussion of results 
is presented in “Discussion”. The sensitivity analysis of the 
smart residential district is unveiled in “Sensitivity analysis”. 
Finally, the conclusions are drawn in “Conclusions”.

Smart district model

The fore mentioned transition can be carried out in many 
ways and under several perspectives [22–24]. This paper 
concentrates on what can be done in cities, in particular con-
sidering a residential district of a big Italian city [25]. The 
urban environment has its own peculiarities: it is densely 
populated and it is a space where different human activi-
ties take place, it has its specific needs of energy, transports 
and services [26, 27]. These are the three main sectors to 
which it is worth paying attention to make a district become 
“Smart” [28, 29]. As the study object is an area of a Euro-
pean, in particular Italian, city, it may be constituted by 
buildings which have an historical, artistic and architectonic 
value, introducing constraints on interventions that could be 
done to make them smarter. The district is schematised as a 
system composed of:

• 2000 inhabitants living in 700 apartments, considering 3 
people per family on average (energy demand).

• 500 private EVs (energy demand).
• 50 shared EVs (energy demand).
• Photovoltaic (PV) panels mounted on buildings’ roofs 

(energy production).
• Co-generative micro-turbines (with CHP) (energy pro-

duction).

For each of these components, a curve describing the 
power released or required during the day is created. If there 
is a surplus in electricity generation with respect to the quar-
ter needs, the exceeding quantity is sold to the grid; on the 
other hand, if the demand is larger than the production, the 
lacking energy amount is taken from the network.

The objective is to determine the amount of installed 
power from PV panels and co-generative micro-turbines 
that can minimize the annual energy cost in the district. In 
effect, on the one hand a large quantity of PV and CHP 
determines savings based on a high self-consumption rate, 
leading to a lower amount of energy bought from the grid 
[30, 31]. On the other, this entails investment and operat-
ing costs [32, 33]. Consequently, to solve this trade-off, an 
objective function is written as the minimisation of the sum 
of the costs related to power production in the district and 
to energy purchase from the grid [34].

Private electric vehicles

In this model, private EVs are charged at home thanks to 
a suitable wall box allowing a maximum power of 6 kW. 
The following specifications, typical of an average EV, are 
considered:

• Battery capacity ( Cb ): 60 kWh.
• Battery consumption ( Ce ): 0.16 kWh/km.
• Charging and discharging efficiency (η): 80%.

Moreover, to determine the daily power requested by pri-
vate EVs, it is necessary to know the arrival and departure 
times, the number of trips per day and the travelled distance. 
These are all stochastic variables, which are modelled in a 
different way depending on whether the user is a commuter, 
or not.

In case of EVs driven by commuters, one trip per day is 
used as the baseline. Departure and arrival times follow a 
Gaussian distribution showing expected values, respectively, 
of 8 a.m. and 6.30 p.m. and a standard deviation of an hour 
in both cases. As for the travelled distance, it is modelled 
according to a Weibull distribution with a scale parameter of 
40 and a shape factor of 0.95. Three diverse CS are analysed.

Charging Scenario 1—CS 1

Vehicles are completely charged at maximum power as soon 
as they arrive home, concentrating the requested power 
between 6 p.m. and 9.30 p.m., as Fig. 1 clearly shows. The 
steps made to define the obtained charging curve are the 
following:

• Calculation of the energy needed, expressed in kWh:
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where d is the travelled distance (km), Ce is the battery 
consumption (kWh/km) and � is the charging efficiency.

• Evaluation of the necessary time interval, expressed in 
hours:

where Pmax (kW) is the maximum power available, 6 kW 
in this case.

• Computation of the power needed during the day assum-
ing that the vehicle is charged at Pmax starting at the 
arrival time and for the time interval defined at point 2.

This CS is not favourable for the electrical network 
because the time interval in which the charging process 
mainly takes place coincides with the one of residential peak 
demand, so the load on the grid is increased dramatically. On 
the other hand, CS 1 is advantageous for the user because it 
allows charging the car in the shortest time possible, guar-
anteeing a sufficient state of charge (SOC) for driving the 
vehicle later in the evening, if needed.

Charging Scenario 2—CS 2

In this case, the charging process is distributed on the whole 
available time interval; therefore, most of it takes place dur-
ing the night. The steps defining the charging curve are:

• Calculation of the energy needed (as before).
• Evaluation of the available time interval, expressed in 

hours:

(1)Ech =
d ⋅ Ce

�
,

(2)Δt =
Ech

Pma

,

(3)Δtav = tdep − tar,

where tar and tdep are, respectively, the arrival time of the 
vehicle at home and the departure time for the following 
trip.

• Computation of the charging power:

This amount of power is needed by each vehicle from 
the arrival to the departure time. The resulting power curve 
(Fig. 2) is similar to the one obtainable following a valley 
filling approach. For this reason, peak load is not particularly 
affected by the power needed for the EVs, hence CS 2 is 
particularly beneficial for the electrical network. However, 
to implement this CS, a precise knowledge of arrival and 
departure time is necessary but unfortunately it is not often 
possible. Moreover, if the target is to fully charge the vehi-
cle, the process should not be interrupted between arrival 
and departure time: this means that the car cannot be driven 
in the evening, which can be limiting for the users. Neverthe-
less, if it is not required to reach SOC equal to one for the 
following day trip, the car can be used in the evening if it 
has achieved a sufficient charging level.

Charging Scenario 3: CS 3

According to this scenario, each vehicle is recharged at max-
imum power but, differently from CS 1, the charging process 
does not begin as soon as the car arrives home but it starts 
when the energy demand has decreased, as Fig. 3 illustrates.

In this case, the steps followed to define the charging 
curve are the same as those presented in CS 1 but the process 

(4)Δt =
Ech

Δtav
.

Fig. 1  Charging power required by the EVs of the district in CS 1

Fig. 2  Charging power required by the EVs of the district in CS 2
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starts after 11 p.m., when the demand has already dropped 
down.

The EVs load is shifted away from peak moments so the 
pressure on the grid is reduced with respect to CS 1. Another 
advantage of CS 3 is that, as vehicles are charged at maxi-
mum power, it is not necessary to know precisely the arrival 
and departure time since it does not take the whole period in 
which the car is parked at home to reach complete charging. 
On the other hand, if charging starts in the late evening, it 
may happen that the vehicle SOC is not sufficient to use the 
car to go out before that time. For this is a strongly negative 
point for the user, to make this strategy more popular and 
socially accepted, an incentive system could be implemented 
to encourage people to choose it.

The risk of a large-scale implementation of this scenario 
is that of a demand restrike, i.e., the creation of a second 
demand peak when the EVs charging process starts. For the 
moment, this fact does not constitute a real threat because 
the EVs diffusion is still too low.

Characteristics of the charging scenarios

In the first scenario, charging Scenario 1, CS 1, EVs are 
charged at maximum power as soon as they arrive at home. 
Even if this solution is convenient for the user, it is not ben-
eficial for the distribution network because EVs demand a 
high volume of power during peak times, thereby increasing 
the stress on the grid.

In CS 2 the charging process is distributed overall avail-
able time interval, therefore, most of it takes place during the 
night. The resulting power curve is similar to the one obtain-
able following a valley filling approach. In CS 3, each vehi-
cle is recharged at maximum power but, as opposed to CS 
1, the charging process starts when the energy demand has 

decreased. Consequently, CS 2 and CS 3 are more favourable 
from a grid management perspective.

For non-commuters, more than one trip per day is used 
as the baseline: the number of daily travels is modelled as 
a stochastic variable showing a Gaussian distribution with 
an expected value of 2.68 and a standard deviation of 0.6. 
The definition of arrival and departure time is slightly more 
complicated than in the commuter case because, in this case, 
users exhibit extremely diverse habits. So, the departure time 
is conceived as a uniform distribution between 8 a.m. and 
10 p.m. with the addition of two peaks related to two normal 
distributions with expected values corresponding to 8 a.m. 
and 4 p.m. and standard deviations, respectively, of 0.25 
and 0.5. These two peaks coincide with the start time t and 
the finishing time at schools or offices. The arrival time is 
modelled in a similar way through a uniform distribution 
from 9 a.m. to 12 p.m. plus a peak due to a Gaussian dis-
tribution with expected value of 5.30 p.m. and a standard 
deviation of 0.75. This peak is again related to the finishing 
time at school or in other activities. The distance travelled is 
described with a Weibull distribution with a scale coefficient 
of 9 and a shape coefficient of 1.1.

In the modelled district, a mix of 50% non-commuters 
and 50% commuters charging their vehicles according to 
CS 1 is employed.

Shared electric vehicles

Shared EVs are charged according to a fast process at the 
charging station located in the residential district under study 
with a maximum power of 50 kW. Each car presents these 
specifications, which are typical of an average shared EV:

• Battery capacity ( Cb ): 24 kWh.
• Battery consumption ( Ce ): 0.14 kWh/km.
• Charging and discharging efficiency (η): 80%.

To build the shared EVs demand curve, information about 
the amount of power required at the district charging station 
and the time intervals in which each car is parked is required. 
In this case, the problem is more complex than the case of 
private EVs because the charging required is not only related 
to the habits of the users: a person can set out with a vehicle, 
which is not necessarily the same as the one with which he/
she later returns. Therefore, as the utilisation profile of each 
shared vehicle cannot be established, the SOC is taken into 
account. First, the SOC of the vehicle leaving a generic sta-
tion located anywhere in the city is modelled as a stochastic 
variable belonging to a uniform distribution between 0.4 and 
1. Then, taking into account the travelled distance to reach 
the district, which follows the same Weibull distribution of 
private non-commuter case, the SOC of the car arriving in 
the studied station  (SOCar) can be determined. Finally, the 

Fig. 3  Charging power required by the EVs of the district in CS 3
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SOC of the vehicle leaving the block is again a stochastic 
variable from a uniform distribution between  SOCar and 1 
if  SOCar is higher than 0.4, otherwise the lower bound is 
0.4 instead of  SOCar. The number of times a generic shared 
vehicle arrives at the analysed charging station during the 
day is considered as a random value belonging to a uniform 
distribution between 1 and 5, while the arrival time can be 
defined in the same way for private non-commuter vehicles.

The charging daily curves found for both private and 
shared EVs are the same during the year, except for the 
summer months of July and August when the number of 
circulating cars is assumed to be reduced.

Residential load, PV panels and co‑generative 
micro‑turbines

Residential load profiles vary depending on the season, while 
daily PV power production curves consist of a monthly aver-
age and vary depending on the month. An installed power 
of 600 kW from PV is considered as a first hypothesis for 
the optimisation procedure. Considering the CHP plant, it is 
initially dimensioned based on the thermal energy needs of 
the district: 9 micro-turbines with a nominal power of 65 kW 
provide a total electrical power of 585 kW. Capstone micro-
turbines C65 are taken as a reference. Micro-turbines are 
switched on from October to March; they work in nominal 
conditions for 18 h a day and at partial load (25% of nominal 
power) for the balance of 6 h during the night.

Optimisation procedure

The optimisation procedure is carried out based on a genetic 
algorithm. It is a non-deterministic method, so it enables a 
wider exploration of the solutions space with respect to other 
optimisation techniques, avoiding possible convergence on 
local optima. Moreover, it is relatively simple and it permits 
the derivation of a solution that is sufficiently close to the 
global optimum of the problem. For this study’s purpose, 
there is no point in using a more sophisticated technique, 
which might require an extremely detailed representation 
of the problem, and more elaborate computations to provide 
results that are more precise. Being non-deterministic, this 
algorithm provides slightly different results each time it is 
run.

Figure 4 puts together the main outcomes of the district 
model presented in “Smart district model”. It shows the 
trends of the average daily electrical power requested and 
produced in the analysed quarter during the month of Janu-
ary. As it has been explained in the previous chapter, the 
demand includes households, private and shared EVs while 
the power generation is related to PV panels and micro-tur-
bines operating in a co-generative mode.

This private EVs demand curve is obtained assuming that 
half of the neighbourhood inhabitants are non-commuters 
and that the remaining half is constituted by commut-
ers charging the vehicle according to CS 1. Regarding the 
electrical power production curves, the PV one refers to a 
nominal installed power of 600 kW while the CHP one is 
related to the installation of nine C65 micro-turbines provid-
ing a nominal power of 585 kW which corresponds to the 
electrical power allowing to satisfy the district thermal load 
through cogeneration.

Based on these assumptions, the curves are derived from 
each month taking into account that:

• PV power production profile varies monthly, (it is a 
monthly average of daily curves).

• CHP electrical power generation curve is present only 
from October to March and it keeps the same during this 
period.

• Residential demand changes according to the season.
• Private and shared EVs demand is the same for every 

month except for July and August when, due to vacations, 
the number of circulating vehicles is halved and a few 
adjustments are made about departure and arrival times 
of users.

These conditions provide the starting point for the opti-
misation problem, which aims at evaluating the amount of 
power installed from PV panels and micro-turbines that 
minimises the annual energy cost in the block. Basically, 
a large quantity of power installed in the district leads to 
important savings on the energy bought from the distribu-
tor (high self-consumption level), but on the other hand, it 
determines considerable investment and operating costs. 
Therefore, to find a satisfying compromise, an optimisation 
procedure based on a genetic algorithm is carried out. The 

Fig. 4  Daily requested and produced electrical power in the district 
in January



International Journal of Energy and Environmental Engineering 

1 3

considered variables are the power installed from PV panels 
and from CHP.

The first step of this algorithm is the creation of an initial 
population of potential solutions: it is composed of individu-
als, or chromosomes, containing values that the optimization 
variables (genes) can assume. In the studied case, the optimi-
zation variables are two, PV and CHP installed power ( PPV 
and PCHP ), so each individual contains two genes.

Secondly, individuals are evaluated based on a fitness 
function or objective function, which in this case corre-
sponds to the minimization of the annual energy costs in 
the district. Applying the principle of “the survival of the 
fittest”, the best performing individuals are selected for mat-
ing and creation of a new generation.

To avoid a premature convergence on local optima, two 
operators borrowed from genetics are applied according to 
a given probability: crossover and mutation. Once a new 
generation is obtained, its components are again evaluated, 
mated and recombined following the procedure described 
earlier.

There are several possible stopping criteria such as a 
maximum number of generations, a time limit or a given 
tolerance on the fitness value. As previously stated, the fit-
ness function of the problem studied corresponds to the 
minimisation of the annual energy costs in the district. It is 
expressed as Eq. (5):

where the first and the second term represent the fixed costs 
related, respectively, to PV panels and co-generative micro-
turbines. Cm_ave can be written as Eq. (6):

It takes into account, respectively: the costs related to 
the activity of the CHP plant, the cost of natural gas bought 
from the distributor in case the installed CHP power is not 
sufficient to meet the thermal needs of the district, the cost/
revenues related to the amount of electricity bought/sold 
from/to the grid during the day.

Numerical simulations and results

Simulations to find the optimum values of installed power 
are performed for four cases: the Base Case, in which resi-
dential load, PV panels and CHP plant are included in the 
district; and Scenario 1, Scenario 2 and Scenario 3, in 
which EVs are also present. They are charged according to 
the three CS presented earlier. For each case, the Genetic 

(5)
Min f (PPV,PCHP) = cfix,PV ⋅ PPV + cfix,CHP ⋅ PCHP +

12
∑

m=1

30 ⋅ Cm_ave

(6)

Cm_ave = cvar,CHP ⋅ ECHP + cgas,DIS ⋅ k ⋅ Egas,DIS +

n
∑

i=1

cGRID,i ⋅ EGRID,i

Algorithm is run 30 times using the same input data, and 
the most frequent result is selected.

The optimisation procedure to determine the values of 
installed power from PV panels and CHP plant minimising 
the annual energy costs in the district is explained as follows. 
The starting point proposed is a condition in which com-
muter people charge the EVs according to CS 1, i.e., uncon-
trolled charging. Here, besides performing the simulation of 
that case, three other situations are studied: the Base Case, 
corresponding to the absence of EVs in the neighbourhood, 
and the cases in which commuters charge their cars as in 
CS 2 and CS 3. By doing so, it is possible to investigate the 
impact of EVs and of their charging strategy on the district 
energy demand and expenditure.

Then, focusing on a specific case, a sensitivity analysis 
is performed to understand which is the variation range of 
results consequent to a change in EVs input parameters.

Base Case

In this case, the model of the district is the same as the one 
presented in Sect. 2 except for the EVs, which are not pre-
sent here. As explained in the paper, the genetic algorithm 
is non-deterministic algorithm that, even for the same input, 
can exhibit different behaviours on different runs, as opposed 
to a deterministic algorithm. For this reason, slightly differ-
ent results can be obtained running the solver many times 
with the same inputs. Therefore, the simulation is performed 
30 times (keeping equal input arguments) and the optimum 
values attained by the fitness function at each retrial are 
reported in a histogram (Fig. 5).

The most frequent value is taken as the actual result, i.e., 
the annual energy cost in the district which, in this case, 
corresponds to 528,242 €/year. Considering a number of 
2000 inhabitants in the quarter, this amount is equivalent 
to a 22.01 €/month per person. Then, the optimum PV and 
CHP power installed have to be evaluated choosing again the 

Fig. 5  District annual energy cost for the Base Case
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most frequent values among the ones corresponding to the 
total cost selected. Histograms in Fig. 6a, b show that, for 
the Base Case, they are 433 kW and 414 kW, respectively, 
for PV and micro-turbines. Notice that CHP installed power 
should comply with the size of the machines available on the 
market. Therefore, in this case, six C65 turbines and a C30 
are installed, providing a total power of 420 kW.

Mildly different values of installed power can lead to the 
same total cost because they determine diverse investment 
and operating costs as well as different amounts of energy 
produced and these effects counterbalance one another. For 
example, the lower the amount of power placed, the lower 
the investment and operating costs, but also the lower the 
revenues as less energy can be self-consumed or sold to the 
grid; on the other hand, the higher the amount of power, 
the larger the costs but the higher the possibility to earn or 
save more money, respectively, selling energy to the distribu-
tor or reducing energy purchase from the network. Based 
on the simulation results, it will be interesting to have an 
estimate of the actual daily power demand and production 
curves of the district. These are derived as monthly aver-
age values. Figure 7 summarises satisfactorily the electrical 
power generated and requested for the months of January, 
May, August, and November, based on the different condi-
tions occurring during the year. These later are the effects 
of diverse seasons, sun irradiance level, state of the CHP 
plant (which is not working from April to September), and 
the number of circulating EVs (reduced in July and August). 
Even if the Base Case is not affected by the last aspect con-
cerning the vehicles, this will be relevant for the following 
ones.

Scenario 1

In particular, in this case, private EVs driven by commuter 
people are charged according to CS 1 (Scenario 1), that con-
sists of full power charging as soon as the user arrives home. 

Cars used by commuters are supposed to account for 50% of 
total private vehicles present in the district; the remaining 
50% is employed by non-commuter people. This assumption 
keeps the same for all the cases analysed. The simulation is 
run 30 times and the obtained values of minimum annual 
energy cost are reported in Fig. 8 according to which the 
total cost can be set to 781,350 €/year. This amount cor-
responds to 32.56 €/month per person, still assuming the 
presence of 2000 inhabitants in the district.

Then, the optimum power installed from PV and CHP is 
again derived picking the most frequent values among the 
ones corresponding to the selected total cost. Finally, basing 
on these results, it is possible to plot the daily power genera-
tion and demand curves (Fig. 9).

Scenario 2

In this case, EVs driven by commuters are charged accord-
ing to CS 2 (Scenario 2), which consists of a strategy analo-
gous to peak shaving: the charging process is distributed 
overall available time interval, generally taking place during 
the night.

Results are derived repeating the procedure formerly 
exposed. Figure 10 illustrates the minimum annual energy 
cost attained that is 773,230  €/year, corresponding to 
32.22 €/month per person.

Then, the electrical power curves for the district are 
reported, referring once more to the months of January, May, 
August and November as shown in Fig. 11.

Scenario 3

In case 3, cars belonging to commuters are charged follow-
ing CS 3 (Scenario 3): the charging process does not start as 
soon as the user arrives home, but it is delayed to 11 p.m., 
when the residential load has decreased with respect to 
demand peak.

Fig. 6  a Optimum PV power and b optimum CHP electrical power for the Base Case
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Results are obtained following the same method as in 
the other presented cases. The best fitness value attained, 
shown in Fig. 12 corresponds to an annual energy cost for 
the district of 824,350 €/year, which is equivalent to 34.35 €/

month per person. Then, the optimum values of installed 
power are obtained and pointed out, respectively, to 604 kW 
for PV and 579 kW for CHP. Anyway, to get 579 kW, nine 
C65 micro-turbines have to be installed leading again to an 
actual nominal power of 585 kW.

Finally, the daily power curves for the district are evalu-
ated according to the achieved results. Here are again 
reported only those referring to different months as shown 
in Fig. 13.

Discussion of results

The results obtained for the analysed cases are summarised 
in Table 1, which also includes the costs of the As is condi-
tion in which no EVs, PV panels and co-generative micro-
turbines are present in the district.

First, it is interesting to compare the Base Case to the As 
is case; it turns out that it is convenient to install the indi-
cated amount of power from PV panels and co-generative 

Fig. 7  Daily requested and produced electrical power for the Base Case in a January, b May, c August and d November

Fig. 8  District annual energy cost for Scenario 1
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micro-turbines. In this way the district does not rely com-
pletely on the distributor as for the thermal energy and elec-
tricity is bought from the grid only in some time intervals 

when the CHP plant works at partial load or when it is 
turned off and PV power is not enough to meet the demand.

Secondly, a comparison between the Base Case and the 
ones involving the EVs is carried out. From Table 1, it can 
be seen that the presence of the EVs, whatever is the CS 
adopted, introduces a cost increase relative to the Base Case. 
This is not a correct evaluation since it is made between 
conditions offering different services: unlike the Base Case, 
Scenario 1, 2 and 3 include the use of cars. Therefore, to 
make a fair assessment, the cost related to the use of tradi-
tionally fuelled vehicles has to be added in the Base Case.

It is evident that the cases involving the EVs are more 
convenient than the base one: the savings introduced range 
from a minimum of 158.9 €/year/person in Scenario 3 to a 
maximum of 184.46 €/year/person in Scenario 2. Moreover, 
it is easily feasible to reach these advantageous conditions 
starting from the base scenario: it is sufficient to increase the 
installed PV power of less than 50% and to place three more 
C65 micro-turbines, removing the C30 one.

Fig. 9  Daily requested and produced electrical power for Scenario 1 in a January, b May, c August and d November

Fig. 10  District annual energy cost for Scenario 2
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Based on the above considerations, Scenario 1, Scenario 
2 and Scenario 3 are analysed and compared. The best power 
quantities installed in the district are the same for these three 
scenarios: PV power is 604 kW while CHP value is 585 kW. 
It is noteworthy to remark that the optimum power deriving 
from co-generative micro-turbines coincides with the maxi-
mum allowable or gets really close to it as in Scenario 3. 
This is justified by two motivations. The first is that, in this 
way, the district does not rely on thermal energy supplied 
by the distributor; the second is that micro-turbines produce 
a stable and reliable amount of energy throughout the day 
that satisfies the residential load and a good portion of EVs 
non-peak demand.

As for monthly specific energy cost, it does not vary much 
depending on the charging strategy adopted. The similarity 
of results is related to the fact that in all the three scenarios 
the power installed is the same and, even if the EVs demand 
is distributed in a different way according to the CS, in every 
case a considerable quantity of electricity for the charging 

Fig. 11  Daily requested and produced electrical power for Scenario 2 in a January, b May, c August and d November

Fig. 12  District annual energy cost for Scenario 3
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process is still purchased from the grid. The reasons for this 
differ according to the scenario considered, are as follows:

• In Scenario 1, private EVs evening peak demand almost 
coincides with residential peak load; thus, the demand 
significantly exceeds the generation.

• In Scenario 2, private EVs charging occur mainly dur-
ing night-time and, the power requested by cars goes 
beyond the portion produced by micro-turbines when 
they work at partial load.

• In Scenario 3, strong EVs peak demand concentrates 
in the late evening and in the night, widely surpassing 
partial load CHP plant electricity production. As in 

Fig. 13  Daily requested and produced electrical power for Scenario 3 in a January, b May, c August and d November

Table 1  Simulation results PV power (kW) CHP power 
(kW)

Annual cost (€/year) Monthly specific 
cost (€/month/per-
son)

As is case 0 0 651,390 27.14
Base case 433 420 1,142,160 47.59
Scenario 1 604 585 781,350 32.56
Scenario 2 604 585 773,230 32.22
Scenario 3 604 585 824,350 34.35
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Scenario 2, there is a decoupling between EVs peak 
demand and large local energy generation.

These differences justify the slight variation among the 
obtained costs. For instance, in Scenario 3 the specific 
cost is higher because, more than in any other situation, 
EVs peak demand is significantly concentrated in moments 
when local energy resources are scarcely available.

In conclusion, the charging strategy adopted has a small 
influence on the annual costs, but it is particularly relevant 
from the point of view of the management of the electri-
cal grid. In this perspective, Scenario 2 and Scenario 3 are 
preferable to Scenario 1.

Sensitivity analysis

A sensitivity analysis is conducted with respect to the vari-
ation of input data concerning EVs, namely departure and 
arrival times and travelled distance. The aim is to study the 
influence of these changes on the total annual cost and on the 
optimum amount of power installed in the district. Fifteen 
(15) different EVs utilisation profiles are considered and the 
analysis is conducted only on Scenario 1.

This investigation is performed only for Scenario 1: 15 
different input conditions are considered and for each of 
them the genetic algorithm is run 30 times to establish the 
most frequent results. Table 2 shows the outcomes of this 
procedure.

First of all, the mentioned distance refers to the kilo-
metres travelled per day by all the vehicles present in the 
district, i.e., 550 cars. As for the annual cost, it changes 

according to different EVs input conditions. It strongly 
depends on the distance: the larger the number of travelled 
kilometres, the larger the battery consumption, the higher 
the amount of needed charging electricity. However, also 
arrival and departure time play a significant role in defining 
the total cost because they determine the periods available 
for charging. For example, if the charging process occurs 
simultaneously to energy production by local resources (PV 
panels and CHP), self-consumption rate increases leading 
to savings.

Concerning the installed power, CHP quantity keeps 
constant and PV varies in a limited range. The boxplot in 
Fig. 14 summarises the characteristics of PV power distribu-
tion reported in Table 2.

Table 2  Sensitivity analysis 
results

Scenario 1 Distance (km) Annual cost (€/year) PV power (kW) CHP 
power 
(kW)

Case number
1 16,765 793,350 630 585
2 16,690 793,504 629 585
3 16,320 777,300 625 585
4 16,386 787,845 619 585
5 16,015 773,625 619 585
6 17,184 803,604 628 585
7 16,864 791,990 648 585
8 14,844 757,650 609 585
9 15,382 771,705 617 585
10 16,657 787,960 629 585
11 16,720 794,025 613 585
12 16,559 791,550 620 585
13 15,747 781,400 619 585
14 16,254 780,230 620 585
15 16,964 794,075 617 585

Fig. 14  PV power boxplot
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This confined variability of PV amount shows an advan-
tage: if the exact optimum power cannot be placed owing 
to space or architectural constraints, a slightly different 
value does not lead to huge cost augmentations. Finally, the 
fact that the optimum amounts of power do not vary sig-
nificantly with respect to a change in EVs input conditions 
has a remarkable positive consequence: solutions found are 
resilient with respect to variations of users’ choices and daily 
habits, which are actually common in real-life situations.

Conclusions

This paper presented an optimisation methodology for simu-
lating the integration of distributed energy generation and 
EVs in a residential district. A model of a smart residential 
district is proposed which include households, private and 
shared EVs, photovoltaic (PV) panels and natural gas fuelled 
co-generative micro-turbines. Three potential CS for private 
cars were considered for simulating different power demand 
distributions during the day. A global optimisation method 
based on a genetic algorithm approach was applied on the 
model to find the total power from PV panels installed and 
co-generative micro-turbines, while minimising the annual 
energy cost in the district for four different scenarios namely 
the base scenario, in which no EVs are present in the district, 
and for the cases corresponding to three different CSs.

To investigate the possibility of a beneficial interaction 
between EVs, distributed generators (DGs), residential load 
and the grid in a self-consumption perspective, the amounts 
of power from PVs and micro-turbines minimising the dis-
trict annual energy cost are determined.

Five cases are taken into account to evaluate the impact 
of EVs and of their charging strategy on the district energy 
demand and expenditure. These are: the Base Case, in which 
EVs are not included, Scenario–Scenario 3, corresponding 
to the three different CS, and the As is case, in which only 
the residential load is present.

First of all, the As is case is weighted up against the 
Base Case. It comes out that the Base Case is significantly 
advantageous if an optimum power of 433 kW from PV and 
420 kW from CHP is placed in the analysed quarter. This 
amount of CHP power can be obtained with six C65 and a 
C30 micro-turbines.

The first important outcome of this investigation is that 
the cases involving the EVs are more convenient than the 
Base Case for the same services offered. Moreover, it is very 
feasible to achieve the conditions in Scenarios 1, 2 and 3. 
Essentially, it is sufficient to increase the installed PV power 
of less than 50%, to install three more C65 micro-turbines, 
and to remove the C30.

Secondly, comparing Scenario 1, Scenario 2 and Sce-
nario 3, it is interesting to note that monthly specific energy 

cost does not vary much depending on the charging strategy 
adopted. The similarity of results is related to the fact that 
in all the three cases, the power installed is the same and, 
even if the EVs demand is distributed in a different manner, 
according to the CS, in every case a considerable quantity 
of electricity for the charging process is still purchased from 
the grid. However, the choice of the CS has a relevant impact 
from the grid management point of view; Scenario 2 and 
Scenario 3 are preferable to Scenario 1.

Finally, a sensitivity analysis is performed with respect 
to the variation of input arguments concerning the EVs. 
The annual cost varies mainly according to a change in the 
travelled distance even if it is influenced also by departure 
and arrival time because they determine a different distribu-
tion of charging periods during the day. As for the installed 
power, the quantity from co-generative micro-turbines 
keeps constant while PV amount varies in a limited range 
of 20 kW. The stability of the found solutions is extremely 
positive because it means that they are resilient to changes 
in user’s habits and choices, which are common in real-life 
situations.

This contribution has highlighted a global optimum con-
dition for the district. This may be regarded as an interesting 
starting point for an Energy Service Company (ESCo) to 
enlarge its horizon to the whole district instead of the single 
building. Moreover, the results obtained encourage the inte-
gration of EVs in a potential ESCo project, considering that 
locally produced energy could give a considerable support 
to the mobility service.
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mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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