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Abstract
Background: The anticarcinogenic drug PRIMA-1 (p53 reactivation and induction of massive 
apoptosis 1) induces suicidal death of tumor cells, an effect in large part attributed to the 
up-regulation of the proapoptotic transcription factor p53. Erythrocytes are lacking gene 
transcription but are nevertheless able to enter eryptosis, a suicidal erythrocyte death 
characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine 
translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic 
Ca2+-activity ([Ca2+]i) and ceramide formation. The present study tested whether PRIMA-1 
stimulates eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated 
from annexin V binding, cell volume from forward scatter, [Ca2+]i  from Fluo3-fluorescence, 
ceramide abundance from binding of specific antibodies, and ROS formation from DCFDA 
fluorescence. Results: A 48 h exposure of human erythrocytes to PRIMA-1 (25 µM) significantly 
increased the percentage of annexin-V-binding cells without significantly influencing [Ca2+]i or 
forward scatter. PRIMA-1 (100 µM) induced annexin-V-binding was not significantly blunted 
by removal of extracellular Ca2+ or by the caspase-3 inhibitor zVAD. PRIMA-1 (100 µM) further 
increased the ceramide abundance at the cell surface and ROS formation. Conclusions: 
PRIMA-1 stimulates phosphatidylserine translocation at the erythrocyte cell membrane, an 
effect at least partially due to up-regulation of ceramide abundance and ROS formation.
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Introduction

PRIMA-1 (p53 reactivation and induction of massive apoptosis 1 or APR-246), a widely 
used investigational drug for cancer therapy successfully tested in phase I/II clinical trials  
[1-3], triggers apoptosis of tumor cells and augments the tumor cell apoptosis following 
cytostatic treatment, radiation or hypoxia [1, 3-29]. The substance is at least partially 
effective by reactivating the proapoptotic transcription factor p53 [1, 3-5, 7, 8, 11-14, 16, 18-
21, 23, 25-27, 30]. Moreover, PRIMA-1 up-regulates the related transcription factors p63 and 
p73 [2, 26]. PRIMA-1 may further stimulate autophagy [31]. In addition, PRIMA-1 derivatives 
have been shown to stimulate ceramide formation [32].

Erythrocytes lack nuclei and are unable to execute transcription factor dependent gene 
expression. Nevertheless, erythrocytes may enter suicidal cell death or eryptosis, which 
is characterized by cell shrinkage [33] and cell membrane scrambling with exposure of 
phosphatidylserine at the cell surface [34]. Signaling involved in the stimulation of eryptosis 
includes increase of cytosolic Ca2+ activity ([Ca2+]i) [34], formation of ceramide [35], oxidative 
stress [36], caspase activation [37-41], activation of casein kinase 1α [42, 43], Janus-activated 
kinase JAK3 [44], protein kinase C [45], or p38 kinase [46], as well as inhibition or knockout 
of AMP activated kinase AMPK [47], cGMP-dependent protein kinase [38], PAK2 kinase [48], 
sorafenib sensitive kinases [49] and sunitinib sensitive kinases [50]. 

The present study tested, whether PRIMA-1 is able to stimulate eryptosis. To this end, 
phosphatidylserine surface abundance, cell volume, [Ca2+]i, ceramide abundance, and ROS 
formation were determined in human erythrocytes from healthy individuals prior to and 
following treatment with PRIMA-1. 

Materials and Methods 

Ethics statement
All experiments in this manuscript have been approved by the appropriate ethics committee and have 

therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of 
Helsinki. The study is approved by the ethics committee of the University of Tübingen (184/2003 V).

Erythrocytes, solutions and chemicals
Fresh Lithium-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the 

University of Tübingen. The blood was centrifuged at 120 rcf for 20 min at 23°C and the platelets and leukocytes-
containing supernatant was disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer 
solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid 
(HEPES), 5 glucose, 1 CaCl2; pH 7.4 at 37°C for 48 h. Where indicated, erythrocytes were exposed to PRIMA-1 
(Sigma Aldrich, Schnelldorf, Germany) at the indicated concentrations, whereby 5 mg PRIMA-1 were solved in 
270 µl H2O to yield a 100 mM stock solution.

Analysis of annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, 50 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. In the following, the 
forward scatter (FSC) of the cells was determined, and annexin-V-FITC fluorescence intensity was measured 
with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur (BD, 
Heidelberg, Germany).

Measurement of intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and then loaded with Fluo-3/AM 
(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl2 and 5 µM Fluo-3/AM. The cells were 
incubated at 37°C for 30 min and washed twice in Ringer solution containing 5 mM CaCl2. The Fluo-3/
AM-loaded erythrocytes were resuspended in 200 µl Ringer. Then, Ca2+-dependent fluorescence intensity 
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was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS 
Calibur.

Determination of ceramide formation
To determine ceramide abundance, a monoclonal antibody-based assay was used. After incubation, 

cells were stained for 1 h at 37°C with 1μg/ml anti-ceramide antibody (clone MID 15B4; Alexis, Grünberg, 
Germany) in phosphate-buffered saline (PBS) containing 0.1 % bovine serum albumin (BSA) at a dilution 
of 1:10. After two washing steps with PBS-BSA, cells were stained for 30 min with polyclonal fluorescein- 
isothiocyanate (FITC)-conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, 
Germany) diluted 1:50 in PBS-BSA. Unbound secondary antibody was removed by repeated washing with 
PBS-BSA. Samples were then analyzed by flow cytometric analysis at an excitation wavelength of 488 nm 
and an emission wavelength of 530 nm.

Quantification of reactive oxidant species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA). After 

incubation, a 50 µl suspension of erythrocytes was washed in Ringer solution and then stained with 
DCFDA (Sigma, Schnelldorf, Germany) in Ringer solution containing DCFDA at a final concentration of 10 
µM. Erythrocytes were incubated at 37°C for 30 min in the dark and then washed three times in Ringer 
solution. The DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution, and ROS-dependent 
fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur (BD).

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control 
and experimental conditions.

Results

The present study explored whether PRIMA-1 was capable to induce eryptosis, the 
suicidal erythrocyte death. The decisive hallmark of eryptosis is phospholipid scrambling of 
the cell membrane with phosphatidylserine translocation to the cell surface. 

In order to identify phosphatidylserine exposing erythrocytes, binding of labeled 
Annexin-V was determined utilizing flow cytometry. The measurements were performed 
following incubation of erythrocytes for 48 hours in Ringer solution without or with 
presence of PRIMA-1 (10 – 100 µM) prior to the measurements. As illustrated in Fig. 1, a 
48 h exposure to PRIMA-1 enhanced the percentage of annexin-V-binding erythrocytes, an 
effect reaching statistical significance at 25 µM PRIMA-1. PRIMA-1 treatment thus resulted in 
erythrocyte cell membrane scrambling with subsequent translocation of phosphatidylserine 
to the cell surface. An extended dose response curve is provided in Fig.1C,D. Calculation 
of an EC50 from log[agonist] vs. normalized response (variable slope) utilizing Graphpad 
Prism software yielded a value of 3.5 mM. In a separate series, the percentage of Annexin-V 
binding erythrocytes was significantly (p<0.05) lower when 100 µM PRIMA-1 was added for 
24 hours and the erythrocytes were subsequently exposed for additional 24 hours without 
PRIMA-1 (3.0 ± 0.5 %, n = 8) than when PRIMA-1 was added for 48 hours (5.0 ± 0.7 %, n = 8).

Alterations of cell volume were evidenced by alterations of forward scatter, which 
was again determined in flow cytometry. Forward scatter was quantified after incubation 
of the erythrocytes for 48 h in Ringer solution without or with PRIMA-1 (10 – 100 µM). 
As illustrated in Fig. 2, incubation of human erythrocytes in Ringer solution with PRIMA-1 
tended to slightly decrease forward scatter, an effect, however, not reaching statistical 
significance. 

http://dx.doi.org/10.1159%2F000369717
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Alterations of cytosolic Ca2+ activity ([Ca2+]i) were estimated utilizing Fluo3 fluorescence, 
which was again determined in flow cytometry. As shown in Fig. 3A,B, a 48 h exposure to 
PRIMA-1 (10 – 100 µM) did not significantly modify Fluo3 fluorescence, indicating that 
PRIMA-1 did not alter appreciably [Ca2+]i. Further experiments were performed to explore 
whether the PRIMA-1-induced cell membrane scrambling required entry of extracellular 

Fig. 1. Effect 
of PRIMA-1 on 
p h o s p h a t i dyl -
serine exposure. 
A. Original his-
togram of an-
nexin-V-binding 
of erythrocytes 
(M1) following 
exposure for 48 
h to Ringer so-
lution without 
(grey area) and 
with (black line) 
presence of 100 
µM PRIMA-1. 
B. Arithmetic 
means ± SEM of 
erythrocyte an-
nexin-V-binding 
(n = 20) follow-
ing incubation 
for 48 h to Ring-
er solution with-

Fig. 2. Effect of PRIMA-1 on erythrocyte forward scatter. A. Original histogram of forward scatter of eryth-
rocytes following exposure for 48 h to Ringer solution without (grey area) and with (black line) presence 
of 100 µM PRIMA-1. B. Arithmetic means ± SEM (n = 20) of the normalized erythrocyte forward scatter 
(FSC) following incubation for 48 h to Ringer solution without (white bar) or with (black bars) presence of 
PRIMA-1 (10 – 100 µM). No significant differences were observed (ANOVA).

out (white bar) or with (black bars) presence of PRIMA-1 (10 - 100 µM). *(p<0.05), ***(p<0.001), indicates 
significant difference from the absence of PRIMA-1 (ANOVA). C,D. The percentage of erythrocytes binding 
annexin-V as a linear (C) and semilogarithmic (D) function of PRIMA-1 concentration (n=8).  
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Ca2+. To this end, the erythrocytes were exposed for 48 h to 100 µM PRIMA-1 in the presence 
or nominal absence of extracellular Ca2+. As shown in Fig. 3C, removal of extracellular Ca2+ 
did not significantly affect the increase of annexin-V-binding following PRIMA-1 treatment. 

Fig. 3. Effect of PRIMA-1 on erythrocyte Ca2+ activity and Ca2+ dependence of PRIMA-1- induced phospha-
tidylserine exposure. A. Original histogram of Fluo3 fluorescence in erythrocytes following exposure for 48 
h to Ringer solution without (grey area) and with (black line) presence of 100 µM PRIMA-1. B. Arithmetic 
means ± SEM (n = 20) of the Fluo3 fluorescence (arbitrary units) in erythrocytes exposed for 48 h to Ringer 
solution without (white bar) or with (black bars) presence of PRIMA-1 (10 – 100 µM). No significant dif-
ferences were observed (ANOVA). C. Original histograms of annexin-V-binding of erythrocytes following 
exposure for 48 h to Ringer solution in the prescense (left) or absence (right) of calcium, without (grey area) 
and with (black line) presence of 100 µM PRIMA-1. D. Arithmetic means ± SEM (n = 8) of erythrocyte for-
ward scatter after a 48 h treatment with Ringer solution without (white bars) or with (black bars) 100 µM 
PRIMA-1 in the presence (left bars, +Ca2+) and absence (right bars, -Ca2+) of calcium. ***(p<0.001) indicates 
significant difference from the absence of PRIMA-1. 

Fig. 4. PRIMA-1- induced annexin-V-bindingin pres-
ence of caspase inhibitor zVAD. Arithmetic means ± 
SEM (n = 8) of the percentage of annexin-V-binding 
erythrocytes after a 48 h treatment with Ringer so-
lution without (white bars) or with (black bars) 100 
µM PRIMA-1 in the absence (left bars) and presence 
(right bars) of caspase inhibitor zVAD (10 μM). *** 
(p < 0.001) indicates significant difference from the 
absence of PRIMA-1 (ANOVA).
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Instead, PRIMA-1 significantly increased the percentage of annexin-V-binding erythrocytes 
even in the absence of extracellular Ca2+. Thus, the effect of PRIMA-1 on phosphatidylserine 
translocation was mediated by a mechanism other than entry of extracellular Ca2+. 

A further series of experiments addressed the putative involvement of caspases. To 
this end, erythrocytes were exposed to 100 µM PRIMA-1 for 48 h either in the absence or 
presence of the pancaspase inhibitor zVAD (1 or 10 μM). As illustrated in Figure 4, zVAD did 
not significantly modify the effect of PRIMA-1 on annexin V binding.

As cell membrane scrambling could be triggered without requirement of increased 
[Ca2+]i by ceramide, a further series of experiments explored, whether PRIMA-1-induced cell 
membrane scrambling was paralleled by formation of ceramide. To this end, the ceramide 
abundance at the erythrocyte surface was determined utilizing a specific anti-ceramide 
antibody. As shown in Fig. 5, a 48 h exposure of erythrocytes to PRIMA-1 increased the 
abundance of ceramide at the erythrocyte surface, an effect reaching statistical significance 
at 100µM.

Fig. 5. Effect of PRIMA-1 on ceramide formation. A. Original histogram of ceramide surface abundance of 
erythrocytes following exposure for 48 h to Ringer solution without (grey shadow) and with (black line) 
presence of 100 µM PRIMA-1. B. Arithmetic means ± SEM (n= 8) of ceramide abundance after a 48 h incuba-
tion in Ringer solution without (white bar) or with (black bars) 1-200 µM PRIMA-1. *(p<0.05), ***(p<0.001) 
indicates significant difference from the absence of PRIMA-1 (ANOVA). 

Fig. 6. Effect of PRIMA-1 on reactive oxygen species. A. Original histogram of 2′,7′-dichlorodihydrofluores-
cein diacetate (DCFDA) fluorescence in erythrocytes following exposure for 48 hours to Ringer solution 
without (grey shadow) and with (black line) presence of 100 µM PRIMA-1. B. Arithmetic means ± SEM (n = 
8) of erythrocyte DCFDA fluorescence following incubation for 48 hours to Ringer solution without (white 
bar) or with (black bar) presence of PRIMA-1 (1 - 200 µM). **(p< 0.01), ***(p<0.001) indicates significant 
difference from the absence of PRIMA-1 (ANOVA).
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In order to test whether PRIMA-1 enhances oxidative stress, reactive oxygen species 
(ROS) were determined utilizing 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), As 
illustrated in fig.6, a 48 h treatment with PRIMA-1 increased DCFDA fluorescence, an effect 
reaching statistical significance at 100 µM.

Discussion

The present study reveals that exposure of human erythrocytes to high PRIMA-1 
concentrations is followed by stimulation of cell membrane scrambling with 
phosphatidylserine translocation and increase of ceramide abundance at the erythrocyte 
surface. Phosphatidylserine exposure at the cell surface is a hallmark of eryptosis, the 
suicidal death of erythrocytes [34]. 

The cell membrane scrambling following PRIMA-1 treatment was not paralleled by an 
increase of [Ca2+]i. Moreover, removal ef extracellular Ca2+ did not significantly modify the 
stimulation of eryptosis by PRIMA-1. Instead, PRIMA-1 triggered phosphatidylserine exposure 
even in the absence of extracellular Ca2+. Thus, PRIMA-1 was effective by mechanisms other 
than   increase of [Ca2+]i. Moreover, the effect of PRIMA-1 was not significantly modified by the 
caspase inhibitor zVAD and was thus not dependent on caspase activation. Instead PRIMA-1 
stimulated the formation of ceramide, an effect well known to stimulate eryptosis [34]. 
PRIMA-1 derivatives have most recently been shown to stimulate ceramide formation in 
tumor cells [32]. Moreover, PRIMA-1 induced oxidative stress, a well known stimulator of 
erythrocyte cell membrane scrambling [34].

PRIMA-1 tended to decrease cell volume, an effect, however, not reaching statistical 
significance. Thus, PRIMA-1 failed to significantly trigger the second hallmark of eryptosis. 
Moreover, PRIMA-1 apparently did not trigger membrane blebbing with formation of small 
particles, a further hall mark of eryptosis. This observation parallels the lack of PRIMA-1 effect 
on [Ca2+]i. Eryptotic cell shrinkage is usually caused by increase of [Ca2+]i with subsequent 
activation of Ca2+ sensitive K+ channels, K+ exit, hyperpolarization of the cell membrane, Cl- 
exit and thus cellular loss of KCl with osmotically obliged water [33]. The possibility must be 
kept in mind that PRIMA-1 triggers a programmed necrosis, a suicidal death distinct from 
eryptosis [51].

The PRIMA-1 concentration (25 µM) required for statistically significant stimulation of 
erythrocyte cell membrane scrambling was higher than those triggering apoptosis in tumor 
cells [12, 16]. PRIMA-1 tended to increase phosphatidylserine exposure at lower concentrations 
(10 µM), an effect, however, not reaching statistical significance. It must be kept in mind that 
erythrocytes may be sensitized to the effect of PRIMA-1 by other xenobiotics stimulating cell 
membrane scrambling [35, 49, 50, 52-82] or by diseases associated with enhanced cell 
membrane scrambling, such as sepsis, malaria, sickle cell disease, Wilson’s disease, iron 
deficiency, malignancy, metabolic syndrome, diabetes, hepatic failure, renal insufficiency, 
hemolytic uremic syndrome, hyperphosphatemia and phosphate depletion [34, 83, 84].

The sensitization of erythrocytes for cell membrane scrambling by ceramide may, at least 
in theory, be relevant in malaria. The malaria pathogen Plasmodium triggers eryptosis by 
induction of oxidative stress, which activates several ion channels of the host cell membrane 
including Ca2+-permeable erythrocyte cation channels [85, 86]. The Ca2+ entry through 
unselective cation channels triggers eryptosis with subsequent clearance of the infected 
erythrocytes from circulating blood [87]. Several genetic erythrocyte disorders including 
sickle-cell trait, beta-thalassemia-trait, homozygous Hb-C and homozygous G6PD-deficiency 
enhance the susceptibility of erythrocytes for eryptosis and thus confer some protection 
against a severe course of malaria [34, 88-90]. Moreover, the clinical course of malaria 
is favourably influenced by clinical conditions with accelerated eryptosis, such as iron 
deficiency [91]. Eryptosis triggering xenobiotics shown to favourably influence the clinical 
course of malaria include lead [92], chlorpromazine [93] or NO synthase inhibitors [94]. 
Whether or not PRIMA-1 may influence the clinical course of malaria remains to be tested. 
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On the other hand, eryptosis may lead to anemia due to phagocytosis and subsequent 
removal of phosphatidylserine exposing erythrocytes. Clinically overt anemia is observed as 
soon as the rate of eryptosis exceeds the formation of new erythrocytes [34]. The binding 
of phosphatidylserine exposing erythrocytes to endothelial CXCL16/SR-PSO may in addition  
lead to adherance of eryptotic erythrocytes to the vascular wall [95]. Phosphatidylserine 
exposing erythrocytes may further stimulate blood clotting and thrombosis [96-98]. As a 
result phosphatidylserine exposing erythrocytes may impair microcirculation [35, 96, 99-
102]. 

In conclusion, PRIMA-1 stimulates erythrocyte cell membrane scrambling with 
phosphatidylserine translocation to the erythrocyte surface, an effect at least partially due to 
stimulation of ceramide formation. 
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