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Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly lethal form of
inherited arrhythmogenic disease characterized by adrenergically mediated polymorphic VT.
The identification of the genetic substrate of the disease has allowed to achieve important
milestones in the understanding of the arrhythmogenic mechanisms of the disease. Abnormal
calcium leak from the mutant cardiac ryanodine receptor has been associated with the
induction of delayed afterdepolarization suggesting that arrhythmogenesis in CPVT is likely
to be induced by triggered activity. Here we review the current knowledge and some
controversial issues about the molecular mechanism of arrhythmias initiation in CPVT and we
discuss their implications for the development of novel therapeutic strategies in CPVT.
(J Arrhythmia 2006; 22: 202–208)

Key words: Catecholaminergic polymorphic ventricular tachycardia, Mechanism, Ryanodine receptor

Catecholaminergic polymorphic ventricular tachy-
cardia (CPVT) is an inherited disease characterized
by adrenergically mediated polymorphic ventricular
tachycardia leading to syncope and sudden cardiac
death.1,2) Since 2001, molecular genetic studies have
unveiled that CPVT results from inherited defects
of intracellular calcium handling in cardiac myo-
cytes, two genetic variants of CPVT have been
identified, one transmitted as an autosomal dominant
trait caused by mutations in the gene encoding the
cardiac ryanodine receptor (RyR2)3) and one reces-
sive form caused by mutations in the cardiac-specific
isoform of the calsequestrin gene (CASQ2).4) In the
last six years, rapid basic advances have been made
in CPVT, a simplified models clarifying intracellular
calcium regulation in heart, which open an exciting
scenario for the potential treatment of cardiac

diseases associated with dysfunctional intracellular
calcium handling. Since the CASQ2-associated
recessive variant of CPVT is a relatively uncom-
mon,5) in this review, we will primarily focus on the
molecular mechanism of arrhythmogenesis in RyR2-
associated CPVT and some promising therapeutic
approaches, based on recent advances in the under-
standing of the cellular mechanisms underlying
arrhythmias in CPVT.

Intracellular Calcium Cycling and Cardiac
Ryanodine Receptor

Under normal conditions during the plateau phase
of the cardiac action potential a small amount of
calcium enters the cardiac myocytes through the
voltage-dependent L-type calcium channels, causing
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calcium release into the cytosol through the RyR2
which is located in the membrane of the sarcoplas-
mic reticulum (SR). This process, called calcium-
induced calcium release (CICR),6) is the base of
cardiac excitation–contraction (E–C) coupling: it
activates the contractile apparatus. Calcium release
terminates when SR luminal calcium falls below a
threshold level, causing a decline in RyR2 activity
via a mechanism called luminal calcium dependent
deactivation.7) To preserve the proper function of the
contractile apparatus therefore cytosolic calcium
levels are lowered by two systems: the first is rep-
resented by the calcium-pump ATPase (SERCA2)
that reuptakes calcium back into the SR; the second
mechanism is represented by the sodium-calcium
exchanger (NCX) that extrudes the remaining small-
er portion of cytosolic calcium from the sarcolemma

and allows initiation of cardiomyocytes’ relaxation.
It is known that the cardiac ryanodine receptor

(RyR2) plays a central role in cardiac E–C coupling.
RyR2 is a large tetrameric channels (2.2MDa)
located in the membrane of sarcoplasmic reticulum
(SR). The transmembrane segments and the carboxy-
terminal only comprise approximately 10% of the
human RyR2 polypeptide (4967 amino acids), the
remaining 90% of the molecule corresponds to the
large cytoplasmic domain which binds several
proteins, such as calmodulin (CaM), CaMkinase II,
FKBP12.6 and sorcin (see Figure 1). that form a
macromolecular complex.8) Therefore, RyR2 activ-
ity is highly regulated by cytoplasmic signalling
pathways that play an important role in the arrhyth-
mogenesis of CPVT.

Figure 1 Schematic showing the predicted structure of the cardiac ryanodine receptor, RyR2, including
the sites of interaction with ancillary proteins and the phosphorylation sites. Calsequestrin, junctin, and

triadin, proteins interacting with ryanodine receptor in the SR, are also depicted. PP, protein phosphatase; P,
phosphorylation sites; CaM, calmodulin; CaMK, calmodulin-dependent protein kinase. (Reprinted from

Bers DM: Macromolecular complexes regulating cardiac ryanodine receptor function. J Mol Cell Cardiol
2004; 37: 417–429,8) with permission from Elsevier)
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RyR2 Mutations in CPVT Produce Gain of
Function

To date, more than 60 RyR2 mutations have been
reported (more information is available online at:
http://www.fsm.it/cardmoc/). All RyR2 mutations
identified so far in CPVT are mostly single-base-
pair substitutions leading to the replacement of
highly conserved amino acids. Most RyR2 mutations
are localized in the C-terminal region or in the
central region, a minority of RyR2 mutations are
located in the other regions of the gene. In 2002,
Jiang et al.9) first characterized the properties of
mutation R4496C of mouse RyR2, which is equiv-
alent to a disease-causing human RyR2 mutation
R4497C, by heterologous expression of the mutant
in HEK293 cells and reported that R4496C mutation
resulted in increased basal channel activity and
enhanced the sensitivity to activation by Ca2þ and by
caffeine. Subsequently other investigators confirmed
that RyR2 mutations produce a ‘‘gain of function’’
and cause diastolic Ca2þ ‘‘leakage’’ from the SR in
condition of sympathetic activation in lipid bilayers
and HL1-cardiomyocytes experiments,10,11) howev-
er, they did not demonstrate that RyR2 mutations

increase resting channel activity. In 2004, Thomas
et al. reported that RyR2 mutation L433P exhibits
desensitised caffeine-induced activation12) while
shortly after Jiang et al. found that the L433P
mutation increases, rather than decreasing, the
sensitivity of the RyR2 channel to caffeine activa-
tion.9) One potential explanation for this discrepancy
may be related to the DNA constructs used. In the
study of Thomas et al, the human RyR2 wild type
and mutants were tagged at the N terminus with
enhanced green fluorescence protein (GFP). This
insertion of GFP into the N terminus may interfere
with the action of the L433P mutation. Only few
CASQ2 mutations have been identified and func-
tionally characterized in vitro. In collaboration with
the group of Gyorke, we demonstrated that all
CASQ2 mutations produce a ‘‘gain of function’’
(increased response to RyR2 agonists that promote
calcium release from the SR).7,13) Taken together the
basic science investigations suggest that all RyR2
and CASQ2 mutations that cause CPVT share some
common features: they increase sensitivity to cal-
cium overload in SR and enhance the propensity for
spontaneous calcium release from the SR in the
condition of sympathetic activation that is consistent
with the clinical phenotype of CPVT.

Figure 2 Action potential recording from a WT myocyte (panel A) and a RyR2R4496Cþ=� myocyte (panel

B) in the absence (top panel) and in the presence (bottom panel) of isoproterenol (30 nM). Arrows indicate
the last five paced action potentials. (Reprinted from Liu N et al.: Arrhythmogenesis in catecholaminergic

polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res 2006;
99: 292–298,15) with permission from LWW)

J Arrhythmia Vol 22 No 4 2006

204



Triggered Activity is the Electrophysiological
Mechanism for CPVT

The hypothesis that arrhythmias in CPVT are
initiated by delayed afterdepolarizations (DADs) and
triggered activity had been advanced based on the
observation that the bidirectional VT observed in
CPVT patients closely resembles digitalis-induced
arrhythmias.2) Digitalis-induced intracellular Ca2þ

overload leads to the activation of sodium-calcium
exchanger that, in turn, generates a net inward
current (the so-called ‘‘transient inward’’ Iti current).
Iti underlies diastolic membrane depolarizazions,
DADs, that may reach threshold for sodium current
activation and trigger an abnormal beats. This
mechanism for arrhythmia initiation is defined as
‘‘triggered activity’’.

Recently, the role of DADs in CPVT arrhythmo-
genesis was confirmed in our knock-in mouse model
carrier of the RyR2 R4496C mutation in which
develops the typical bidirectional VT upon exposure
to caffeine and epinephrine.14) In vitro investigation
demonstrated that DADs are already spontaneously
present in RyR2R4496Cþ=� myocytes in the absence
of adrenergic stimulation but not in WT myocytes.
Upon exposure to beta adrenergic stimulation we
observed further enhancement of DADs and the
development of multiple triggered action potentials
arising from DADs (see Figure 2).15) These data have
been shortly after confirmed in R176Qþ=� knock in
mice model and Casq2�=� knock out mice mod-
el.16,17) Since it is well known that Purkinje fibers are
more sensitive to calcium overload than ventricular
myocytes,18) it is likely that bidirectional VT is
triggered by DADs alternatively originating from
right and left branches of the Purkinje fibers:
preliminary evidence that this might be the case
has been recently obtained by mapping the heart of
our knock in mice during an episode of bidirectional
VT.19)

Molecular Mechanism of Abnormal Calcium
Leaky from RyR2 in CPVT

In vitro studies (performed in lipid bilayers,
HEK293 cells, HL1-cardiomyocytes) suggested that
the RyR2 mutations produce a ‘‘gain of function’’
and cause diastolic Ca2þ ‘‘leakage’’ from the SR in
condition of sympathetic activation leading to intra-
cellular calcium overload that is responsible for the
development of DADs and triggered activity.9–11)

Despite intensive investigations, the molecular
mechanisms by which RyR2 mutations alter the

physiological properties of RyR2 in CPVT to initiate
such arrhythmogenic cascade remain highly contro-
versial. In the following sections we will briefly
review some of the leading mechanisms that have
been proposed to explain the detrimental effect of
RyR2 mutations identified in CPVT patients.

Reduced binding affinity of FKBP12.6 to CPVT-
associated RyR2 mutations
Each RyR2 monomer binds a single FKBP12.6

molecule that stabilizes the RyR2 channel in the
closed state and reduces its activity.20) Marks and
collaborators11,21) have performed a very elegant
series experiments and demonstrated that RyR2
mutants (S2246L, R2474S, R4497C, P2328S,
Q4201R, and V4653F) cause a reduced affinity of
the RyR2 channel for binding of the regulatory
protein FKBP12.6 and that this defective interaction
is further aggravated when the phosphorylation of
RyR2 by PKA during adrenergic stimulation disso-
ciates FKBP12.6 from the RyR2 channel complex,
causing Ca2þ to leak out of the SR. Furthermore, on
account of this hypothesis, the same group demon-
strate that K201, a derivative of 1,4-benzothiazepine
formerly called JTV 519, is able to enhance the
binding of FKBP12.6 to RyR2 in FKBP12.6 þ=�
mice thus preventing adrenergically induced arrhyth-
mias and sudden death.22) These observations pro-
vide compelling evidence that FKBP12.6 plays an
important role in determining the arrhythmogenic
response of RyR2 mutation in CPVT to PKA
phosphorylation.

However, other investigators challenged this hy-
pothesis. Two independent groups demonstrated that
phosphorylation of RyR2 by PKA does not disso-
ciate FKBP12.6 from CPVT-associated RyR2 mu-
tant channels (S2246L, N4104K, R4497C, Q4201R,
I4867M, S2246L, R2474S, R176Q(T2504M), and
L433P).10,23) Recently, we assessed the RyR2-
FKBP12.6 association in WT and RyR2R4496Cþ=�

mice, western blot analysis indicated that the rela-
tive amounts of FKBP12.6 to RyR2 found in
heavy SR of the stimulated hearts was similar to
that found in unstimulated controls, for both WT and
RyR2R4496Cþ=� mice. These observations indicate
normal RyR2–FKBP12.6 interaction in the heart
from both WT and RyR2R4496Cþ=� animals, which
is not altered following treatment with caffeine and
epinephrine.15) The reasons for the discrepancies in
the FKBP12.6-binding affinity for CPVT-associated
RyR2 mutant channels observed by different groups
are not clear, it is possible that they depend on
differences in experimental conditions.24)
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Enhanced store overload–induced calcium re-
lease in CPVT-associated RyR2 mutations
It is well known that when SR Ca2þ content

reaches a critical level, spontaneous SR Ca2þ release
occurs in the absence of membrane depolarization.
Jiang et al. firstly demonstrated the link between
defective luminal Ca2þ activation of RyR2 and
CPVT, and referred to this process with the term
enhanced store overload–induced calcium release
(SOICR).25) These authors used HEK293 cell lines
stably expressing the CPVT RyR2 mutants,
N4104K, R4496C, and N4895D and demonstrated
that they exhibited an enhanced propensity for
SOICR. They also showed that these RyR2 muta-
tions increase the sensitivity of single RyR2 channels
to luminal calcium dependent activation. Subse-
quently, this group confirmed and extended this
hypothesis to other 6 RyR2 mutations located in
different regions of the channel (Q4201R, I4867M,
S2246L, R2474, R176Q(T2504M) and L433P) and
demonstrated that HEK cell line and HL-1 cardiac
cells expressing these CPVT RyR2 mutants all
exhibited increased SOICR activity. Single channel
analyses revealed that disease-linked RyR2 muta-
tions primarily increase the channel sensitivity to
luminal calcium, but not to cytosolic calcium.23) The
hypothesis of SOICR is attractive and it seem to
provide another exclusive molecular mechanism for
CPVT. However, Thomas et al.26) demonstrated that
L433P, N2386I, and R176Q(T2504M) exhibited
significantly altered Ca2þ sensitivity characterised
by a marked loss of cytosolic Ca2þ-dependent
channel inhibition. Since some studies exhibited that
luminal Ca2þ effects can be manifest as changes in
cytosolic Ca2þ sensitivity,27) so it is difficult to give a
final conclusion in present time. RyR2 is a macro-
molecular complex that can be regulated by many
accessory protein and intracellular signal pathway.
Accordingly, although all CPVT associated RyR2
mutations exhibit a similar pathological phenotype,
it is unlikely that a single unifying mechanism of
RyR2 dysfunction underlie CPVT. Since mutations
linked to the CPVT phenotype are located in
physically and functionally distinct regions of
RyR2, it is likely that the position of each mutation
is the mechanistic determinant of RyR2 dysfunction.

Defective intermolecular domain interactions in
CPVT-associated RyR2 mutations
Intramolecular interaction between discrete RyR2

domains is necessary for the normal function of the
RyR2 channel.28) It has been proposed that RYR2
mutations may cause dysfunction of these regions
(unzipping) leading to RyR2 hyperactivation or

hypersensitization that may result in Ca2þ leak from
the SR. Recently, George et al,29) using high-
resolution confocal microscopy and fluorescence
resonance energy transfer analysis, provided the first
cell-based evidence to support the hypothesis that
RyR2 mutations occurring in the central domain
(S2246L) and the C-terminal domain (N4104K and
R4497C) directly cause RyR2 channel instability via
defective interdomain interaction, resulting in Ca2þ

release dysfunction. More interestingly the same
authors, using noise analysis, a powerful tool to
elucidate mechanistically relevant information in the
amplitude patterning of experimental traces, demon-
strated that there are differences in the precise mode
of Ca2þ release dysfunction and conformational
instability arising from central or C-terminal domain
mutations, C-terminal domain mutations exhibited
postactivation channel instability that did not occur
with central domain mutation. These findings sup-
port the view that abnormal interdomain interaction
is a fundamental event in RyR2-mediated arrhyth-
mogenesis and the mutational locus may be an
important underlying mechanistic determinant of
channel dysfunction.

Cardiac Ryanodine Receptor as a Novel Anti-
arrhythmic Target in CPVT

Beta adrenergic blockers is the first choice for
CPVT patients. In the initial clinical observations, it
appeared to be able to prevent the occurrence of
cardiac events in CPVT patients,2) however, incom-
plete protection from sudden cardiac death has been
subsequently reported.30–32) It is common practice to
consider these individuals candidates for an ICD,
given the young age of the patients, it would be
certainly important to have other pharmacological
options available. Since the defect of RyR2 mutation
is the central issue of pathophysiology in CPVT,
targeting cardiac ryanodine receptor emerges as
therapeutic strategy in CPVT.

According to the hypothesis proposed by Marks,
abnormal FKBP12.6–RyR2 interaction may be cen-
tral in the pathogenesis of CPVT. Marks’ group
proposed that stabilizing cardiac ryanodine receptor
by that increasing FKBP12.6 binding to mutant
RyR2 channels might provide a very specific
therapeutic strategy for preventing triggered arrhyth-
mias in CPVT. In their planar lipid bilayers experi-
ment, JTV 519, a derivative of 1,4-benzothiazepine,
can increase the affinity of FKBP12.6 with CPVT-
associated RyR2 mutations (P2328S, G4201A and
V4653P), which normalized single channel gating.11)

Further, this group demonstrated that JTV 519 can
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prevent adrenergically induced arrhythmias and
sudden death in FKBP12.6 deficiency mouse mod-
el.22) These findings suggest that JTV519 and its
derivatives may represent a novel class of drugs for
the treatment of the patients CPVT. Although we
were unable to confirm the validity of this approach
in our knock in animal model, the possibility that
CPVT associated with other mutations may respond
positively to the drug remains open.

As discussed above, albeit there exist debates in
the underlying molecular mechanism of CPVT, all
CPVT associated RyR2 mutations produce ‘‘gain of
function’’ and lead to the final common pathway of
promoting diastolic calcium leak from RyR2. It
appears logical to hypothesize that reducing RyR2
open probability may be a straightforward strategy to
seal the aberrant calcium leaky from mutant RyR2.
Recently, Venetucci et al.33) provided experimental
evidence for clarifying this issue by using the
analytic techniques to examine calcium fluxes in
rat ventricular myocytes. After myocytes inducing
the diastolic calcium release in presence of isopro-
terenol, application of tetracaine(50 mmol/L), a
common drug for reducing RyR open possibility,
abolish the diastolic calcium release. Surprisingly,
this was accompanied by an increase in the ampli-
tude and duration of the systolic calcium transient.
These data suggest that reducing ryanodine receptor
open probability without altering systolic function
may provide another successful antiarrhythmic strat-
egy in CPVT.

Conclusions

In the last six year, impressive advancements have
been achieved in elucidating the arrhythmogenic
mechanism of RyR2-associated CPVT. Although
CPVT is uncommon genetic disorders, they have
been considered as simplified human and experi-
mental models that may help to clarify intracellular
calcium regulation in heart what the Long QT
Syndrome has represented for the understanding of
the role of voltage-dependent channels in the study
of cardiac excitability. Albert there exist debates, an
innovative curative strategy thought the modulation
of RyR2 function for calcium-associated arrhythmia
disease emerges, it may apply not only to patients
with CPVT, but also to individuals with acquired
heart disease associated with dysfunctional intra-
cellular calcium handling, such as heart failure.
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