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Abstract 

Smart production monitoring is a crucial activity in advanced manufacturing for quality, control and maintenance purposes. 
Advanced Monitoring Systems aim to detect anomalies and trends; anomalies are data patterns that have different data 
characteristics from normal instances, while trends are tendencies of production to move in a particular direction over time. In 
this work, we compare state-of-the-art ML approaches (ABOD, LOF, onlinePCA and osPCA) to detect outliers and events in 
high-dimensional monitoring problems. The compared anomaly detection strategies have been tested on a real industrial dataset 
related to a Semiconductor Manufacturing Etching process. 
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1. Introduction 

Smart production monitoring is a crucial activity in advanced manufacturing for quality [1], control [2, 3] and 
maintenance purposes [4]. Advanced Monitoring Systems (AMSs) aim at detecting anomalies and trends; anomalies 
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are data patterns that have different data characteristics from normal instances [5], while trends are tendencies of 
production to move in a particular direction over time.  

Instruments to implement efficient AMSs are provided by Machine Learning (ML). ML approaches have 
proliferated in recent years Advanced Process Control (APC) solutions for Semiconductor Manufacturing [6], 
thanks to the algorithmic advancements in the field and the increased computational and storage capabilities in the 
IT architecture of the Fabs; ML-based approaches have been used for Virtual Metrology, Predictive Maintenance 
and Fault Detection applications. In this work, we compare state-of-the-art ML approaches to detect outliers and 
events in high-dimensional monitoring problems.  

The compared anomaly detection strategies have been tested on a real industrial dataset related to a 
Semiconductor Manufacturing Etching process. 

The contributions of the paper are: (i) compare state-of-the-art anomaly detection techniques, (ii) apply such 
techniques in a real industrial Semiconductor Manufacturing applications and (iii), to the best of our knowledge, 
applying such techniques for the first time in Semiconductor Manufacturing. 

The rest of the paper is organized as follows: Section 2 is dedicated to present and compare the anomaly 
detection methodologies employed in this work; in Section 3 the Semiconductor Manufacturing case study is 
illustrated and the Experimental results are provided. Finally, in Section 4 the concluding remarks are provided. 

A list of the notation employed in this work is reported here: 
 

Nomenclature 

    Observations available in the dataset 
    Number of features monitored 

   A generic feature 
  Input matrix 

    New observation, to be monitored/classified 
    Anomaly Score (AS) 
    Threshold on AS 
    [osPCA-onlinePCA] Iterations of the Power Method 

    [ABOD] Number of considered neighbours 
     [LOF] Distance of  from its -nearest neighbor 

 [LOF] Reachability distance  
    [LOF] Local Reachability distance 

    Monte Carlo Simulations 

 

2. Anomaly Detection Methodologies 

In this Section, a list of the compared Anomaly Detection methodologies is presented. Each of the listed 
techniques define an Anomaly score (AS) : a quantitative index that defines the ‘outlierness’ degree of an 
observations. Automatic Monitoring policies are generally based on triggering a reaction/intervention if the AS for a 
new observation is above a predefined threshold . 

 

2.1. osPCA and onlinePCA 

OsPCA [7] is an anomaly detection method based on the analysis Principal Component Analysis (PCA) [8]. 
Given a matrix , PCA employs an orthogonal transformation in order to find a new orthogonal basis 
(columns are linearly independent) whose elements are called principal components (PCs). Informally, PCs are the 
most informative directions (with highest explained variance) decreasingly ordered (first PC is the most 
informative). 
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The idea underlying osPCA is that principal directions represent “normal attributes” and outliers change the 
direction of principal components: in order to reduce complexity only the first PC is considered. However, outliers 
occur with a very lower frequency w.r.t. normal attributes and thus the change in direction of PCs may not be 
appreciated. In order to address this issue, in osPCA an oversampling of the tested attribute  which is 
replicated   times. If  is an outlier, adding its replicates causes a change of the first PC, otherwise no change of 
direction occurs. Hence, the osPCA AS is defined by the cosine similarity: 
 

 

 
where  is the direction obtained using the dataset without the point  while  represents the direction obtained 
using the dataset with the point  replicated  times. Aiming at alleviating the PCA computation complexity, the 
first PC  is approximated with a method called Power Method [9]; Power Method is an iterative procedure that 
allows approximating the first PC in  steps.  

The main drawbacks of osPCA are: 
• It does not guarantee a fast convergence, even if we use prior principal directions as its initial solutions; 
• It requires the user to keep the entire covariance matrix, which prohibits the problems with high-dimensional data 

or with limited memory resources. 
 
OnlinePCA [8] aims at overcoming the limitations of osPCA approximating the PCA computation to a Least 

Square problem. More concretely, after some passage, the PCA problem 

 

is approximated by 
 

 

 
where  is computed (once) in advance. The first PC is obtained by  
 

 
and the onlinePCA AS is computed as in osPCA.  
 

 

2.2. Angle Based Outlier Detection (ABOD) 

Angle Based Outlier Detection (ABOD) [10] is an angle-based method, where angles are computed between an 
observation in exam and other samples available in the dataset. The intuition behind ABOD, is that inliers will 
produce angles with high variance since they are inside a “cluster”, while outliers will have associated angles with 
low variances since they are outside a “cluster”; this concept is illustrated in Figure 1. 

 
More specifically, the SA  is defined by the variance over the angles between the difference vectors of  

to all pairs of points in  weighted by the distance of the points: 
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The distance weighting is used to enhance the fact that outliers are commonly distant to normal attributes. In 

fact, a low  means that  is an outlier. A great advantage of ABOD is being a parameter-free procedure, 
however this comes at the cost of an high complexity: . In order to alleviate this issue, a two-step 
approximation is employed, called Lower Bound-ABOD (LB-ABOD) based on a 6-steps procedure: 

1. For each point , derive the  nearest neighbors [11]. 
2. Compute  for each point . 
3. Organize the database objects in a candidate list ordered ascendingly w.r.t. their assigned . 
4. Determine the exact   for the first  objects in the candidate list, remove them from the candidate list 

and insert them into the current result list. 
5. Remove and examine the next best candidate from the candidate list and determine the exact . If the 

  of  is smaller than the largest   of an object  in the result list, remove  from the result list 
and insert  into the result list. 

6. If the largest  in the result list is smaller than the smallest in the candidate list, terminate. 
Else, proceed with step 5. 

The procedure is motivated by the following fact. Suppose an attribute  is the first-rank outlier, then if an 
attribute is an outlier also its  is high. This method has the advantage of not being purely distance-based, 
which makes it more suitable for high-dimensionality w.r.t. distance-based methods. However, it may not capture 
complex structures (it requires a “cluster”) and its complexity is . 
 

Local Outlier Factor (LOF) 
 
Local Outlier Factor (LOF) [12] is a density-based technique, which considers local neighborhoods to compute 

the anomaly score. An outlier is characterized by having low-density neighborhoods, that is, there are very few 
attributes in its neighborhood. This method, like ABOD, assumes that normal instances are organized in clusters 
(possibly more than one and with different density). 

Now, let  be the distance from  of the -nearest neighbor and let  
be the reachability distance, which is introduced to reduce statistical fluctuation in the computation of . As said, 
an attribute  is characterized in LOF by its local density, which is called Local Reachability Density and 
defined by the inverse of the average reachability distance based on the k-nearest neighbors : 

 

Figure 1. The ABOD procedure. Inliers (such as ) form high 
variance angles with other samples in the dataset, while outliers 
(like ) form low variance angles with other samples in the dataset. 
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The anomaly score of LOF for a point  is defined by: 

 

 

 
and represents the degree of ‘local’ anomaly. When the local density around  is much lower than those of the other 
neighbor points ,  will tend to 0, meaning that it is an outlier; otherwise if the local density 
around  is very similar to those of the other neighbor points ,  will tend to 1, meaning that it is 
“inside” a cluster.  

Although the only parameter to be tuned in LOF is , its relation with LOF is very complex, which make 
difficult to find a heuristic to estimate the optimal . In order to overcome this issue, it is suggested to select two 
bounds kLB (lower bound) and kUB (upper bound) and ranking all objects with respect to the maximum LOF value 
within the specified range and take the maximum. For further details on lower and upper bound of LOF we refer the 
interested reader to [12]. 

LOF is a computationally expensive with the complexity . Another drawback of LOF is that its 
performances are poor with low-dimensional structures or more complex structures than simply distributed clusters. 

 

2.3. Comparison 

The compared approaches are summarized in     Table 1. 

    Table 1. Complexity comparison of the considered Anomaly Detection approaches 

Method Tuning Parameter Training Complexity Evaluation Complexity 

osPCA    

onlinePCA    

ABOD -    

LB-ABOD     

LOF    

 
 

3. Semiconductor Manufacturing Case Study: Etching 

The compared anomaly detection strategies have been tested on a real industrial dataset related to a 
Semiconductor Manufacturing Etching process [13]. Semiconductor Manufacturing fabrication is based on wafers. 
A wafer is a thin (125 - 300mm diameter and 275 - 775 µm) slice of semiconductor material - usually silicon crystal 
- that serves as the substrate for microelectronic devices. Production is often organized on lots, set of wafers (usually 
25) that are typically moved across the fab and processed jointly/in the same equipment. 
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The data available consists of 2194 wafers belonging to a set of 313 (not complete) lots, for which Optical 
Emission Spectrometry (OES) are available. The process in question is plasma etching, for which OES data 
represents a non-costly and informative source of information from a chemical point of view. The dataset also 
includes information on another important quantity, the Etching Rate that is the ratio between the depth of the 
created trench and the time taken to perform the ‘excavation’.  

The Etch Rate is used in this work as a quality indicator for the produced wafers: outliers or changes seen in the 
Etch Rate can be considered as anomalies or changes in the production. Unfortunately, the Etch Rate is costly to 
compute in production and in some production settings is not available for most produced wafers; this scenario 
underlines the importance of an AMS that is able to infer anomalous situations from different data sources, like OES 
data. The available dataset consists of 2170 inlier wafers and 24 outlier wafers, labeled as such by inspecting the 
Etch Rate. From such data, features are extracted to be employed in the aforementioned Anomaly Detection 
procedures; such features are mean and variance over time for each of the 2048 monitored wavelengths in the OES 
data for a total of 4096 features considered. A data reduction procedure based on eliminating redundant features that 
have correlation above 0.99 is then performed: the final number of features considered is p . 

 

3.1. Experimental Results 

The proposed methodologies have been compared through a Monte Carlo Cross-Validation (MCCV) procedure 
(also known as Repeated Random Sub-sampling Validation) [14]; the  = 2194 have been divided into: 
• training data (50%), a set of observations on which the thresholds of the  ASs are tuned; such set of data is 

also used to find the optimal values of the  
• validation data (the remaining 50% of data), used for evaluating the performances of the compared 

methodologies.  
The split between training and validation is done at random, preserving the ratio between outlier and inlier 

observations in each set (stratified cross-validation).  The aforementioned procedure is repeated  = 100 times, by 
randomly choosing how data are assigned to the training or validation set: results are reported in the following as 
average over the  MCCV simulations. 

The results are reported in terms of two indicators: 
• precision, the ratio between true outliers and total outliers (both true and false); 
• recall, the ratio between true outliers and true outliers plus false inliers. 

 
The experimental results are reported in     Table 2; in the LOF family of approaches, only LOF have been 

considered, given its higher expected performances. From     Table 2 it can be appreciated how all the methods 

Figure 2. Typical OES data. 
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guarantee above 76% precision and above 89% recall. Moreover, it can be appreciated how the best performances 
were achieved by the LOF, in terms of precision, and by the ABOD, in terms of recall. In Table 2 is also reported 
the number of times each method has achieved the highest precision and the number of times it has achieved the 
highest recall (over the  MCCV); in case of a tie between more than one method, such simulation is 
counted for each methods in these indicators,  

    Table 2- Performances of the considered Anomaly Detection approaches with the Semiconductor Manufacturing dataset 

Method Average Precision over K 
= 100 MCCV simulations 

# MCCV simulation with 
highest precision 

Average Recall over K = 
100 MCCV simulations 

# MCCV simulation with 
highest recall 

osPCA  6  12 

onlinePCA  6  12 

ABOD  
4 

 53 

LOF  87  31 

 

4. Conclusions 

In this paper, several approaches for Anomaly/Outlier detection have been compared on a real industrial case 
study; the case study in exam was related to Etching, one of the main step in the Semiconductor Manufacturing 
fabrication. It has been shown how monitoring the OES data provided satisfying results in detecting outliers; on the 
dataset at hand ABOD outperformed the other methods in terms of recall, while LOF was the anomaly detection 
approach with the highest precision. Future works will regard more sophisticated approaches to extract features from 
OES data; moreover, new policies for setting up the threshold  on the anomaly score will be investigated. 
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