
Plug and Play the Theory of Contexts

in Higher-Order Abstract Syntax

Alberto Ciaffaglione and Ivan Scagnetto

Dipartimento di Matematica e Informatica, Università di Udine, Italy
[ciaffagl,scagnett]@dimi.uniud.it

Abstract

We illustrate the pragmatic aspects of the Theory of Contexts, recently proposed as a general
approach for reasoning on languages with binders in Higher-Order Abstract Syntax, through two
working examples: λ-calculus and Abadi and Cardelli’s impς-calculus.

Keywords: Logical Frameworks, Interactive Theorem Proving, Binding Operators, Higher-Order
Abstract Syntax, Theory of Contexts.

1 Introduction

In recent years there has been a growing interest in using higher-order type
theory-based Logical Frameworks (LFs) for defining and reasoning about lan-
guages with binders. A very promising line of approach is the Higher-Order
Abstract Syntax (HOAS) technique [6,4,10], which allows to delegate to meta-
languages the machinery for dealing with α-conversion and capture-avoiding
substitution of terms for variables. This feature is a relevant advantage in
respect to first-order techniques, like de Bruijn indexes or explicit names, be-
cause encoding and managing α-conversion and substitutions is a non trivial
task from the point of view of computer aided formal reasoning.

In the HOAS approach, binders are represented by means of higher-order
constructors, hence α-equivalence and substitution are provided by the LF

itself. However, it is well known that HOAS presents some drawbacks. First
of all, object level variables cannot be encoded by means of metalanguage
variables using induction, because this choice would introduce exotic terms

Electronic Notes in Theoretical Computer Science 104 (2004) 99–112

1571-0661/$ – see front matter © 2004 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.09.022

http://www.elsevier.com/locate/entcs

[4]. Next, it is difficult to reason by induction and to use recursion over
contexts, because they are rendered as functional terms. Finally, the major
virtue of HOAS bites back, in the sense that one looses the possibility of proving
properties over the mechanisms delegated to the metalanguage.

One approach among the ones proposed to overcome these problems is the
Theory of Contexts [7], which arises as a general methodology for reasoning
about object systems in HOAS, based on an axiomatic standpoint. The gist
is to extend the working framework with a set of axioms, in order to capture
some basic and natural properties of names and contexts. The main advantage
of this technique is that it requires a very low mathematical and logical over-
head: it does not actually require to introduce new abstraction and concretion
operators, allowing to model abstraction with λ-abstraction and instanciation
with functional application. Hence, the Theory of Contexts can be easily used
in existing proof environments without the need of any redesign of the system.
This fact is indeed the spot of the present work: the authors try to motivate
the reader using promptly the axiomatic framework, along the vein of the very
recent successful experiments with different language paradigms in both typed
and untyped settings [14,2,3].

The structure of the document, which provides users with a light and fast
consultation reference, is as follows. In Section 2 we give a deeper account
about the HOAS technique, then in Section 3 we present briefly and informally
the Theory of Contexts, which is used explicitly for managing the working
examples of Section 4: untyped λ-calculus and Abadi and Cardelli’s impς-
calculus. Finally, in Section 5 we report an interesting result, namely, the
derivation of higher-order induction from first-order one together with the ax-
ioms of the Theory of Contexts. This should help to understand the interaction
between all the axioms and their expressivity.

2 Reconciling HOAS with induction

It is well-known that in a higher-order type theory without native support for
inductive types, like for example the Edinburgh LF [6], the natural choice for
representing a binder (e.g. λ) is a full HOAS constructor of type (Λ → Λ) → Λ.
This allows to delegate not only α-conversion, but also substitution of terms
for variables to the metalanguage, freeing the user from the burden of en-
coding them. However, in order to take advantage of the inductive features
of a metalanguage like the Calculus of Inductive Constructions (CIC), it is
not possible to resort to a full HOAS approach, because constructor types like
(Λ → Λ) → Λ violate the positivity condition of inductive constructors. Hence
it is necessary to introduce a separate type for variables, say V ar, with the
consequence that capture-avoiding substitution of terms for variables is no

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112100

more delegated to the metalevel (weak HOAS). Therefore binders are encoded
by constructors with negative occurrences of the type representing variables,
i.e. (V ar → Λ) → Λ. Correspondingly, V ar has not to be defined as an induc-
tive type, because this would introduce exotic terms in the framework: exotic
terms are terms not corresponding to any expression of the object language,
which have to be ruled out by extra “well-formedness” judgments in order to
obtain an adequate, faithful encoding [4].

3 The Theory of Contexts

In order to retain the advantages deriving from the use of inductive features of
LFs and their implementations, it is convenient to adopt a weak HOAS approach
for encoding object languages, as explained in Section 2. This means that we
introduce a separate type representing names/variables; moreover, this type is
not an inductive one, in order to avoid exotic terms. For instance, we declare
in CIC a type which is neither defined effectively, nor proved as a judgment:

Parameter var: Set.

Then, the object language at hand can be encoded by means of an inductive
type term, where binders are represented by constants of functional type (var
-> term) -> term. Thus, since bound variables are rendered by metavari-
ables of type var, we gain α-conversion for free.

However, as pointed out in Section 1, the current implementations of most
LFs do not provide an adequate support for higher-order encodings. When
formally developing metatheoretical results about the encoded language, the
following common problems actually arise:

(i) one cannot access the notions related to the mechanisms delegated to
the metalanguage (e.g., during a proof we cannot access the information
concerning the freshness of a bound variable);

(ii) the system does not provide any induction principles over higher-order
terms.

There are several attempts in the literature for regaining some expressivity
about HOAS-based encodings (see, e.g., [4,13,5]). The approach we describe in
this paper is known as the Theory of Contexts [7]: it consists of a set of axiom
schemata about some basic properties of names/variables and contexts (i.e.,
terms with “holes”) over them. The main advantage of an axiomatic approach
is that it can be easily plugged in existing LFs (provided they support the
introduction of new axioms) without requiring any redesign of the system,
nor great encoding efforts.

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 101

Axioms of the Theory of Contexts.

We introduce the axioms in an informal way, in order to allow the reader
grasping the main underlying ideas; and from now on we will use the termi-
nology “variables” to intend names/variables.

The first axiom requires that there always exists a fresh, i.e. free, variable
with respect to a term, thus capturing the intuition that, since terms are finite
entities, they cannot contain all the variables. The same axiom can be stated
w.r.t. lists of variables instead of terms, since we can always obtain from a
term the list of its free variables:

unsaturation: ∀M. ∃x. x �∈ FV(M) unsaturation’: ∀L. ∃x. x �∈ L

The second axiom requires the decidability of equality over variables:

LEMeq : ∀x, y. x = y ∨ x �= y

In a classical framework, this axiom is just an instance of the Law of Excluded
Middle; on the other hand, it represents the minimal classical flavour we need
in an intuitionistic setting.

The core of the Theory of Contexts is represented by the β-expansion and
extensionality axioms. These allow to carry out proofs by reasoning over the
structure of higher-order terms; indeed they are schemata of axioms, since can
be formulated for contexts with n holes. For instance, when instanciated to
unary contexts (i.e., terms with one hole), they appear as follows:

β-expansion: ∀M, ∀x. ∃N [·]. x �∈ FV(N [·]) ∧ M = N [x]

extensionality: ∀M [·], ∀N [·], ∀x. x /∈ FV(M [·]) ∪ FV(N [·])
∧(M [x] = N [x]) ⇒ M [·] = N [·]

Essentially, β-expansion allows to generate a new context N with one new
hole from another context M , by abstracting over a variable. Extensionality
allows to infer that two contexts are equal, by testing the equivalence of their
application to a fresh variable. Due to lack of space, we cannot give the details
about the soundness and the expressivity of this theory [14]. However, for what
concerns the expressive power, it should suffice saying that the axioms of the
Theory of Contexts, together with the complete induction principle on natural
numbers, allow to derive a higher-order structural induction principle for the
object language syntax (§4.5.2 of [14]).

4 The Theory of Contexts at work

In this section we briefly illustrate two effective encoding examples, showing
how to work in any sufficiently powerful LF with the axioms described in

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112102

Section 3. Before going into the details, it is worth distinguishing between
two kinds of object languages, namely untyped and typed ones. In the latter
case, the unsaturation axiom has to be slightly modified:

unsaturation-typed: ∀M, ∀T . R(T) ⇒ ∃x. x /∈ FV(M) ∧ Q(x, T)

where Q(x, T) represents the properties which we assume about the new
“typed” variable x. Indeed, in a typed object language, variables are not
simple placeholders, but they carry some information with them (e.g., their
type) which is represented by the predicate Q. The role of predicate R is more
subtle and we can suggest its meaning by means of an example: since in typed
object languages variables are typed as well, the simplest instanciation of this
statement establishes that there are infinite variables for every given type,
which corresponds to take R(A) � true and Q(x, A) � x:A. However, it may
be the case that in some object languages there are types, such that we cannot
freely assume the existence of “fresh” variables over them. In other words,
the simplest form of the unsaturation axiom would be inconsistent, since it
always allows to infer the existence of a new typed variable for every type.
Hence, before applying the unsaturation axiom, we must verify that the given
type satisfies some constraints (represented by the predicate R) which avoid
the introduction of inconsistencies. For instance, in the case of the encoding
of impς (see the example below), R states that T must be inhabited.

It is also worth noticing that, before instanciating the axioms, it is neces-
sary to encode the non-occurrence predicate “ �∈”. As we will see below, this
obligation is completely trivial, since it is syntax-driven [7].

We proceed illustrating the two real case studies of untyped λ-calculus
and typed impς-calculus. For our encodings, we use from now on the proof
assistant Coq as LF; clearly, the presentation can be easily grasped by users of
alternative proof environments and type theories.

The untyped λ-calculus.

The syntax of the object language we focus on is well known:

Λ : M, N ::= x | MN | λx.M

Hence we have the following specification in Coq:

Parameter var: Set.

Inductive tm : Set:= is_var : var -> tm

| app : tm -> tm -> tm

| lam : (var -> tm) -> tm.

Notice the higher-order type of the lam constructor, which allows to represent
the object language variables by means of Coq’s metavariables of type var,

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 103

εΛX : ΛX −→ tmX

εΛX(x) � (is var x)

εΛX(MN) � (app εΛX(M) εΛX(N))

εΛX(λx.M) � (lam [x : var]εΛX∪{x}(M))

δΛ
X : tmX −→ ΛX

δΛ
X((is var x)) � x

δΛ
X((app M N)) � δΛ

X(M)δΛ
X(N)

δΛ
X((lam [x : var]M)) � λx.δΛ

X∪{x}(M)

Fig. 1. Encoding and decoding functions for the untyped λ-calculus

and to delegate the α-conversion mechanism to the metalanguage. In the
following, for a finite set of variables X � {x1, . . . , xn}, we will denote by
ΓX the typing environment {x1 : var, . . . , xn : var}. The representation is
formally specified by means of the encoding and decoding functions of Figure 1,
where ΛX denotes the λ-terms with free variables in X and tmX the terms of
type tm derivable from the environment ΓX . Hence we have the following
adequacy result:

Proposition 4.1 For each finite set of variables X, εΛ
X is a compositional

bijection between ΛX and tmX.

As previously remarked, the encoding of the non-occurrence predicate /∈
is syntax-driven (one rule for each constructor of type tm):

Inductive notin [x:var]: tm -> Prop :=

notin_var: (y:var) ~x=y -> (notin x (is_var y))

| notin_app: (M,N:tm) (notin x M) -> (notin x N) ->

(notin x (app M N))

| notin_lam: (y:var) (M:var->tm) ((y:var)(notin x (M y))) ->

(notin x (lam M)).

Now we can introduce the instanciation of the Theory of Contexts for the case
at hand:

Axiom dec_var : (x,y:var) x=y \/ ~x=y.

Axiom unsat : (M:tm) (Ex [x:var] (notin x M)).

Axiom exp : (M:tm) (x:var)

(Ex [N:var->tm] (notin x (lam N)) /\ M=(N x)).

Axiom ext : (M,N:var->tm) (x:var)

(notin x (lam M)) -> (notin x (lam N)) ->

(M x)=(N x) -> M=N.

As outlined in Section 3, β-expansion and extensionality are schemata of ax-
ioms, hence they can be stated for contexts with an arbitrary number of
“holes”. For example, we could declare the variants:

Axiom ho_exp : (M:var->tm)(x:var)(Ex [N:var->var->tm]

(notin x (lam [y:var](lam (N y)))) /\ M=(N x)).

Axiom ho_ext : (M,N:var->var->tm)(x:var)

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112104

(notin x (lam [y:var](lam (M y)))) ->

(notin x (lam [y:var](lam (N y)))) ->

(M x)=(N x) -> M=N.

According to our experience, it is never needed to go beyond the variants
involving contexts with more than three holes. Working with this simple
theory it is possible to prove some involved metatheoretic results; for instance
in [11], after adding the encoding of a type system, the formal proof of Subject
Reduction is carried out for a call-by-name λ-calculus.

Abadi and Cardelli’s impς-calculus.

The impς-calculus [1] is an imperative object-based calculus featuring ob-
jects, dynamic lookup, method update, cloning and local declarations:

Term : a, b ::= x variable

[li = ς(xi)bi]
i∈I object

a.l method invocation

a.l ← ς(x)b method update

clone(a) cloning

let x = a in b local declaration

Notice that ς binds xi, x in bi, b, and let binds x in b, so the syntax can be
encoded in Coq as follows:

Parameter var : Set. Definition lab := nat.

Inductive term : Set := isvar: var -> term

| obj : (list (lab * (var -> term))) -> term

| clone: term -> term

| call : term -> lab -> term

| over : term -> lab -> (var -> term) -> term

| let : term -> (var -> term) -> term.

In the present case, the higher-order constructors are obj and over, binding
the host object in method bodies, and let. Note that natural numbers play
the role of labels, i.e. names of methods. The adequacy of the encoding can
be stated and proved similarly to the case of λ-calculus.

The impς-calculus features a first-order type system à la Curry with sub-
typing: the only type constructor is that for object types, i.e. TType : A, B ::=
[li : Ai]

i∈I . Once we have encoded also types (ttype) and the non-occurrence
predicate (fresh), we adopt the Theory of Contexts for proving the rather

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 105

involved property of Subject Reduction. This assures that the dynamic se-
mantics is coherent with the static semantics, so it requires to formalize two
reduction and typing judgments for impς. Therefore we need variables for
dealing both with values (in reductions) and types (in typings), thus we state
the unsaturation axiom in two flavours, so splitting the universe var. The
first axiom corresponds to the case of using metavariables as placeholders, and
is useful in conjunction with typing properties. The second axiom reflects the
use of metavariables for variables of the object language, and relates results
and (their) types, provided they are proved to be consistent through type val:

Axiom unsat_type: (A:ttype)(xl:(list var))

(EX x | (fresh x xl) /\ (typenv x)=A).

Axiom unsat_val: (v:val)(A:ttype)(type_val v A)->(xl:(list var))

(EX x | (fresh x xl) /\ (stack x)=v /\ (typenv x)=A).

Notice that the functions stack and typenv implement derivations contexts
for reduction and typing, respectively. The above axioms and the LEMeq

one, which is stated identically to the case of λ-calculus, are very natural and
useful for dealing with hypothetical assertions, which are typical of natural
deduction style of proof. Consider e.g. the typing rule for the let construct:

∆ � a : A ∆, x:A � b : B

∆ � let x = a in b : B
(Type−Let)

This rule is rendered in Coq using an hypothetical premise for representing as-
sumptions which have to be discharged in the conclusion (the function typenv

implements the typing context ∆):

t_let: (a:term) (b:var->term) (A,B:ttype)

(type a A) -> ((x:var)(typenv x)=(A)->(type (b x) B)) ->

(type (let a b) B)

Very often it is required to derive the conclusions of hypothetical assertions,
like, e.g., (type (b x) B): in such a case, the unsaturation and LEMeq allow
to introduce a new, fresh variable x in the proof derivation context ∆, thus
allowing to use the premise (typenv x)=(A).

Pragmatic remarks.

Since the Theory of Contexts has been first introduced in order to carry
out formal proofs about the metatheory of the encoded systems, it is inter-
esting to highlight the general application pattern of the axioms. During our
formal developments, we always find a common problem: to guarantee that
some crucial property (e.g., strong late bisimilarity for the π-calculus, capture-
avoiding substitution and reduction relation for the untyped λ-calculus, typing

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112106

of higher-order terms for the impς-calculus) is preserved by fresh renamings,
i.e., by replacing a given variable with a fresh one. All these lemmata are
instances of the following pattern:

for some x �∈ ⋃n
i=1 FV(Ci[·]) : R(C1[x], . . . , Cn[x])

for all y �∈ ⋃n
i=1 FV(Ci[·]) : R(C1[y], . . . , Cn[y])

(1)

where R is a given n-ary relation and C1[·] . . . , Cn[·] are variables ranging
over contexts of given syntactic categories. For example, in the case of the
impς-calculus, one renaming looks like:

Lemma rename: (m:var->term) (A:TType) (x,y:Var)

(type (m x) A) -> (typenv x) = (typenv y) ->

(type (m y) A).

Usually, this kind of properties is proved “with pencil and paper” by carrying
out a structural induction either on the derivation of the premise R(C1[x],
. . . , Cn[x]), or on one of the arguments Ci[x] (1 ≤ i ≤ n), or else on a “mea-
sure” of an argument (e.g., the number of symbols it contains). However, since
Coq tactics deal not adequately with higher-order unification, we are forced
to prove a preliminary version of the renaming lemma introducing by hand
the necessary unifications: this allows to recover sufficient information on the
structure of the contexts Ci[·] from their instanciations Ci[x]. In other words,
we “lift” structural information to the level of functional terms, using the
β-expansion and the extensionality axioms. Such a lifting follows a general
pattern. First we replace the original goal with the following one:

for some x �∈ ⋃n
i=1 FV(Ci[·]), T1 = C1[x], . . . , Tn = Cn[x] : R(T1, . . . , Tn)

for all y �∈ ⋃n
i=1 FV(Ci[·]) : R(C1[y], . . . , Cn[y])

(2)

where T1, . . . , Tn are plain terms and T1 = C1[x], . . . , Tn = Cn[x] are the
necessary unifications. Clearly we can infer (1) from (2) by taking Ti = Ci[x].

During the proof of (2), the inductive hypothesis gives us some struc-
tural information on T1, . . . , Tn. Then, using the β-expansion axiom, we can
expand the latter into contexts applied to x, yielding the equations T1 =
T ′

1[x], . . . , Tn = T ′
n[x], where x �∈ ⋃n

i=1 FV(T ′
i [·]) (differently from Ci[·], T ′

i [·]
is not a variable, but a concrete context). By transitivity, we obtain the
equations Ci[x] = T ′

i [x]; thus, by extensionality, we get Ci[·] = T ′
i [·], i.e., the

structural information we needed on the variable Ci[·]. Such an information
can then be transferred to the instanciations over y in the current goal, in
order to apply the suitable constructor of R and solve the subsequent subgoal
by means of the inductive hypothesis.

Now, it should be clear why we choose Leibniz equality in our axioms,
instead of an external equality predicate. Indeed, the former represent Coq’s

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 107

βδι-conversion, whence equalities involving it can be used to rewrite terms
into equivalent ones by means of the Rewrite tactic.

5 Higher-order induction

The soundness of the Theory of Contexts is proved in [14]. However, as far the
completeness is concerned, we do not have yet a result stating the expressive
power of the axioms w.r.t. some known logic system. In this section we prove
an important result in this direction, namely, the derivability of the higher-
order induction principle by means of the complete induction principle on
natural numbers and the axioms of the Theory of Contexts. In order to spell
out all the details, we will consider again the encoding of untyped λ-calculus
in Coq. The complete source code of the proof is available in [14].

5.1 Encoding of syntax

Let us consider the encoding of untyped λ-calculus (see the first case study of
Section 4); we introduce the following measure relation l:

Inductive l: tm -> nat -> Prop:=

l_var : (x:var)(l (is_var x) (S O))

| l_app : (M,N:tm)(n1,n2:nat)(l M n1) -> (l N n2) ->

(l (app M N) (S (plus n1 n2)))

| l_lam : (M:var->tm)(n:nat)((y:var)(l (M y) n)) ->

(l (lam M) (S n)).

Intuitively (l M n) holds if and only if M contains exactly n occurrences of
constructors belonging to the type tm. As we will see in the next subsection,
this definition will be crucial during the proof development in Coq.

5.2 The formal development

The first results we need concern properties of the measure relation l; first,
we show that l is preserved by fresh renaming:

Lemma L_RW: (n:nat)(M:tm)(l M n) ->

(x:var)(N:var->tm)(notin x (lam N)) ->

M=(N x) -> (y:var)(l (N y) n).

The proof technique used is a complete induction on n. We notice that com-
plete induction on natural numbers is trivially derivable from the induction
principle nat_ind, which is automatically provided by Coq on type nat. The
reason for using complete induction is that it allows to apply the inductive

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112108

hypothesis to any term structurally smaller than that of the current hypoth-
esis, not only to the immediate subterm of the latter (which is, instead, the
only possibility offered by the induction principle tm_ind provided by Coq).
Hence, we can “mimick” a complete induction principle on the structure of
terms by means of a complete induction on the number of constructors’ occur-
rences of terms. This is fundamental in proving renaming results like L_RW,
since, in the cases involving binders, there is the need to apply the inductive
hypothesis two times before concluding. The first application is carried out
only to replace all the occurrences of the generic variable introduced by the
l_lam rule. Indeed, being generic, such a variable is not generally fresh, and
this fact is in conflict with the notin judgment appearing in the inductive
hypothesis. A glance at the relative Coq session will make the argument clear:

...

n0 : nat

y : var

x0 : var->var->tm

...

============================

(l (lam (x0 y)) (S n1))

Here we are considering the case relative to the binder lam; hence, we must
apply rule l_lam (Apply l_lam; Intro.), thus getting the following proof
environment:

n : nat

n0 : nat

H : (m:nat)(lt m n0)->(M:tm)

(l M m)->(x:var; N:(var->tm))

(notin x (lam N))->M=(N x)->(y:var)(l (N y) m)

x : var

N : var->tm

H1 : (notin x (lam N))

y : var

M0 : var->tm

n1 : nat

H5 : (S n1)=n0

H3 : (y:var)(l (M0 y) n1)

x0 : var->var->tm

H7 : (notin x (lam [_:var](lam (x0 _))))

H8 : M0=(x0 x)

H2 : (lam (x0 x))=(N x)

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 109

H6 : N=([_:var](lam (x0 _)))

y0 : var

============================

(l (x0 y y0) n1)

Näıvely applying the inductive hypothesis H for replacing y with x does not
work, since, among the new subgoals, we have to prove (notin x (lam [_:

var](x0 y0))) and this is not possible, because y0, being generic, could be
equal to x. The right approach consists of replacing y0 with a new fresh
variable (obtained by means of unsat) and then replacing y with x. These
operations amount to applying two times the inductive hypothesis.

Once L_RW is derived, we can prove the totality of l w.r.t. the first argument
by means of a structural induction on it:

Lemma L_TOT: (M:tm)(Ex [n:nat](l M n)).

Now, we have all the results we need in order to derive, again by a com-
plete induction on n, the following lemma (notice the generic variable of the
schematic judgment ((y:var)(P [x:var](M x y)))):

Lemma PRE_HO_TM_IND: (P:(var->tm)->Prop)

((x:var)(P [_:var](is_var x))) ->

(P is_var) ->

((M,N:var->tm)(P M) -> (P N) ->

(P [x:var](app (M x) (N x)))) ->

((M:var->var->tm)

((y:var)(P [x:var](M x y))) ->

(P [x:var](lam (M x)))) ->

(n:nat)(M:tm)(l M n) ->

(N:var->tm)(x:var)(notin x (lam N)) ->

(N x)=M -> (P N).

The main result, i.e. the higher-order induction principle for terms of type
var->tm can be obtained as a straightforward corollary of PRE_HO_TM_IND:

Lemma HO_TM_IND: (P:(var->tm)->Prop)

((x:var)(P [_:var](is_var x))) ->

(P is_var) ->

((M,N:var->tm)(P M) -> (P N) ->

(P [x:var](app (M x) (N x)))) ->

((M:var->var->tm)

((y:var)(P [x:var](M x y))) ->

(P [x:var](lam (M x)))) ->

(M:var->tm)(P M).

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112110

The axioms of β-expansion and extensionality play a fundamental role in prov-
ing lemmata L_RW and PRE_HO_TM_IND, used for “transferring” structural in-
formation from terms of type tm to contexts of type var->tm. This fact is
explained in more detail in the pragmatic remarks at the end of Section 4.
The whole approach can be adapted (changing the definition of the measure
relation l) for deriving higher-order induction principles for terms of type
var->var->tm, var->var->var->tm and so on. For instance, the measure
relation for unary contexts of type var->tm is the following:

Inductive ho_l : (var->tm)->nat->Prop :=

ho_l_var1 : (ho_l [_:var](is_var _) (S O))

| ho_l_var2 : (x:var)(ho_l [_:var](is_var x) (S O))

| ho_l_app : (M,N:var->tm; n1,n2:nat)(ho_l M n1)->(ho_l N n2)->

(ho_l [_:var](app (M _) (N _)) (S (plus n1 n2)))

| ho_l_lam : (M:var->var->tm)(n:nat)

((y:var)(ho_l [_:var](M _ y) n)) ->

(ho_l [_:var](lam (M _)) (S n)).

6 Conclusion

The Theory of Contexts is an axiomatic attempt to capture some very prim-
itive properties about names and contexts in weak HOAS. Its first two axioms
(unsaturation and decidability of the equality over names) describe two funda-
mental and well-accepted assumptions about the practical use of names. The
role of the remaining axiom schemata is instead more subtle, since they reveal
their expressive power when used together. Indeed, extensionality allows to
infer the needed structural information about an “abstract” context M from
a “concrete” one N ′, obtained by a β-expansion of a ground term N in N ′[x]
(provided we can prove that M [x] = N ′[x] for x �∈ FV(M) ∪ FV(N)). This is
the main idea behind the derivation of the higher-order induction principle,
addressed in Section 5.

The Theory of Contexts has been used in combination with weak HOAS

for carrying out many case studies in recent years (see, e.g., [2,3,8,11,9,12]).
These works deal with very different paradigms, and produce machine-checked
error-prone proofs of very involved metatheoretical properties in the different
object systems. However, all these works seem to adopt an ad-hoc variant
of the axioms without following a common methodology. This paper tries to
disclaim this wrong impression, and aims to give a brief roadmap to follow
systematically in order to instanciate the axiom schemata and to work with a
weak HOAS-based encoding.

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112 111

References

[1] M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

[2] A. Ciaffaglione, L. Liquori, and M. Miculan. Imperative Object-based Calculi in (Co)Inductive
Type Theories. In Proc. of LPAR, Lecture Notes in Artificial Intelligence 2850, 2003.

[3] A. Ciaffaglione, L. Liquori, and M. Miculan. Reasoning on an Imperative Object-based
Calculus in Higher-Order Abstract Syntax. In Proc. of MERLIN, ACM, 2003.

[4] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order syntax in Coq. In Proc. of TLCA,
Lecture Notes in Computer Science 905, 1995.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing ?, to appear.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of ACM
40(1), 1993.

[7] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on systems
in higher-order abstract syntax. In Proc. of ICALP, Lecture Notes in Computer Science 2076,
2001.

[8] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory. Theoretical
Computer Science 239(2), 2001.

[9] F. Honsell, M. Miculan, and I. Scagnetto. The theory of contexts for first-order and higher-
order abstract syntax. In Proc. of TOSCA, Electronic Notes in Theoretical Computer Science
62, 2001.

[10] M. Miculan. Encoding logical theories of programs. PhD thesis, Dipartimento di Informatica,
Università di Pisa, Italy, 1997.

[11] M. Miculan. Developing (meta)theory of lambda-calculus in the theory of contexts. In Proc.
of MERLIN, Electronic Notes in Theoretical Computer Science 58.1, 2001.

[12] M. Miculan and I. Scagnetto. Ambient calculus and its logic in the calculus of inductive
constructions. In Proc. of LFM, Electronic Notes in Theoretical Computer Science 70.2, 2002.

[13] F. Pfenning and C. Schürmann. System description: Twelf, a meta-logical framework for
deductive systems. In Proc. of CADE, Lecture Notes in Artificial Intelligence 1632, 1999.

[14] I. Scagnetto. Reasoning about Names in Higher-Order Abstract Syntax. Cs 2002/4,
Dipartimento di Matematica e Informatica, Università di Udine, 2002.

A. Ciaffaglione, I. Scagnetto / Electronic Notes in Theoretical Computer Science 104 (2004) 99–112112

	Introduction
	Reconciling HOAS with induction
	The Theory of Contexts
	The Theory of Contexts at work
	Higher-order induction
	Encoding of syntax
	The formal development

	Conclusion
	References

