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Abstract In this work we investigate the entropic informa-
tion on thick brane-world scenarios and its consequences.
The brane-world entropic information is studied for the sine-
Gordon model and hence the brane-world entropic informa-
tion measure is shown to be an accurate way for provid-
ing the most suitable range for the bulk AdS curvature, in
particular from the informational content of physical solu-
tions. Besides, the brane-world configurational entropy is
employed to demonstrate a high organisational degree in the
structure of the configuration of the system, for large values
of a parameter of the sine-Gordon model but the one related
to the AdS curvature. The Gleiser and Stamatopoulos proce-
dure is finally applied in order to achieve a precise correlation
between the energy of the system and the brane-world con-
figurational entropy.

1 Introduction

The 4D Universe can be regarded as a brane embedded in a
higher-dimensional bulk, in which extra dimensions can be
large [1,2] and either compact or non-compact [3–7]. Brane-
world models have been providing new tools to understand
various questions, as for instance a solution of the gauge
hierarchy problem [1,5,6].

Recently, increasingly one has focussed on the study of
thick brane scenarios based on gravity coupled to one or more
scalars in higher-dimensional space-times [8–22]. Moreover,
domain walls have been used in high-energy physics to gen-
erate thick branes in models wherein scalar fields can cou-
ple with gravity in warped spacetime. Besides, thick branes
are well known to avoid some inconsistencies inherent to
thin brane-worlds, as for instance the proton decay [23]. For
some prominent reviews on domain walls and thick branes,
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see, e.g., Ref. [24]. In particular, a model described by a sin-
gle scalar field with internal structure was proposed in Refs.
[25,26]. Analytical solutions of the Einstein equations were
obtained with a sine-Gordon potential [27], where a kink,
as the scalar field configuration in the system, provides the
thick brane-world as a domain wall in the bulk. Similarly, this
type of configuration has also been further explored [28,29].
In addition, an analytic solution of the sine-Gordon domain
wall in a 4D global supersymmetric model was obtained [30],
and the stability of a more general setup was studied like-
wise [31]. The localisation of fermions on the brane has been
accomplished in the presence of kink-fermion couplings in
the background of the sine-Gordon kink [21].

Our aim here is mainly to study the entropic information
on thick brane-worlds models, by means of the brane-world
configurational entropy, and to further explore its subsequent
ramifications. In order to accomplish it, the sine-Gordon kink
shall be used, playing a prominent role in the thick brane
scenario. The sine-Gordon model is taken into account here
to suitably illustrate the framework that we shall use. In fact,
its parameters are related to the domain wall thickness and
the AdS bulk curvature, providing an interesting physical
approach.

This paper is organised as follows: in the next section
the thick brane generated by a single scalar field coupled to
gravity shall be revisited, with particular attention to the sine-
Gordon model. In Sect. III the brane-world configurational
entropy is going to be introduced, and we shall calculate the
entropic information for the sine-Gordon model, using the
Fourier transform of the thick brane (warped) energy den-
sity. The entropic information measure shall be shown to be
a successful tool for constraining the most suitable range for
the AdS curvature. In addition, the configurational entropy
is employed to evince a high organisational degree in the
configuration of the system, for large values of a parame-
ter of the sine-Gordon model. Furthermore, the Gleiser and
Stamatopoulos procedure is going to be applied to obtain a
correlation between the brane-world configurational entropy
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and the energy of the system. In the last section we present
our concluding remarks.

2 A brief overview of gravity coupled to a scalar field

In this section the work presented by Gremm is briefly revis-
ited [9], where 4-dimensional gravity arises on a thick domain
wall in AdS space. We start with the action in 5-dimensional
gravity coupled to one real scalar field, which is given by

S =
∫

d5x
√|g|

[
− R

4
+ 1

2
gab∇aφ∇bφ − V (φ)

]
, (1)

where 4πG = 1, with the field and the space-time vari-
ables being dimensionless, R denotes the scalar curvature,
and the scalar field φ depends only on the extra dimension.
Furthermore, V (φ) is the potential describing the model,
g = det(gab), and the metric is represented by

ds2 = gabdxadxb = e2A(r)ημνdxμdxν − dr2, (2)

for a, b = 0, 1, 2, 3, 5, where r is the extra dimension, ημν

denotes the usual Minkowski metric components, and e2A(r)

is the warp factor.
By denoting B ′(r) = dB(r)/dr , for any quantity B

depending just upon the variable r , and using the Einstein
equations Gab = Tab and the Euler–Lagrange equation
∇aφ∇aφ + V ′(φ) = 0 as well, the equations of motion read

A′′(r) + 2

3
φ′2(r) = 0, (3)

A′2(r) − 1

6
φ′2(r) + 1

3
V (φ) = 0, (4)

φ′′(r) + 4φ′(r)A′(r) − V ′(φ) = 0. (5)

Moreover, the above equations are equivalently written as

φ′(r) = 1

2

dW (φ)

dφ
, A′(r) = −1

3
W (φ), (6)

whenever the potential V (φ) is provided by the superpoten-
tial W (φ) as [8].

V (φ) = 1

8

(
dW (φ)

dφ

)2

− 1

3
W 2(φ). (7)

Thus, it is straightforward to verify that the first-order
equations

A′(r) = −1

3
W (φ), (8)

φ′(r) = 1

2

dW (φ)

dφ
, (9)

also solve Eqs. (3), (4) and (5). In order to find analytical
solutions, the sine-Gordon model is employed [32,33], being
defined by the following superpotential:

W (φ) = 3αβ sin

(√
2

3α
φ

)
. (10)

By using the above equation in Eq. (7), the potential yields

V (φ) = 3αβ2

8

[
(1 − 4α)−(1 + 4α) cos

(√
8

3α
φ

)]
. (11)

Now the solutions of Eqs. (8) and (9) are straightforwardly
verified to be given by

A(r) = −α ln [2 cosh(βr)] , (12)

φ(r) = √
6α arctan

[
tanh

(
βr

2

)]
. (13)

The field φ(r) and the warp factor e2A(r) are shown,
respectively, in Figs. 1 and 2. The field configuration in Fig.
1 is evinced to be the so-called kink. Moreover, e2A(r) is cen-
tred on r = 0. It is important to remark that in the solutions
(12) and (13) the AdS curvature is related to the product αβ,
whereas the thickness of the domain wall is given by the
parameter β. In addition, the brane core is localised at r = 0,
which is consonant to the point of maximum variation of the
scalar field, which composes the well-known domain wall.
The thick brane presents a thickness � where deviations from
the 4D Newton law occur in these scales. Current precision
torsion-balance experiments require that the extra dimension
must satisfy the constraint � � 44µm [34], whereas theo-
retical reasons thus imply that � � 	(5) ≈ 2.0 × 10−19 m.
Indeed, since in the 5D scenario with M(5) � Mew � 1 TeV,
as is to be considered, the electroweak scale corresponds to
the length 	(5) � 2.0×10−19m. Besides, it was shown in Ref.
[23] that the above experimental and theoretical arguments,
together with the avoidance of unobserved monopoles with
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Fig. 1 Kink-like solution for α = β = 1
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Fig. 2 Warp factor with α = β = 1

mass scale of order TeV on thick branes, impose physical
constraints for the parameter space αβ [23]:

1.0 × 10−19β � arccos h

(
1013/α

2

)
� 2.2 × 10−5β. (14)

In the next section we shall postulate the configurational
entropy in brane-world scenarios. As an example, the sine-
Gordon model described here shall be explored.

3 Brane-world configurational entropy (BCE)

As argued in the Introduction, Gleiser and Stamatopoulos
(GS) [35] have recently proposed a detailed picture of the
so-called configurational entropy (CE) for the structure of
localised solutions in classical field theories. In this section,
analogously to that work, we formulate a configurational
entropy measure in the functional space, from the field con-
figurations where brane-world scenarios can be studied. First,
the framework shall be formally introduced and thereafter its
consequences are going to be explored. Hence, we discuss a
prominent feature of this theory.

There is an intimate link between information and dynam-
ics, where the entropic measure plays a prominent role. The
entropic measure is well known to quantify the informational
content of physical solutions to the equations of motion and
their approximations, namely, the configurational entropy in
functional space [35]. GS proposed that nature optimises not
solely by extremising energy through the plethora of a priori
available paths, but also from an informational perspective
[35].

To start, let us write the following Fourier transform:

F[ω] = − 1√
2π

∫
dr e2A(r)+iωrL, (15)

where L is the standard Lagrangian density and e2A(r)

denotes the warp factor, as usual. For the sake of simplic-

ity, define ε(r) := −Le2A(r), named the warp density (WD).
Thus, using the Plancherel theorem, it follows that

∫
dω |F[ω]|2 =

∫
dr |ε(r)|2 . (16)

Now the modal fraction is defined by the following expres-
sion [35–39]:

f (ω) = |F[ω]|2∫
dω |F[ω]|2 . (17)

The modal fraction f (ω) measures the relative weight of
each mode ω.

Now, the CE was motivated by Shannon’s information the-
ory [35]. Indeed, the configurational entropy was originally
defined by the expression SC [ f ] = −∑

fn ln( fn), which
represents an absolute limit on the best lossless compres-
sion of any communication [40,41]. The CE thus originally
provided the informational content of configurations that are
compatible with constraints of an arbitrary physical system.
When N modes k carry the same weight, then fn = 1/N , and
hence the discrete configurational entropy has a maximum at
SC = ln N . Instead, if just one mode constitutes the system,
then SC = 0 [35].

Analogously, for arbitrary non-periodic functions in an
open interval the continuous CE can be described by the
expression

Sc[ f ] = −
∫

dω f̃ (ω) ln[ f̃ (ω)], (18)

where f̃ (ω) := f (ω)/ fmax(ω) is defined as the normalised
modal fraction, whereas the term fmax(ω) denotes the max-
imum fraction. Thus, Eq. (15) can be used to generate the
modal fraction, in order to obtain the entropic profile of thick
brane solutions. It is important to remark that Eq. (15) differs
from that one given by GS. In this framework we are includ-
ing the warp effect in the functionF[ω], and consequently the
framework carries information as regards the warped geom-
etry.

Here, as a straightforward example, we shall calculate the
entropic information for the sine-Gordon model. By substi-
tuting Eqs. (7) and (9) as well into the WD, and after straight-
forward manipulations,

ε(r) = e2A
(

1

4
W 2

φ − 1

3
W 2

)
. (19)

With the sine-Gordon model provided by Eq. (10) and its
respective solutions, the above WD can be written in the
following form:
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ε(r)= 6αβ2cosh−2(βr)[
1 + tanh2(βr)

]2

[
sech4(βr)−6α tanh2(βr)

]
. (20)

Now, the Fourier transform of the WD is calculated, which
gives the modal fraction in Eq. (17). In fact, we must deter-
mine

F[ω] = 1√
2π

∫
dr eiωrε(r), (21)

with ε(r) given by Eq. (20). After exhaustive calculations,
one finds

F[ω] = 21−2ααβ2

√
2π

2∑
j=1

[
2(2 + 9α)

3
I ( j)
1 − 3α

4
I ( j)
2

]
, (22)

where I ( j)
1 and I ( j)

2 are functions given by

I ( j)
1 = 1

2β

�(λ j + 1)

�(λ j + 2)
2G1[γ j , λ j + 1; λ j + 2;−1], (23)

I (1)
2 = 4

(
Ī (1)
2 + Ĩ (1)

2

)
, I (2)

2 = 4
(
Ī (2)
2 + Ĩ (2)

2

)
. (24)

The above functions are defined as

Ī ( j)
2 = 1

2β

�(λ̄1 + 1)

�(λ̄1 + 2)
2G1[γ̄1, λ̄1 + 1; λ̄1 + 2;−1], (25)

Ĩ ( j)
2 = 1

2β

�(λ̃1 + 1)

�(λ̃1 + 2)
2G1[γ̃1, λ̃1 + 1; λ̃1 + 2;−1] , (26)

where the above expressions 2G1[ · , · ; · ; · ] stand for the
well-known hypergeometric functions with

γ1 = γ2 = γ̄m = γ̃m = 2(α + 1),

λ1 = α + iω/2β, λ2 = λ∗
1, λ̄1 = λ1 + 1,

λ̄2 = λ̄∗
1, λ̃1 = λ∗

1 − 1, λ̃2 = λ1 − 1 ,

where the λ∗ denotes the complex conjugate of λ. Now, in
order to lead the modal fraction to a more compact form, Eq.
(22) can be rewritten as

F[ω] = A0

2∑
j,k=1

ck I
( j)
k , (27)

where the following notation is used:

A0 = 21−2ααβ2

√
2π

, c1 = 2(2 + 9α)

3
, c2 = −3α

4
. (28)

Thus, the modal fraction Eq. (15) becomes

f (ω) =
∑2

j,k,m,n=1
ckc

∗
n I

( j)
k I (m)∗

n

∑2

j,k,m,n=1

∫
dωckc

∗
n I

( j)
k I (m)∗

n

. (29)
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Fig. 3 Modal fractions for α = β = 1. The maximum is at ω = 0

-5 0 5
0.000

0.001

0.002

0.003

0.004

ω

f(ω
)

Fig. 4 Modal fractions for α = 2 and β = 1. Note that the maximum
is also at ω = 0

In Figs. 3 and 4 the modal fraction is depicted, for differ-
ent values of the parameter α. Note that the maximum of
the distributions is localised around the zero mode ω = 0.
Indeed, the maximum fraction is given by fmax = fmax(0).
By taking into account the modal fraction in Eq. (29) and its
maximum contribution, Eq. (18) can now be solved in order
to obtain the brane CE. In this case, due to the high complex-
ity of integration, Eq. (18) must be integrated numerically.
The results are shown in Fig. 5, where the BCE is plotted as a
function of the parameter α. In this case, the rescaled param-
eter δ = αβ has been defined, which is responsible for the
AdS curvature. Moreover, the thickness of the wall is fixed
by taking β = 1, 2, 3. As a consequence, several remarkable
results can be presented here. First, we have found that the
entropic information measure provides an accurate way to
fix the best values of the AdS curvature. In fact, we demon-
strate that the best ordering is given by that ones with lower
values of the domain wall thickness. Second, at large values
of α, the brane-world CE yields the configurational entropy
Sc = 0, showing a great organisational degree in the structure
of configuration of the system.

Finally, by using a recent approach, presented by GS [35],
we have checked that the BCE is correlated to the energy
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Fig. 5 The brane configurational entropy as a function of the
parameter α

of the system. The higher [lower] the brane configurational
entropy, the higher [lower] the energy of the solutions. More-
over, it is straightforward to realise from Fig. 5 that the higher
the brane thickness β, the higher the respective value for the
brane configurational entropy as well.

We are interested in sine-Gordon models, as the associ-
ated parameters α and β, which define the model by Eq.
(10), are constrained from experimental and theoretical argu-
ments. As the AdS curvature can be provided by the product
αβ, whereas the thickness of the domain wall is given by the
parameter β, we can find the best range for the AdS curvature
via the analysis above depicted in Fig. 5. This figure evinces
that system configurations with less entropy occur for the
range α � 3.0, irrespectively of the value of the parame-
ter β, which provides the brane thickness. Since the AdS
curvature is provided by the product αβ, according to what
has been discussed, both current precision torsion-balance
experiments and the 5D electroweak scale impose the con-
straint 2.0 × 10−19 m � β � 44µm to the brane thickness.
Together with the constraint 3.0 � α, it implies that the AdS
curvature is thus limited in the range provided by the product
6.0 × 10−19 m � αβ.

It is worth to mention that the superpotential Wα,β(φ) =
3αβ sin

(√
2

3α
φ

)
in (10) has parameters α and β, which

generate a 2-parameter family of superpotentials. We showed
that the configurational entropy is able to provide a better
selection of the superpotentials in such a family parametrised
by α and β than the ones existent in the literature.

Moreover, BCE also provides an independent criterion to
regulate the stability of spatially bound configurations based
solely on the informational content of their spatial profiles
[36]. In fact, the BCE maximum represents the boundary
between stability and instability, as in the case analysed in
[36] for Q-balls.

In the next section we shall provide the consequences of
the model studied above and point out future perspectives.

4 Concluding remarks and outlook

The entropic information has been studied here in brane-
world models, with emphasis on the sine-Gordon model,
which has been chosen by its very physical content and use-
fulness. Indeed, the sine-Gordon model parameters provide
the AdS bulk curvature and the domain wall thickness as
well. Hence the brane-world entropic information for the
sine-Gordon model has been achieved, providing the most
suitable values for the AdS curvature. In fact, we proved that
the higher the brane thickness β, the higher the respective
value for the brane configurational entropy. The brane-world
configurational entropy is, moreover, used to evince a higher
organisational degree in the structure of system configuration
likewise, for large values of one of the sine-Gordon model
parameters. The Gleiser and Stamatopoulos procedure was
also used to acquire the correlation between the brane-world
configurational entropy and the energy of the system, withal.
Moreover, our analysis is further based on the configurational
entropy given by S = S(α), depicted in Fig. 5. Such config-
urations for α � 3.0 are most probably found by the system,
since for such a range of α the configurational entropy S(α)

approaches zero.
We want to stress that for a fixed set of parameters (α, β)

there is a corresponding brane-world model. Hence, each
point of the graphics in Fig. 5 corresponds to a distinct brane-
world model, which clearly depends on such two parameters.
Although different choices of parameters have different asso-
ciated Hilbert spaces and comparing their CEs is not useful,
we proved that for α → 0 and for α � 3.0 (indeed asymp-
totically for bigger values of α) the CEs of all models tend
to the same value (asymptotically tend to zero). Hence we
may assert that the corresponding brane-world models are in
such a sense similar, asymptotically. Moreover, the energy
density in Eq. (20) goes to zero for all values of β, when
α ∼ 0.5. It coincides, by Fig. 5, to the highest values of the
configurational entropy, for any value of β. Hence our results
show that for values of the highest entropy (namely, for any
β and α ∼ 0.5), the brane energy density has a minimum
value. It implies that such models are not allowed, for con-
figurational entropic reasons. When α ∼ 0.5 is chosen, by
varying β the CE proportionally varies and the CE increases
as β also increases, as illustrated by Fig. 5. On the other hand,
for fixed β and α varying, we have bounded the values of the
parameters corresponding to a better ordering of the system,
according to the CE, for asymptotic values of α → 0 and
α → +∞.

Furthermore, better ordered models from the informa-
tional point of view are related to the ones with less energy.
It is based upon the BPS states, which makes it possible in
conformal coordinates for the field equations that rule the
brane-world model to lead to a 1-dimensional Schrödinger
equation. Hence regarding the extra dimension, the problem
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is reduced to the analysis of a potential in standard quantum
mechanics, wherein it is well known that the system tends to
the ground state.

It also worth to mention that, although the extra dimen-
sion has an infinite extent, the energy density is localised and
finite, as well as the sine-Gordon brane itself. The CE frame-
work holds for any physical system whose energy density is
localised, as is the case in our current procedure. In fact, the
non-singular warp factor makes the brane localised and the
extra-dimensional infinite extent is effectively finite.

Once the formalism of the brane-world configurational
entropy and the entropic information as well, has been devel-
oped, we can further apply a similar procedure to the previous
sections to other thick brane-world models. Indeed, an entire
new family of models of the sine-Gordon type, starting from
the sine-Gordon model, including the double sine-Gordon,
the triple one, and so on, have been obtained in [42]. Such
models appear as deformations of the starting sine-Gordon
model, and as they present different topological sectors, it
would be important to probe them from the point of view of
the brane-world configurational entropy. Since the solutions
of these deformed models can be constructed explicitly from
the topological defects of the sine-Gordon model itself, we
plan to study in particular the double sine-Gordon model in
a brane-world scenario with a single extra dimension of infi-
nite extent, as in this framework a stable gravity scenario has
been shown to be allowable [42]. Other interesting brane-
world models that are beyond the scope of our article, as
for instance the Bloch branes [14], the cyclically deformed
topological defects that generate domain walls [43] and the
asymmetric sine-Gordon model [44,45], can be investigated
from the point of view of the entropic information and the
brane-world configurational entropy.
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