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Abstract
Introduction
This abstract aims to present our recent work on explor-
ing the concept of mental imagery and mental simulation
as a fundamental cognitive capability applied to robot con-
trollers, with the aim of improving the motor performance
of the robot in terms of motor control and multi-degrees of
freedom coordination. Indeed we believe that mental im-
agery models can give the opportunity to apply such be-
haviour toward the development of artificial cognitive sys-
tems, in order to improve robots’ motor performance in gen-
eral and in complex motor planning. This objective can be
achieved using bio-inspired computational modelling tech-
nologies, such as artificial recurrent neural networks, able to
emulate processes of mental training by mental simulation.

In particular, as proof-of-concept, we designed a dual
neural network architecture, that allows the iCub to improve
autonomously its sensorimotor skills, with techniques in-
spired by the ones that are employed with human subjects
in sports training. This is achieved by endowing a feedfor-
ward controller of a secondary recurrent neural system that,
by exploiting the sensorimotor skills already acquired by the
robot, is able to generate additional imaginary examples that
can be used by the controller itself to improve the perfor-
mance through a additional learning process. Moreover we
show that data obtained with artificial imagination could be
used to simulate mental training to learn new tasks and en-
hance their performance. Results of experimental tests in
controlling a ballistic movement with the simulator of the
iCub humanoid robot platform are presented as evidence of
the opportunities presented by the use of artificial mental
imagery in cognitive robotics.

Material and Methods
The neural system that controls the robot is represented in
Figure 1(a), that consists of a three layer feedforward net-
work (FFNN) that implements the actual motor controller,
and of a Recurrent Neural Network (RNN). The RNN mod-
els the motor imagery and it is represented in detail in Fig-
ure 1(b). Normalized joint position of shoulder pitch, torso
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Figure 1: Artificial Neural Networks: (a) The Dual Network Ar-
chitecture (FFNN + RNN). (b) Detail of RNN: Red connections are
active in imagery mode only, while green connections are deacti-
vated in imagery.

yaw, and hand wrist pitch are the proprioceptive informa-
tion for input and output neurons. Another neuron is the
grab/release command, respectively with value 1 and 0. All
values are normalized in the range [0,1]. We used a clas-
sic back-propagation algorithm as the learning process. The
learning phase lasted 10000 epochs with a learning rate of
0.2 without momentum. The experimental task is shown
in Figure 2(a) and it is the realisation of a ballistic action,
involving the simultaneous movement of the right arm and
of the torso. It should be noted here that, since ballistic
movements are by definition not affected by external inter-
ferences, the training can be performed without considering
the surrounding environment, as well as vision and auditory
information. The task of the robot is to throw a small cube
of side size 2 cm and weight 40 grams as far as possible
according to an externally given velocity for the movement.
The robotic model used for the experiments presented here
is a simulation of the iCub humanoid robot, that was devel-
oped with the aim to accurately reproduce the physics and
the dynamics of the physical iCub using a software library
that provides an accurate simulation of rigid body dynamics
and collisions.

Figure 2(a) presents the three action phases: (left)
Preparation phase, the object is grabbed and shoulder
and wrist joints are positioned at 90 degrees; (center)
Acceleration phase, the shoulder joint accelerates until a
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(a) Action Phases (b) Single net controllers

Figure 2: Action phases and performance comparison (by means
of duration and release point errors) of FFNN and RNN as con-
trollers with full range training

given angular velocity is reached, while the wrist rotates
down; (right) Release phase: the object is released and
thrown away. The experiments are divided into two phases:
In the first phase the RNN was trained by a simple heuristic
to predict its own subsequent sensorimotor state. To this end
joint angle information over time was sampled in order to
build 20 input-output sequences corresponding to different
directions of the movement. In addition, in order to model
the autonomous throw of an object, the primitive action to
grab/release was also considered in the motor information
fed to the network. In the second phase the RNN operates
in offline mode and, thus, its prediction are made according
only to the internal model built during the training phase.

Experimental results and Discussion
In our experiments we tested the impact of mental training
in action performance in a different speed range that was not
experienced before. To this end we split both the learning
and testing dataset into two subsets according to the duration
of the movement: fast range subset comprises examples that
last less than 0.3 seconds; slow range subset comprises all
the others. Figure 2(b) shows the performance of the two
nets as controller of the ballistic task. As expected the FFNN
is the best controller for the task if the full range is given as
training, thus, it is the ideal controller for the task.

To test the mental training, we compared results on three
different case studies: (a) full range: For benchmarking pur-
poses, it is the performance obtained by the FFNN when it
is trained using the full range of examples (slow + fast);
(b) slow range only training: The performance obtained by
the FFNN only when it is trained using only the slow range
subset. This case stressed the generalization capability of
the controller when it is tested with the fast range subset;
(c) slow range plus mental training: In this case the two
architectures operate together as a single hierarchical archi-
tecture, in which first both nets are trained with the slow
range subset, then the RNN runs in mental imagery mode to
build a new dataset of fast examples for the FFNN, that is
incrementally trained this way.

Results show that generalization capability of the RNN

Figure 3: Results: Distance reached by the object after throwing
movements of varying velocities. Negative values represents the
objects falling backward;

helps to feed the FFNN with new data to cover the fast
range, simulating mental training. In fact, the FFNN, trained
only with the slow subset is not able to foresee the trend of
duration in the fast range, this implies that fast movements
last longer than needed and, because the inclination angle is
over 90 degrees, the object falls backward (see Figure 3).

The FFNN failure in predicting temporal dynamics is ex-
plainable by the simplistic information used to train the
FFNN, which seems to be not enough to reliably predict the
duration time in a faster range, never experienced before. On
the contrary, the greater amount of information that comes
from the proprioception and the fact that the RNN has to in-
tegrate over time those information in order to perform the
movement, makes the RNN able to create a sort of internal
model of the robot’s body behavior. This allows the RNN to
better generalize and, therefore guide the FFNN in enhanc-
ing its performance.

Conclusion
The results presented in this work, in conclusion, allow to
imagine the creation of novel algorithms and cognitive sys-
tems that implement even better and with more efficacy the
concept of artificial mental training. Such a concept appears
very useful in robotics, for at least two reasons: it helps to
speed-up the learning process in terms of time resources by
reducing the number of real examples and real movements
performed by the robot. An interesting direction for future
work is the integration of the artificial imagery with rein-
forcement learning techniques, with the aim to improve the
learning phase replacing real actions with mental simula-
tions.
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