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On Girth Conditioning for Low-Density Parity-Check Codes
Samuele Bandi, Velio Tralli, Andrea Conti, and Maddalena Nonato

Abstract—Low-density parity-check (LDPC) codes are gaining
interest for high data rate applications in both terrestrial and spa-
tial communications. They can be designed and studied through
a bipartite graph whose characteristics affect the performance.
This paper proposes a low-complexity method to improve the
performance of LDPC codes by selectively removing some cycles
from the associated bipartite graph. The method is based on a
modified version of the breadth first search (BFS) algorithm that
we call modified BFS (MBFS), which is applied to find cycles,
and a greedy procedure to eliminate them. Throughout the paper
we will give a detailed description of the algorithm proposed and
analytically study its complexity. Simulation results show that this
girth conditioning method applied to some classes of codes, whose
structure allows further optimization, can lead to a significative
complexity reduction and a performance improvements with
respect to other methods.

Index Terms—Low-density parity-check codes, girth condition-
ing, breadth first search algorithm, performance evaluation.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes are linear
block-codes with very sparse associated parity-check

matrix, that is, it contains only a low-density of non-zero
elements [1]–[3]. They have been recently considered as a
near Shannon limit channel coding technique for terrestrial
and spatial communications with requirements in terms of
high data rate and spectral efficiency [4]. A parity check
matrix H, with dimension𝑀 ×𝑁 and elements in the Galois
Field of order 𝑞 (i.e., GF(𝑞)) is associated to a bipartite
graph 𝒢 with 𝑁 left nodes and 𝑀 right nodes (an example
is reported in Fig. 1a). This graph is usually called Tanner
graph (TG), where left and right nodes are named variable
nodes and check nodes, respectively. While regular LDPC
codes are those for which all nodes of the same type have the
same degree, irregular LDPC codes have a suitably designed
random distribution of node degrees. This distribution affects
both complexity and performance, thus efficient encoding and
error floor reduction techniques1 have been investigated in the
literature (see, e.g., [2], [6], [7]).

The performance of an LDPC code with iterative decoding
depends on some structural properties of the associated TG;
of particular importance is the girth, that is the length of
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1In the absence of floor the error probability behavior would be log-concave

(see [5]).

the shortest cycle in the graph (e.g., in terms of number of
edges or nodes). A code is said with girth g when its TG
is free of cycles of length lower than g. In the presence
of cycles in the TG, the belief-propagation algorithm (BPA)
does not converge to maximum likelihood performance [1],
[8]: a message sent by a node along a cycle will propagate
back to the node itself after some iterations causing loss of
independence in the messages sent thereafter. However, cycle-
free TGs may have small minimum distance [1], leading to
poor bit error rate (BER). Several methods have been proposed
to generate parity-check matrices whose associate TGs are
free of short cycles (see, e.g., [9]–[14]). Progressive edge-
growth (PEG) method is proposed in [14] to construct TGs,
given the graph parameters, in an edge-by-edge greedy manner
by optimizing the local girth at variable nodes. It can be
used to generate codes of any rate and length, and for short-
length codes shows significant improvement over randomly
constructed codes. However, LDPC codes are often designed
without explicit constraints on the girth.

In this paper we propose an efficient method to increase the
girth of a given LDPC code instead of constructing a parity-
check matrix of given girth. A key issue for the application
of girth conditioning methods is the memory requirement.
This approach has been addressed rarely in the literature; as
an example, in [15] the increasing of the girth is obtained
by removing edges from the TG. The potential drawback
of this methodology is that edge deletion affects the degree
distribution of both variable and check-nodes. We explicitely
address the issue of removing as few edges as possible, to
enforce a target girth. Since the problem is NP-hard [16], we
propose a greedy approach based on a modified version of the
well known breadth first search (BFS) algorithm [17] for cycle
searching, called MBFS hereafter. We analyze the complexity
showing that MBFS has less stringent memory requirements
than the algorithm proposed in [15], and therefore can be
applied to a larger family of codes.

II. THE ISSUE OF GIRTH CONDITIONING FOR LDPC
CODES

Let us consider a bipartite graph 𝒢, where 𝑉 is the set of
variable nodes and 𝒯𝑠 the support tree rooted in the variable
node 𝑠 ∈ 𝑉 . At the level 𝑖 of the tree 𝒯𝑠 each node 𝑗
is connected to a set 𝛿(𝑗) of neighbors which includes one
predecessor Pred(𝑗) at level 𝑖 − 1 and one or more nodes
belonging to the set Γ(𝑗) = {𝑘 ∈ 𝛿(𝑗), 𝑘 ∕= Pred(𝑗)} at level
𝑖 + 1. If 𝒢 contains a cycle of length ℓ which includes the
node 𝑠, then there will be nodes in 𝒯𝑠 that occur at least
twice at level ℓ/2. As an example, in the TG of Fig. 1b two
occurrences of node 𝑑 at level 4 of the support tree 𝒯𝑎 rooted
in the variable node 𝑎 indicate the existence of a cycle of
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Fig. 1. (a) Example of Tanner graph containing a cycle of length 8
{𝑑, 𝑙, 𝑒, ℎ, 𝑎, 𝑔, 𝑐, 𝑖}; (b) A length ℓ cycle can be found exploring the support
tree up to level ℓ/2: e.g., node 𝑑 and ℓ = 8.

length 8 involving node 𝑎. To find the edges of the cycle, we
follow the path from node 𝑑 to 𝑎 on the left branch of 𝒯𝑎, and
the path from 𝑎 to 𝑑 on the right branch.

The girth conditioning algorithm we propose consists of the
following two steps, that will be further developed in Sec. II-A
and II-B:
1) find cycles with length up to a given value. To find cycles
including the node 𝑠 we have to build the support tree 𝒯𝑠 and
explore it using a suitable search algorithm. Instead of using
the the classic BFS algorithm [17], we introduce the MBFS
algorithm.
2) break cycles by deleting as few edges as possible (since
removing too many edges can destroy the structure of the
graph and degrade the performance) and by avoiding the re-
motion of edges which make the graph no longer connected.2

After showing that this minimization problem belongs to a
well-known class of NP-complete problems we will propose
a greedy approach for its solution.

A. MBFS Algorithm

We propose a novel algorithm based on a FIFO queue 𝑄
which, unlike standard BFS, will not contain only nodes, but
also other elements (i.e., integer numbers and asterisks, the
meaning of which will be clarified later) useful to find the
predecessor of each node by a simple inspection of 𝑄. At
each step, every node in the graph is labeled as either explored,
untouched, or pending. A node is explored if it is in 𝑄 together
with its neighbors, untouched if it is not in 𝑄, and pending if it
is in 𝑄 but without its neighbors. Besides the standard queue
operator PUSH and POP, we introduce the function SELECT
that returns the first pending element of 𝑄 from the head.
Each element of 𝑄, after being selected, either node, number,
or asterisk, is marked as explored.

The construction of 𝑄 proposed here allows the exploration
of the bipartite structure of the graph to find cycles without the
need of storing the predecessor of each node, which impacts
on the space complexity of the algorithm. A formal description

2This constraint is automatically respected if only one edge is deleted in
each cycle, since any node which is part of a cycle is connected to at least
two edges.

of the algorithm is given in Table Algorithm 1 and illustrated
hereafter. It consists of two parts:

Algorithm 1 MBFS algorithm
for all nodes 𝑠 ∈ 𝑉 do

procedure EXPLORE 𝒯𝑠 UP TO LEVEL 𝑔/2
ℓ = 1; PUSH(𝑠); PUSH(ℓ);
while ℓ ≤ 𝑔/2 do

u=SELECT (𝑄)
if 𝑢 is a node then

PUSH( Γ(𝑢) ); PUSH(∗);
end if
if 𝑢 is a number and 𝑢 = ℓ then
ℓ++; POP; PUSH(ℓ);

end if
if 𝑢 is an asterisk then

do nothing
end if

end while
end procedure

procedure FIND NODES BELONGING TO A 𝑔-CYCLE

INCLUDING NODE 𝑠
k=0;
for all node 𝑢 appearing at least twice as pending

in 𝑄 do
𝑚 = 𝑔/2; 𝑘++; 𝒞(0)

𝑢 = {𝑢}
while 𝑚 ∕= 1 do

move to the head of 𝑄 until occurence of
number 𝑚

determine the number of asterisks 𝑗 met
go to number 𝑚− 1 in 𝑄
move 𝑗 + 1 positions towards the tail, skip-

ping asterisks
let 𝑣 be the node in this position; 𝒞(𝑘)

𝑢 =

𝒞(𝑘)
𝑢

∪{𝑣}
𝑚−−

end while
end for
compose a path by joining all possible pairs of

𝒞(𝑔/2)
𝑢

end procedure
end for

A) For each node 𝑠 ∈ 𝑉 a queue 𝑄𝑠 representing the
support tree 𝒯𝑠 is constructed and used to find cycles of length
𝑔 including the node 𝑠. To find a cycle of length ℓ ≤ 𝑔
including the variable node 𝑠 we visit 𝒯𝑠 up to level ℓ/2 and
assume that the TG does not contain cycles of length less
than or equal to ℓ. Let us consider the example of Fig. 1 and
initialize the queue 𝑄𝑎 with two elements: the root node 𝑎
and the level number 1 (i.e., PUSH(𝑎,1)), with both of them
marked as pending. At each iteration we start from the head
of 𝑄𝑎 and select the first pending element (say 𝑢) of 𝑄𝑎 (i.e.,
SELECT), by marking it as explored. If 𝑢 is a node, we scan
the set of neighbors 𝛿(𝑢) and append to the tail of the queue
all elements in Γ(𝑢) and an asterisk (i.e., PUSH(Γ(𝑢), *) )
marking them as pending. If 𝑢 is a number, then we append
the number 𝑢 + 1 to the tail of 𝑄𝑎 and remove the asterisk
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at end of the queue (i.e., POP). There is a subtle point in the
MBFS algorithm, which makes it different from standard BFS:
when 𝑢 is selected, then only neighbors in Γ(𝑢) are added to
𝑄𝑎, including those already visited. Note that the predecessor
is not added to 𝑄𝑎 to avoid fake cycles of length 2. Note also
that the exponential growth due to the insertion of replicated
nodes is avoided, since we apply the search to graphs which
are free of cycles up to length ℓ − 2 and stop the search at
level ℓ.

As an example, let us consider the support tree 𝒯𝑎 of
Fig. 1b. The queue 𝑄𝑎 up to the depth 4 becomes3: 𝑄𝑎 =
{𝑎, 1, 𝑔𝑎, ℎ𝑎, 2, 𝑐𝑔, 𝑓𝑔, ∗, 𝑒ℎ, 3, 𝑖𝑐, ∗, ∗, 𝑙𝑒, 4, 𝑑𝑖, ∗, 𝑏𝑙, 𝑑𝑙, 5}.
If the graph contains cycles of length 𝑔, some nodes among
those marked as pending will appear more than once in 𝑄𝑎.
Observe that, by construction, the pending nodes are those
between the last two numbers occurring in𝑄𝑎. In our example,
for instance, the pending nodes are 𝑑𝑖, 𝑏𝑙, 𝑑𝑙 and the double
appearance of node 𝑑 after number 4 in 𝑄, indicates the
presence of a cycle of length 8 including 𝑎.

B) To find the nodes that compose a cycle including 𝑠, we
have to find the paths connecting each multiple occurrence
of pending nodes in 𝑄𝑠 to the root node 𝑠. In the example
of Fig. 1b the procedure to find the path from the second
occurrence of node 𝑑 at level 4 (that is 𝑑𝑙) to 𝑎 (the root of
the support tree 𝒯𝑎) is as follows:

∙ take node 𝑑𝑙 appearing in the list 𝑄𝑎 after number 4;
∙ move to the left and count the number 𝑗 of asterisks

before the occurrence of number 4;
∙ go to element 3 and move 𝑗 + 1 positions (excluding

asterisks) to the right, the letter in this position marks a
node which is in the cycle (in our example this letter is
𝑙𝑒);

∙ iterate the procedure. The path from 𝑑𝑙 to 𝑎 is therefore
{𝑑, 𝑙, 𝑒, ℎ, 𝑎}.

In the same way we can find the path from 𝑑𝑖 to 𝑎: the path is
{𝑑, 𝑖, 𝑐, 𝑔, 𝑎}. By combining the two paths together we obtain
the cycles of length 8 involving node 𝑎: {𝑑, 𝑙, 𝑒, ℎ, 𝑎, 𝑔, 𝑐, 𝑖, 𝑑}.

This algorithm applied to each variable node, that is 𝑁
times, enables the construction of a simple table containing
all the cycles of a given length in the TG. We will use this
table to properly delete some edges from the TG in order
eliminate cycles of a given length.

B. Edge deletion algorithm

The problem of selecting the minimum number of edges to
be removed from an undirected graph to break all cycles of
length at most ℓ is known as the partial feedback edge set
problem (PFESP) [18]. The PFESP is also related to other
classes of problems: it is a special case of the hitting cycle
problem, where the subset of cycles to be broken can be
arbitrarly selected with reference to all cycles of the graph. In
a seminal work by Yannakakis [16], it was demonstrated by
reduction from vertex cover that the PFESP is NP-hard even
when restricted to bipartite graphs. However, we formulate
our problem in the class of the edge deletion problems and
the approximation result given in [19] applies.

3For the sake of clarity the subscript of each node indicates its predecessor.

A heuristic approach seems a viable solution method for
tackling the problem of removing cycles with minimum num-
ber of deleted edges. Our proposed approach is inspired by the
mixed integer linear programming formulation of the PFESP
as a set covering problem (SCP): let Γℓ denote the set of cycles
of even length less than or equal to ℓ in 𝒢, let 𝐸𝛾 be the set
of edges of cycle 𝛾, for all 𝛾 ∈ Γℓ, and finally let 𝑥𝑒 be the
binary variable associated to the edge 𝑒 (i.e., 𝑥𝑒 = 1 if the
edge 𝑒 is deleted). Then the problem can be formulated as:

find: min

⎧⎨
⎩

∑
𝑒∈∪

𝛾∈Γℓ 𝐸𝛾

𝑥𝑒

⎫⎬
⎭ ,

subject to: 𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈
∪

𝛾∈Γℓ

𝐸𝛾

and
∑
𝑒∈𝐸𝛾

𝑥𝑒 ≥ 1 , ∀𝛾 ∈ Γℓ.

Several greedy approaches have been described for SCP (see
[20] for a comparison in terms of complexity). A straight-
forward one, algorithm Gr in [20], when applied to PFESP,
consists of scoring edges with reference to the covered rows
and ranking them in a non increasing order. Then, according
to the greedy framework, the highest rank edge is iteratively
selected and inserted in the partial solution, and the scores
are updated, until all edges with positive score have been
processed. This procedure requires the explicit enumeration of
all cycles in Γℓ, which is a time comsuming process (although
not exponential, since ℓ is bounded). Therefore, we propose to
proceed incrementally with respect to ℓ by solving one such
problem for a given cycle length4. In this way, only a subset of
cycles has to be handled at each iteration. Furthermore, cycles
whose edges belong to smaller cycles might have already been
broken. The heuristic procedure which we propose exploits the
fact that cycles of length ℓ are searched in a graph which is
cycle-free with reference to cycles of length ℓ′ < ℓ.

In particular, to remove the cycles, in the proposed approach
we process the table of the cycles in the set Γℓ starting from
the first row. For each edge 𝑒𝑖,𝑗 , where 𝑖 and 𝑗 are variable and
check nodes indexes, respectively, we increase a counter 𝐾𝑖,𝑗

(initialized to zero), every time we find 𝑒𝑖,𝑗 in the table. As
a memorization space for the different counters, the parity-
check matrix H itself, with elements 𝐾𝑖,𝑗 , can be used. If
𝐾𝑖,𝑗 exceeds 1, at any time, it means that the corresponding
𝑒𝑖,𝑗 is involved in more than one cycle. We first eliminate
the edges corresponding to the largest value of the counter.
After eliminating an edge 𝑒ℎ,𝑘 and the related cycles form
the table, we decrease all the counters 𝐾𝑖,𝑗 corresponding to
each edge 𝑒𝑖,𝑗 belonging to the cycles where 𝑒ℎ,𝑘 is involved.
The procedure can be repeated until all cycles are removed.
Note that this approach does not guarantee that we remove
the smallest number of edges, but it can be considered as a
greedy solution to a seemingly NP-hard problem.

III. ANALYSIS OF MBFS COMPLEXITY

We now examine the complexity of the proposed algorithm.
Since girth-conditioning through MBFS is performed off-chip

4Note that PFESP remains NP-hard when the cycles to brake are those
with exactly ℓ edges. See Theorem 8 (ii) in [16]
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TABLE I
SPATIAL COMPLEXITY OF MBFS ALGORITHM AND ALGORITHM IN [15]

APPLIED TO QC CODES FROM [15] AND MNC CODES FROM [3].

QC(510,255): 𝑑𝑐 = 8, 𝑑𝑣 = 16, 𝑁 = 510
𝑔𝑚𝑎𝑥 𝒞ℓ 𝒞ℓ of [15]
6 1.6× 104 8.4× 106

8 2.1× 106 1.1× 109

10 2.7× 108 1.4× 1011

MNC(30000,2000): 𝑑𝑐 = 3, 𝑑𝑣 = 4, 𝑁 = 30000
𝑔𝑚𝑎𝑥 𝒞ℓ 𝒞ℓ of [15]
8 1.7 103 5.2× 107

10 2.1× 104 6.2× 108

12 2.5× 105 7.5× 109

before using an LDPC code, temporal complexity is not really
an issue. On the contrary, spatial complexity (i.e., memory
occupation) can be the major concern. When working with
long LDPC codes (with more than 105 nodes) a non-efficient
algorithm in memory utilization can be infeasible. Hence, in
this section we will treat spatial complexity. The complexity
of girth conditioning mostly depends on the complexity of
MBFS algorithm, that is on the number of elements in 𝒯𝑠.

To analyze complexity, let us consider as a general case
the irregular LDPC code. By using the same notation as
in [21], the degree distribution is a polynomial 𝛾(𝑥) in the
form 𝛾(𝑥) =

∑𝑑
𝑖≥2 𝛾𝑖𝑥

𝑖−1 where the coefficients 𝛾𝑖 are non-
negative, 𝛾(1) = 1 and 𝑑 is the maximum degree. In the study
of LDPC codes one always refers to the performance of an
ensemble specified by a couple of degree distributions 𝜆(𝑥)
and 𝜌(𝑥) [21]. More precisely, the coefficients 𝜆𝑖(𝜌𝑖) of the
polynomial 𝜆(𝑥) (𝜌(𝑥)) represents the fraction of edges ema-
nating from variable (check) nodes of degree 𝑖. The maximum
degrees for variable and check nodes are denoted by 𝑑𝑣 and
𝑑𝑐, respectively. The number of variable nodes of degree 𝑖,
𝑉𝑖, is then given by 𝑉𝑖 = 𝑁Λ𝑖, where Λ𝑖 is the fraction of
variable nodes of degree 𝑖, that is Λ𝑖 = (𝜆𝑖/𝑖)/

∑
𝑗≥2 𝜆𝑗/𝑗.

The number of edges is 𝐸 =
∑

𝑖≥2 𝑉𝑖. The distributions (𝜆, 𝜌)
are edge-perspective distributions. For our purpose, we are
more interested in node-perspective distributions, that we will
denote by (Λ, 𝑅). If we denote with 𝐴𝑖 (𝐵𝑖) the number of
check (variable) nodes connected to variable (check) node 𝑖,
we obtain the complexity for cycles of length ℓ as shown in
the Appendix,

𝒞ℓ = 𝒪(2𝔼 {𝑊ℓ} − 1) ≤ 𝒪(𝜂
ℓ
2 ) (1)

where 𝜂 =
∑𝑑𝑣

𝑖=1 𝑖Λ𝑖

∑𝑑𝑐

𝑗=1 𝑗𝑅𝑗 .5

In case of regular (𝛼, 𝛽)-LDPC code where every variable
and check nodes have degrees 𝛼 and 𝛽, respectively, (1)
applies with 𝜂 = 𝛼𝛽. Note that, since every list 𝐿 used to
explore the generic support tree 𝒯𝑠, can be reused after finding
all cycles involving 𝑠, we do not need to multiply by 𝑁 the
previous expression.

Note that the complexity of the method proposed in [15]
is in the order of 𝒪(𝑁 𝜂

ℓ
2 ). The factor 𝑁 , which represents

the gain in complexity between our method and the one in
[15], can be exploited to remove cycles of higher orders, in
particular for long codes with small 𝑑𝑣 and 𝑑𝑐. In Table I we

5𝑅𝑖 is the fraction of check nodes of degree 𝑖. It is obtained, similarly to
Λ𝑖 as 𝑅𝑖 =

𝜌𝑖/𝑖∫ 1
0 𝜌(𝑥)𝑑𝑥

.
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Fig. 2. BER as a function of SNR before and after girth conditioning for
the MacKay’s regular (504,252) code [22], the regular and irregular PEG
(504,252), and the random regular (𝑑𝑣 = 5) code. For comparison, BER of
QC-LDPC(255, 510) after girth conditioning, as in [15], is reported.

show the spatial complexity bound of the method proposed
here and the one in [15] when applied to some codes appeared
in literature, in particular QC codes from [15] and MNC
codes from [3]. As an example, for QC codes with the same
complexity required by the method in [15] to have a girth equal
to 8, it is possible to obtain conditioned codes with girth 10.
The benefits are even more evident with MNC codes, in fact,
when the method in [15] provides girth 8, our approach gives
girth at least 12.

IV. NUMERICAL RESULTS

The proposed MBFS-based girth conditioning technique can
be used either to improve the performance of a given LDPC
code or to construct a new LDPC code. If we start with
a bipartite graph 𝒢0 with girth 𝑔0 and we apply the girth
conditioning technique once, we can obtain a new graph 𝒢1

with girth 𝑔1 = 𝑔0 + 2. Applying this technique 𝑘 times we
can obtain a new bipartite graph 𝒢𝑘 with girth 𝑔𝑘 = 𝑔0 + 2𝑘.
One would continue to apply girth conditioning as long as the
performance continues to improve. There is a limited number
of girth conditioning iterations allowed due to the fact that the
progressive removal of edges can eventually destroy the graph
structure of the code. This behavior can be easily explained by
looking at the degrees distribution of variable and check nodes.
Subsequent applications of girth conditioning generate lower
columns and rows degrees, moving the weight distributions
towards the left. This can be interpreted as a progressive
destruction of the structural properties of the code, which
eventually leads to a performance degradation.

The BER as a function of the SNR is reported in Fig. 2
before and after girth conditioning for the MacKay’s regular
(504,252) code [22], the regular and irregular PEG (504,252),
and a random regular (𝑑𝑣 = 5) code with length 504. It
is shown that a marginal improvement can be obtained for
MacKay’s regular codes when increasing the girth from 6 to
8, and for the PEG regular codes when increasing the girth
from 8 to 10. We verified that irregular PEG codes cannot be
improved (not shown in the figures). All these codes have a
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Fig. 3. BER as a function of SNR before and after girth conditioning for
some codes with length 1008: MacKay’s regular (1008,504) rate-1/2 code
[22], regular PEG (1008,504) code, and irregular PEG (1008,504) code.

maximum degree of variable nodes 𝑑𝑣 = 3. It is interesting
to note, on the other hand, that significant performance im-
provement is obtained through girth conditioning (from 6 to
10) when random regular codes with 𝑑𝑣 = 5 are considered.
With girth equal to 10 random codes obtain performance close
to that of MacKay’s and PEG codes. This means that when
the degree of variable nodes in regular codes is not small
there is space to increase the girth through edge removal with
performance improvement.

A girth conditioning technique that removes edges fol-
lowing a completely different Trellis-based algorithm was
proposed in [15]; to compare the two strategies in terms
of BER we condition the same QC-LDPC code proposed
in Example 1 of [15] which has a 255 × 510 parity check
matrix H0 consisting of two 255 × 255 circulants 𝑀1 and
𝑀2.6 By comparing our results of Fig. 2 with the ones
obtained in [15] we can observe that our algorithm gives the
same performance despite the lower complexity. This means
that performance degradation introduced by girth conditioning
(beyond a given value of 𝑔𝑘) does not depend on the efficiency
of the algorithms. The lower complexity of our algorithm,
however, makes it feasible for larger classes of codes, for
which algorithm proposed in [15] may not be applicable.

This allows us to investigate the effects of girth conditioning
on other classes of LDPC codes. As an example, we consider
here the attempt of further optimizing other codes of length
around 1000, that is the MacKay’s regular (1008,504) rate-
1/2 code (𝑑𝑣 = 3) and (816,272) rate-1/3 code (𝑑𝑣 = 4) [22],
the regular PEG (1008,504) code [14] and irregular (𝑑𝑣 = 10)
random codes (the latter constructed according to some degree
distributions optimized with the well known density-evolution
technique [21]). Random codes are constructed without cycles
of length 4. Looking at BER as a function of SNR reported
in Figs. 3 and 4, we note that we cannot further improve

6A 𝑛 × 𝑛 circulant is characterized by a polynomial g(𝑋) over 𝐺𝐹 (2)
whose coefficients, with their 𝑛 cyclic shifts, determine the matrices. In
particular, the comparison is made with codes having g1(𝑋) = 1 +
𝑋47 + 𝑥72 + 𝑋104 + 𝑋106 + 𝑋191 + 𝑋212 + 𝑋225 and g2(𝑋) =
1 +𝑋8 + 𝑥37 +𝑋87 +𝑋125 +𝑋137 +𝑋149 +𝑋161 .
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Fig. 4. BER as a function of SNR for some codes before and after
girth conditioning: MacKay’s regular (816,272) rate-1/3 code (𝑑𝑣 = 4) [22]
and irregular (𝑑𝑣 = 10) random code. For comparison the performance of
irregular PEG (1008,504) code is reported.

the performance of these LDPC codes, with the exception of
rate-1/3 code (girth 6 and 𝑑𝑣 = 4) which allows significant
improvements, up to 0.8 dB. This means that the tool of girth
conditioning, for the reasons outlined in the paper, is useful for
codes constructed or designed with a small girth and weight
distribution with not small minimum degree (i.e., a structure
that allows further optimization). This is the case of the regular
rate-1/3 code in the figure, whereas this is not the case of
random irregular code with optimized degree distribution. Well
designed codes do not need girth conditioning. Since codes
with large block length are usually obtained with random
construction and optimized irregular degree distribution [21],
girth conditioning looses the relevance for this application.

V. CONCLUSIONS

In this paper we proposed an algorithm based on MBFS for
removing cycles of TG and we investigated its performance
and complexity. The MBFS-based girth conditioning method
can be used either to improve the performance of and existing
LDPC code or to construct a new code. The reduced complex-
ity of MBFS algorithm makes this method feasible even for
long block length codes, without the need to memorize big
trellis structures as proposed by other methods in literature.
The results show significant performance improvement for
some classes of codes, whereas in some others cases is not
effective. This motivates further analysis on efficiency of the
girth conditioning techniques in relation with the construction
method of the LDPC code.

APPENDIX: COMPLEXITY OF MBFS ALGORTHM APPLIED

TO IRREGULAR LDPC CODES

Let us denote with 𝐴𝑖 (𝐵𝑖) the number of check (variable)
nodes connected to variable (check) node 𝑖, and with𝑋𝑚 (𝑌𝑚)
the variable (check) nodes at level𝑚 of a support tree 𝒯𝑠. The
following inequality holds

𝑋𝑚+2 ≤
∑𝑋𝑚

𝑗=1 𝐴𝑗∑
𝑖=1

𝐵𝑖 with 𝑚 even . (2)
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This is quite evident since the number of check nodes at level
𝑚 + 1 (odd) is

∑𝑋𝑚

𝑖=1 𝐴𝑖 and each check node has degree
𝐵𝑖. In a perfectly symmetric fashion, the following inequality
holds for check nodes at level 𝑚+ 2 (odd)

𝑌𝑚+2 ≤
∑𝑌𝑚

𝑗=1 𝐵𝑗∑
𝑖=1

𝐴𝑖 with 𝑚 odd . (3)

If 𝑋𝑖 and 𝑆 are independent, non-negative, and integer-valued
random variables, then 𝔼

{∑𝑆
𝑖=1𝑋𝑖

}
= 𝔼 {𝑋}𝔼 {𝑆} (see

[23]). By considering the expected values we obtain therefore

𝔼 {𝑋𝑚+2} ≤ 𝔼

{
𝑋𝑚∑
𝑖=1

𝐴𝑖

}
𝔼 {𝐵} = 𝔼 {𝑋𝑚} 𝜂 (4)

where 𝜂 = 𝔼 {𝐴}𝔼 {𝐵}. Since 𝑋0 = 1 (at level zero we have
only the root node), the average number of variable nodes at
level 𝑚 of the support tree is given by

𝔼 {𝑋𝑚} ≤ 𝜂𝑚/2 with 𝑚 even. (5)

Note that 𝔼 {𝐴} =
∑𝑑𝑣

𝑖=1 𝑖Λ𝑖 and 𝔼 {𝐵} =
∑𝑑𝑐

𝑖=1 𝑖𝑅𝑖 . By
using a similar procedure we obtain the following result for
𝑌𝑚

𝔼 {𝑌𝑚} ≤ 𝔼 {𝐴} 𝜂𝑚−1
2 with 𝑚 odd . (6)

Let us now define 𝑍𝑚 = 𝑋𝑚+𝑌𝑚+1 with 𝑚 even; we obtain
𝔼 {𝑍𝑚} ≤ (𝔼 {𝐴} + 1)𝜂𝑚/2 . Hence, the average number of
nodes of a support tree rooted in 𝑠, 𝒯𝑠 of ℓ levels, with ℓ even,
can be obtained by summing 𝔼 {𝑍𝑚} over the even values of
𝑚, as

𝔼 {𝑊ℓ} ≤ 𝔼

⎧⎨
⎩

ℓ/2∑
𝑖=0

𝑍2𝑖

⎫⎬
⎭ = (𝔼 {𝐴} + 1)

ℓ/2∑
𝑖=0

𝜂

= (𝔼 {𝐴}+ 1)
𝜂

ℓ
2+1 − 1

𝜂 − 1
. (7)

Since we visit 𝒯𝑠 with BFS, the complexity of the search
operation on the single support tree results in (1).
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