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Abstract: In this paper, we study Amari’s natural gradient flows of real functions defined

on the densities belonging to an exponential family on a finite sample space. Our main

example is the minimization of the expected value of a real function defined on the sample

space. In such a case, the natural gradient flow converges to densities with reduced support

that belong to the border of the exponential family. We have suggested in previous works

to use the natural gradient evaluated in the mixture geometry. Here, we show that in some

cases, the differential equation can be extended to a bigger domain in such a way that the

densities at the border of the exponential family are actually internal points in the extended

problem. The extension is based on the algebraic concept of an exponential variety. We

study in full detail a toy example and obtain positive partial results in the important case of

a binary sample space.
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1. Introduction

For the purpose of obtaining a clear presentation of our approach to the geometry of statistical models,

we start with a recap of nonparametric statistical manifold; see, e.g., the review paper [1]. However, we

will shortly move to the actual setup of the present paper, i.e., the finite state space case.

Let (Ω,A, µ) be a measured space of sample points x ∈ Ω. We denote by P≥ ⊂ L1(µ) the simplex

of (probability) densities and by P> ⊂ P≥ the convex set of strictly positive densities. If Ω is finite, then

P> is the topological interior of P≥. We denote by P1 the affine space generated by P≥.

The set P> holds the exponential geometry, which is an affine geometry, whose geodesics are curves

of the form t 7→ pt ∝ p1−t0 pt1. The set P1 holds the mixture geometry, whose geodesics are of the

form t 7→ pt = (1 − t)p0 + tp1. A proper definition of the exponential and mixture geometry, where

probability densities are considered points, requires the definition of the proper tangent space to hold

the vectors representing the velocity of a curve. In both cases, the tangent space Tp at a point p is a

space of random variables V with zero expected value, Ep [V ] = 0. On the tangent space Tp, a natural

scalar product is defined, 〈U, V 〉p = Ep [UV ], so that a pseudo-Riemannian structure is available. Note

that the Riemannian structure is a third geometry, different from both the exponential and the mixture

geometries. Note also that both the expected value and the covariance can be naturally extended to be

defined on P1.

For each lower bounded objective function f : Ω → R and each statistical model M ⊂ P>, the

(stochastic) relaxation of f to M is the function F (p) = Ep [f ] ∈ R, p ∈ M; cf. [2]. The minimization

of the stochastic relaxation as a tool to minimize the objective function has been studied by many

authors [3–7].

If we have a parameterization ξ 7→ pξ of M, the parametric expression of the relaxed function is

F̂ (ξ) = Epξ [f ]. Under integrability and differentiability conditions on both ξ 7→ pξ and x 7→ f(x),

F̂ is differentiable, with ∂jF̂ (ξ) = Epξ [∂j log (pξ) f ] and Epξ [∂j log (pξ)] = 0; see [1,8]. In order to

properly describe the gradient flow of a relaxed random variable, these classical computations are better

cast into the formal language of information geometry (see [9]) and, even better, in the language of

non-parametric differential geometry [10] that was used in [11]. The previous computations suggest to

take the Fisher score ∂j log (pξ) as the definition of a tangent vector at the j-th coordinate curve. While

the development of this analogy in the finite state space case does not require a special setup, in the

non-finite state space, some care has to be taken.

In this paper, we follow the non-parametric setup discussed in [1] and, in particular, the notion of an

exponential family E and the identification of the tangent space at each p ∈ E with a space of p-centered

random variables.

The paper is organized as follows. We discuss in Section 2 the generalities of the finite state space

case; in particular, we carefully define the various notions of the Fisher information matrix and natural

gradient that arise from a given parameterization. In Section 3, we discuss a toy example in order

to introduce the construction of an algebraic variety extending the exponential family from positive

probabilities P> to signed probabilities P1; this construction is applied to the natural gradient flow in

the expectation parameters; moreover, it is shown that this model has a variety that is ruled. The last

Section 4 is devoted to the treatment of the special important case when the sample space is binary.
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The present paper is a development of the paper [12], which was presented as a poster at the MaxEnt

Conference 2014. While the topic is the same, the actual overlapping between the two papers is minimal

and concerns mainly the generalities that are repeated for the convenience of the reader.

2. Gradient Flow of Relaxed Optimization

Let Ω be a finite set of points x = (x1, . . . , xn) and µ the counting measure of Ω. In this case, a

density p ∈ P≥ is a probability function, i.e., p : Ω → R+, such that
∑

x∈Ω p(x) = 1.

Let B = {T1, . . . , Td} be a set of random variables, such that, if
∑d

j=1 cjTj is constant, then c1 =

· · · = cd = 0; for instance consider B such that
∑

x∈Ω Tj(x) = 0, j = 0, . . . , d, and B is a linear

basis. We say that B is a set of affinely independent random variables. If B is a linear basis, it is affinely

independent if and only if {1, T1, . . . , Td} is a linear basis.

We consider the statistical model E whose elements are uniquely identified by the natural parameters

θ in the exponential family with sufficient statistics B, namely:

pθ ∈ E ⇔ log pθ(x) =
d∑

i=1

θiTi(x)− ψ(θ), θ ∈ Rd ,

see [13].

The proper convex function ψ : Rd,

θ 7→ ψ(θ) = log
∑

x∈Ω

eθ·T (x) = θ · Epθ [T ]− Epθ [log (pθ)]

is the cumulant generating function of the sufficient statistics T , in particular,

∇ψ(θ) = Eθ [T ] , Hessψ(θ) = Covθ (T ,T ) .

Moreover, the entropy of pθ is:

H(pθ) = −Epθ [log (pθ)] = ψ(θ)− θ · ∇ψ(θ) .

The mapping ∇ψ is one-to-one onto the interior M◦ of the marginal polytope, that is the convex span

of the values of the sufficient statistics M = {T (x)|x ∈ Ω}. Note that no extra condition is required,

because on a finite state space, all random variables are bounded. Nonetheless, even in this case, the

proof is not trivial; see [13].

Convex conjugation applies [14] (Section 25) with the definition:

ψ∗(η) = sup
{
θ ∈ Rd

∣∣θ · η − ψ(θ)
}
, η ∈ Rd .

The concave function θ 7→ η · θ − ψ(θ) has divergence mapping θ 7→ η −∇ψ(θ), and the equation

η = ∇ψ(θ) has a solution if and only if η belongs to the interior M◦ of the marginal polytope. The

restriction φ = ψ∗|M◦ is the Legendre conjugate of ψ, and it is computed by:

φ : M◦ ∋ η 7→∈ (∇ψ)−1(η) · η − ψ ◦ (∇ψ)−1(η) ∈ R .
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The Legendre conjugate φ is such that ∇φ = (∇ψ)−1, and it provides an alternative parameterization

of E with the so-called expectation or mixture parameter η = ∇ψ(θ),

pη = exp ((T − η) · ∇φ(η) + φ(η)) . (1)

While in the θ parameters, the entropy is H(pθ) = ψ(θ) − θ · ∇ψ(θ), in the η parameters, the φ

function gives the negative entropy: −H(pη) = Epη [log pη] = φ(η).

Proposition 1.

1. Hess φ(η) = (Hessψ(θ))−1
when η = ∇ψ(θ).

2. The Fisher information matrix of the statistical model given by the exponential family in the θ

parameters is Ie(θ) = Covpθ (∇ log pθ,∇ log pθ) = Hessψ(θ).

3. The Fisher information matrix of the statistical model given by the exponential family in the η

parameters is Im(θ) = Covpη (∇ log pη,∇ log pη) = Hess φ(η).

Proof. Derivation of the equality ∇φ = (∇ψ)−1 gives the first item. The second item is a property of

the cumulant generating function ψ. The third item follows from Equation (1).

2.1. Statistical Manifold

The exponential family E is an elementary manifold in either the θ or the η parameterization, named

respectively exponential or mixture parameterization. We discuss now the proper definition of the tangent

bundle TE .

Definition 1 (Velocity). If I ∋ t 7→ pt, I open interval, is a differentiable curve in E , then its velocity

vector is identified with its Fisher score:

D

dt
p(t) =

d

dt
log (pt) .

The capital D notation is taken from differential geometry; see the classical monograph [15].

Definition 2 (Tangent space). In the expression of the curve by the exponential parameters,

the velocity is:

D

dt
p(t) =

d

dt
log (pt) =

d

dt
(θ(t) · T − ψ(θ(t))) = θ̇(t) ·

(
T − Eθ(t) [T ]

)
, (2)

that is it equals the statistics whose coordinates are θ̇(t) in the basis of the sufficient statistics centered

at pt. As a consequence, we identify the tangent space at each p ∈ E with the vector space of centered

sufficient statistics, that is:

TpE = Span (Tj − Ep [Tj]|j = 1, . . . , d) .
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In the mixture parameterization of Equation (1), the computation of the velocity is:

D

dt
p(t) =

d

dt
log (pt) =

d

dt
(∇φ(η(t)) · (T − η(t)) + φ(η(t))) =

(Hess φ(η(t))η̇(t)) · (T − η(t)) = η̇(t) · [Hess φ(η(t)) (T − η(t))] . (3)

The last equality provides the interpretation of η̇(t) as the coordinate of the velocity in the conjugate

vector basis Hess φ(η(t)) (T − η(t)), that is the basis of velocities along the η coordinates.

In conclusion, the first order geometry is characterized as follows.

Definition 3 (Tangent bundle TE). The tangent space at each p ∈ E is a vector space

of random variables TpE = Span (Tj − Ep [Tj ]|j = 1, . . . , d), and the tangent bundle TE =

{(p, V )|p ∈ E , V ∈ TpE}, as a manifold, is defined by the chart:

TE ∋ (eθ·T−ψ(θ), v · (T − Eθ [T ])) 7→ (θ, v). (4)

Proposition 2.

1. If V = v · (T − η) ∈ TpηE , then V is represented in the conjugate basis as:

V = v · (T − η) = v · (Hess φ(η))−1Hess φ(η) (T − η) =
(
(Hess φ(η))−1

v
)
· Hess φ(η) (T − η) . (5)

2. The mapping (Hess φ(η))−1
maps the coordinates v of a tangent vector V ∈ TpηE with respect to

the basis of centered sufficient statistics to the coordinates v∗ with respect to the conjugate basis.

3. In the θ parameters, the transformation is v 7→ v∗ = Hessψ(θ)v.

Remark 1. In the finite state space case, it is not necessary to go on to the formal construction of a

dual tangent bundle, because all finite dimensional vector spaces are isomorphic. However, this step is

compulsory in the infinite state space case, as was done in [1]. Moreover, the explicit construction

of natural connections and natural parallel transports of the tangent and dual tangent bundle is

unavoidable when considering the second-order calculus, as was done in [1,8], in order to compute

Hessians and implement Newton methods of optimization. However, the scope of the present paper is

restricted to a basic study of gradient flows; hence, from now on, we focus on the Riemannian structure

and disregard all second-order topics.

Proposition 3 (Riemannian metric). The tangent bundle has a Riemannian structure with the natural

scalar product of each TpE , 〈V,W 〉p = Ep [VW ]. In the basis of sufficient statistics, the metric is

expressed by the Fisher information matrix I(p) = Covp (T ,T ), while in the conjugate basis, it is

expressed by the inverse Fisher matrix I−1(p).

Proof. In the basis of the sufficient statistics, V = v · (T − Ep [T ]), W = w · (T − Ep [T ]), so that:

〈V,W 〉p = v′Ep
[
(T − Ep [T ]) (T − Ep [T ])′

]
w = v′ Covp (T ,T )w = v′I(p)w , (6)

where I(p) = Covp (T ,T ) is the Fisher information matrix.
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If p = pθ = pη, the conjugate basis at p is:

Hess φ(η)(T − η) = Hessψ(θ)−1(T −∇φ(θ)) = I−1(p)(T − Ep [T ]), (7)

so that for elements of the tangent space expressed in the conjugate basis, we have V = v∗ ·
I−1(p) (T − Ep [T ]), W = w∗ · I−1(p) (T − Ep [T ]); thus:

〈V,W 〉p = v∗′Ep
[
I−1(p) · (T − Ep [T ]) (T − Ep [T ])′ I−1(p)

]
w∗ = v∗′I−1(p)w∗. (8)

2.2. Gradient

For each C1 real function F : E → R, its gradient is defined by taking the derivative along a C1 curve

I 7→ p(t), p = p(0), and writing it with the Riemannian metrics,

d

dt
F̂ (θ(t))

∣∣∣∣
t=0

=

〈
∇F (p), D

dt
p(t)

∣∣∣∣
t=0

〉

p

, ∇F (p) ∈ TpE . (9)

If θ 7→ F̂ (θ) is the expression of F in the parameter θ and t 7→ θ(t) is the expression of the

curve, then d
dt
F̂ (θ(t)) = ∇F̂ (θ(t)) · θ̇(t), so that at p = pθ(0), with velocity V = D

dt
p(t)

∣∣
t=0

= θ̇(0) ·
(T −∇ψ(θ(0)), so that we obtain the celebrated Amari’s natural gradient of [16]:

〈∇F (p), V 〉p =
(
Hessψ(θ(0))−1∇F̂ (θ(0)

)′
Hessψ(θ(0))θ̇(0) . (10)

If η 7→ F̌ (η) is the expression of F in the parameter η and t 7→ η(t) is the expression of the

curve, then d
dt
F̌ (η(t)) = ∇F̌ (η(t)) · η̇(t) so that at p = pη(0), with velocity V = d

dt
log (p(t))

∣∣
t=0

=

η̇(0) ·Hess φ(η(0))(T − η(0)),

〈∇F (p), V 〉p = (Hess φ(η(0))−1∇F̂ (η(0))′Hess φ(η(0))η̇(0). (11)

We summarize all notions of gradient in the following definition.

Definition 4 (Gradients).

1. The random variable ∇F (p) uniquely defined by Equation (9) is called the (geometric) gradient

of F at p. The mapping ∇F : E ∋ p 7→ ∇F (p) is a vector field of TE .

2. The vector ∇̃ F̂ (θ) = Hessψ(θ)−1∇F̂ (θ) of Equation (10) is the expression of the geometric

gradient in the θ in the basis of sufficient statistics, and it is called the natural gradient, while

∇F̂ (θ), which is the expression in the conjugate basis of the sufficient statistics, is called the

vanilla gradient.

3. The vector ∇̃ F̌ (η) = Hess φ(η)−1∇F̌ (η) of Equation (10) is the expression of the geometric

gradient in the η parameter and in the conjugate basis of sufficient statistics, and it is called the

natural gradient, while ∇F̌ (η), which is the expression in the basis of sufficient statistics, is called

the vanilla gradient.
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Given a vector field of E , i.e., a mapping G defined on E , such that G(p) ∈ TpE , which is called a

section of the tangent bundle in the standard differential geometric language, an integral curve from p is

a curve I ∋ t 7→ p(t), such that p(0) = p and D
dt
p(t) = G(p(t)). In the θ parameters, G(pθ) = Ĝ(θ) ·

(T − ∇ψ(θ)), so that the differential equation is expressed by θ̇(t) = Ĝ(θ(t)). In the η parameters,

G(pη) = Ǧ(η) ·Hess φ(η)(T − η), and the differential equation is η̇(t) = Ǧ(η(t)).

Definition 5 (Gradient flow). The gradient flow of the real function F : E is the flow of the

differential equation D
dt
p(t) = ∇F (p(t)), i.e., d

dt
p(t) = p(t)∇F (p(t)). The expression in the θ

parameters is θ̇(t) = ∇̃ F̂ (θ(t)), and the expression in the η parameters is η̇(t) = ∇̃ F̌ (η(t)).

The cases of gradient computation we have discussed above are just a special case of a generic

argument. Let us briefly study the gradient flow in a general chart f : ζ 7→ pζ . Consider the change

of parametrization from ζ to θ,

ζ 7→ pζ 7→ θ(pζ) = I(pζ)
−1Covpζ (T , log pζ) ,

and denote the Jacobian matrix of the parameters’ change by J(ζ). We have:

log pζ = T · θ(ζ)− ψ(θ(ζ))

= T · I(pζ)−1Covpζ (T , log pζ)− ψ
(
I(pζ)

−1Covpζ (T , log pζ)
)
,

and the ζ coordinate basis of the tangent space TpζE consists of the components of the gradient with

respect to ζ,

∇(ζ 7→ log pζ) = J−1(ζ)
(
T − Epζ [T ]

)

It should be noted that in this case, the expression of the Fisher information matrix does not have the

form of a Hessian of a potential function. In fact, the case of the exponential and the mixture parameters

point to a special structure, which is called the Hessian manifold; see [17].

2.3. Gradient Flow in the Mixture Geometry

From now on, we are going to focus on the expression of the gradient flow in the η parameters. From

Definition 4, we have:

∇̃ F̌ (η) = Hess φ(η)−1∇F̌ (η) = Hessψ(∇φ(η))∇F̌ (η) = I(pη)∇F̌ (η) ,

where I(p) = Covp (T ,T ). As p 7→ Covp (T ,T ) is the restriction to the simplex of a quadratic function,

while p 7→ η is the restriction to the exponential family E of a linear function, in some cases, we can

naturally consider the extension of the gradient flow equation outside M◦. One notable case is when the

function F is a relaxation of a non-constant state space function f : Ω → R, as it is defined in, e.g., [3].

Proposition 4. Let f : Ω → R, and let F (p) = Ep [f ] be its relaxation on p ∈ E . It follows:

1. ∇F (p) is the least square projection of f onto TpE , that is:

∇F (p) = I(p)−1Covp (f,T ) · (T − Ep [T ]) .
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2. The expressions in the exponential parameters θ are ∇̃ F̂ (θ) = (Hessψ(θ))−1Covθ (f,T ),

∇F̂ (θ) = Covθ (f,T ), respectively.

3. The expressions in the mixture parameters η are ∇̃ F̌ (η) = Covη (f,T ) and ∇F̌ (η) =

Hess φ(η) Covη (f,T ), respectively.

Proof. On a generic curve through p with velocity V , we have d
dt
Ep(t) [f ]

∣∣
t=0

=

Covp (f, V ) = 〈f, V 〉p. If V ∈ TpE , we can orthogonally project f to get 〈∇F, V 〉p =

〈(I−1(p) Covp (f,T )) · (T − Ep [T ]), V 〉
p
.

Remark 2. Let us briefly recall the behavior of the gradient flow in the relaxation case. Let θn, n =

1, 2, . . . , be a minimizing sequence for F̂ , and let p̄ be a limit point of the sequence (pθn)n. It follows

that p̄ has a defective support, in particular p̄ /∈ E; see [18,19]. For a proof along lines coherent with

the present paper, see [20] (Theorem 1). It is found that the support F ⊂ Ω is exposed, that is T (F ) is

a face of the marginal polytope M = con {T (x)|x ∈ Ω}. In particular, Ep̄ [T ] = η̄ belongs to a face

of the marginal polytope M . If a is the (interior) orthogonal of the face, that is a · T (x) + b ≥ 0 for

all x ∈ Ω and a · T (x) + b = 0 on the exposed set, then a · (T (x) − η̄) = 0 on the face, so that

a · Covp̄ (f,T ) = 0. If we extend the mapping η 7→ Covη (f,T ) on the closed marginal polytope M to

be the limit of the vector field of the gradient on the faces of the marginal polytope, we expect to see that

such a vector field is tangent to the faces. This remark is further elaborated below in the binary case.

2.4. The Saturated Model

A case of special tutorial interest is obtained when the exponential family contains all probability

densities, that is when E = P>. This case has been treated by many authors; here, we use the presentation

of [21].

It is convenient to recode the sample space as Ω = {0, . . . , d}, where x = 0 is a distinguished

point. If X is the identity on Ω, we define the sufficient statistics to be the indicator functions of points

Tj = (X = j), j = 1, . . . , d. The saturated exponential family consists of all of the positive densities

written as:

p(x; θ) = exp

(
d∑

j=1

θj(X = j)− ψ(θ)

)
,

where:

ψ(θ) = log

(
1 +

d∑

j=1

eθj

)
.

Note that, in this case, the expectation parameter ηj = E ((X = j)) is the probability of case x = j and

the marginal polytope is the probability simplex ∆d.

The gradient mapping is:

η = ∇ψ(θ) =
(

eθj

1 +
∑d

i=1 e
θi

∣∣∣∣∣j = 1, . . . , d

)
,

the inverse gradient mapping is defined for η ∈]0, 1[d by:

θ = (∇ψ)−1(η) = ∇φ(η) =
(
log

(
ηj

1−
∑d

i=1 ηi

)∣∣∣∣∣j = 1, . . . , d

)
,
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the negative entropy (Legendre conjugate) is:

φ(η) = η · ∇φ(η)− ψ ◦ ∇φ(η) =
d∑

j=1

ηj log

(
ηj

1−
∑d

i=1 ηi

)
+ log

(
1−

d∑

i=1

ηi

)
,

the η parameterization (1) of the probability is:

pη = exp ((T − η) · ∇φ(η) + φ(η)) =

exp

(
d∑

j=1

((X = j)− ηj) log

(
ηj

1−
∑d

i=1 ηi

)
+

d∑

j=1

ηj log

(
ηj

1−
∑d

i=1 ηi

)
+ log

(
1−

d∑

i=1

ηi

))
=

exp

(
d∑

j=1

(X = j) log

(
ηj

1−
∑d

i=1 ηi

)
+ log

(
1−

d∑

i=1

ηi

))
=

d∏

j=1

(
ηj

1−
∑d

i=1 ηi

)(X=j)(
1−

d∑

i=1

ηi

)
=

(
1−

d∑

i=1

ηi

)(X=0) d∏

j=1

η
(X=j)
j .

Remark 3. The previous equation prompts three crucial remarks:

1. The expression of the probability in the η parameters is a normalized monomial in the parameters.

2. The expression continuously extends the exponential family to the probabilities in P≥.

3. The expression actually is a polynomial parameterization of the signed densities P1.

We proceed to approach the three issues above. The Hessian functions are:

Hessψ(θ) = diag (p)− p⊗ p, p = (1−
d∑

j=1

eθj )−1ep ,

Hess φ(η) = diag (η)−1 − η−1
0 [1]di,j=1, η0 = 1−

d∑

j=1

ηj .

The matrix Hessψ(θ) is the Fisher information matrix I(p) of the exponential family at p = pθ,

and the matrix Hess φ(η) is the inverse Fisher information matrix I−1(p) at p = pη. It follows that the

natural gradient of a function η 7→ h(η) will be:

∇̃ h(η) = Hess φ(η)∇h(η) ,

whose behavior depends on the following theorem; see [21] (Proposition 3).

Proposition 5.

1. The inverse Fisher information matrix I(p)−1 is zero on the vertexes of the simplex, only.

2. The determinant of the inverse Fisher information matrix I(p)−1 is:

det
(
I(p)−1

)
=

(
1−

n∑

i=1

pi

)
n∏

i=1

pi.
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3. The determinant of the inverse Fisher information matrix I(p)−1 is zero on the borders of the

simplex, only.

4. On the interior of each facet, the rank of the inverse Fisher information matrix I(p)−1 is

(n− 1), and the (n− 1) linear independent column vectors generate the subspace parallel to the

facet itself.

A generic statistical model can be seen as a submanifold of the saturated model, so that the form of

the gradient in the submanifold is derived according to the general results in differential geometry. We

do not do that here, and we switch to some very specific examples.

3. Toric Models: A Tutorial Example

Exponential families whose sample space is an integer lattice, such as finite subsets of Z2 or

{+1,−1}d, have special algebro-combinatorial features that fall under the name of algebraic statistics.

Seminal papers have been [22,23]. Monographs on the topic are [24–26]. The book [27] covers both

information geometry and algebraic statistics.

We do not assume the reader has detailed information about algebraic statistics. In this section, we

work on a toy example intended to show both the basic mechanism of algebraic statistics and how the

algebraic concepts are applied to the gradient flow problem as it was described in the previous section.

First, we give a general definition of the object on which we focus. A toric model is an exponential

family, such that the orthogonal space of the space generated by the sufficient statistics and the constant

has a vector basis of integer-valued random variables. We consider this example:

Ω T1 T2 T3

1 0 0 −2

2 0 1 1

3 1 0 2

4 2 1 −1

, (12)

which corresponds to a variation of the classical independence model, where the design corresponds to

the vertices of a square. It this example we moved the point {4} from (1, 1) to (2, 1).

In Equation (12), T1 and T2 are the sufficient statistics of the exponential family:

pθ = exp (θ1T1 + θ2T2 − ψ(θ)) , ψ(θ) = log
(
1 + eθ2 + eθ1 + e2θ1+θ2

)
, (13)

T3 is an integer-valued vector basis of the orthogonal space Span (1, T1, T2)
⊥.

For the purpose of the generalization to less trivial examples, it should be noted that T3 = T+
3 − T−

3 ,

that is (−2, 1, 2,−1) = (0, 1, 2, 0)− (2, 0, 0, 1). The couple (T+
3 , T

−
3 ) connects the lattice defined by:

L =
{
(Y, Z) ∈ Z4

≥ × Z4
≥

∣∣BT y = BTZ
}
, B =

[
1 T1 T2

]
.

Such a set of generators is called a Markov basis of the lattice; see [22]. Algorithms are available to

compute such a set of generators and are implemented, for instance, in the software suite 4ti2; see [28].
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Figure 1. Marginal polytope of the exponential family in Equations (12) and (13). The

coordinates of the vertices are given by (T1, T2).

The sample space can be identified with the value of the sufficient statistics, hence with a finite subset

of Q2 ⊃ Ω, Ω = {(0, 0), (0, 1), (1, 0), (2, 1)}; see Figure 1. Given a finite subset of Rd, it is a general

algebraic fact that there exists a filtering set of monomial functions that is a vector basis of all real

functions on the subset itself; see an exposition and the applications to statistics in [24] or [27]. In our

case, the monomial basis is 1, T1, T2, T1T2, and we define the matrix of the saturated model to be:

A =




1 T1 T2 T1T2

1 1 0 0 0

2 1 0 1 0

3 1 1 0 0

4 1 2 1 2


 , A−1 =

1

2




2 0 0 0

−2 0 2 0

−2 2 0 0

2 −1 −2 1


 . (14)

The matrix A one-to-one maps probabilities into expected values,

[
1 η1 η2 η12

]
=
[
1 E[T1] E[T2] E[T1T2]

]
=
[
p1 p2 p3 p4

]




1 0 0 0

1 0 1 0

1 1 0 0

1 2 1 2


 , (15)

and vice versa,

[
p1 p2 p3 p4

]
=
[
1 η1 η2 η12

]




1 0 0 0

−1 0 1 0

−1 1 0 0

1 −1
2

−1 1
2


 . (16)

On Model (13), the (positive) probabilities are constrained by the model:

Ω pθ exp
(
θ1T1 + θ2T2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))

1 p(1; θ) exp
(
− log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))

2 p(2; θ) exp
(
θ2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))

3 p(3; θ) exp
(
θ1 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))

4 p(4; θ) exp
(
2θ1 + θ2 − log

(
1 + eθ2 + eθ1 + e2θ1+θ2

))

. (17)
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If we introduce the parameters ζ1 = exp (θ1), ζ2 = exp (θ2), the model is shown to be a (piece of an)

algebraic variety, that is a set described by the rational parametric equations:

Ω pζ ζT1ζT2/(1 + ζ2 + ζ1 + ζ21ζ2)

1 p(1; ζ) 1/(1 + ζ2 + ζ1 + ζ21ζ2)

2 p(2; ζ) ζ2/(1 + ζ2 + ζ1 + ζ21ζ2)

3 p(3; ζ) ζ1/(1 + ζ2 + ζ1 + ζ21ζ2)

4 p(4; ζ) ζ21ζ2/(1 + ζ2 + ζ1 + ζ21ζ2)

. (18)

The peculiar structure of the toric model is best seen by considering the unnormalized probabilities:

Ω qζ ζT1ζT2

1 q(1; ζ) 1

2 q(2; ζ) ζ2

3 q(3; ζ) ζ1

4 q(4; ζ) ζ21ζ2

, p(x; ζ) =
q(x; ζ)

1 + ζ2 + ζ1 + ζ21ζ2
. (19)

In algebraic terms, the homogeneous coordinates [q1 : q2 : q3 : q4] belong to the projective space

P 3. Precisely, the (real) projective space P 3 is the set of all non-zero points of R4 together with the

equivalence relation [q1 : q2 : q3 : q4] = [q̄1 : q̄2 : q̄3 : q̄4] if, and only if, [q1, q2, q3, q4] = k[q̄1, q̄2, q̄3, q̄4],

k 6= 0. The domain of unnormalized signed probabilities as projective points is the open subset P3
∗ of P3

where q1 + q2 + q3 + q4 6= 0. On this set, we can compute the normalization:

P3
∗ ∋ [q1 : q2 : q3 : q4] 7→ [q1, q2, q3, q4]/(q1 + q2 + q3 + q4) ∈ ∗E ,

where ∗E is the affine space generated by the simplex ∆3. Notice that this embedding produces a number

of natural geometrical structures on ∗E .

Because of the form of (13), a positive density p belongs to that family if, and only if, log p ∈
Span (1, T1, T2), which, in turn, is equivalent to log p ⊥ T3. We can rewrite the orthogonality as:

0 =
∑

x∈Ω

log p(x)T3(x) =
∑

x : T3(x)>0

log p(x)T+
3 (x)−

∑

x : T3(x)<0

log p(x)T−
3 (x)

= log




∏

x : T3(x)>0

p(x)T
+
3 (x)



− log




∏

x : T3(x)<0

p(x)T
−

3 (x)



 .

Dropping the log function in the last expression, we observe that the positive probabilities described by

either Equation (17) with θ1, θ2 ∈ R or Equation (18) with ζ1, ζ2 ∈ R> are equivalently described by

the equations:

p1 + p2 + p3 + p4 − 1 = 0 , (20)

p21p4 − p2p
2
3 = 0 . (21)

Equation (21) identifies a surface within the probability simplex ∆3, which is represented in Figure 2

by the triangularization of a grid of points that satisfy the invariant.
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δ 1

δ 3

δ 4

δ 2

Figure 2. Representation of the exponential family in Equations (12) and (13) as a surface

that intersects the probability simplex ∆3. The surface is obtained by the triangularization of

a grid of points that satisfy the invariant in Equation (21).

By choosing a basis for the space orthogonal to Span (1, T1, T2)
⊥, we can embed the marginal

polytope of Figure 1 into the associated full marginal polytope. By expressing probabilities as a function

of the expectation parameters, Equation (21) identifies a relationship between η1, η2 and the expected

values of the chosen basis for the orthogonal space. This corresponds to an equivalent invariant in the

expectation parameters, which, in turn, identifies a surface in the full marginal polytope.

For instance, consider the full marginal polytope parametrized by η = (η1, η2, η3), with η3 =

E[T3], which corresponds to the choice of T3 as a basis for the space orthogonal to the span of the

sufficient statistics of the model, together with the constant 1, as in Equation (12). We introduce the

following matrix:

B =




1 T1 T2 T3

1 1 0 0 −2

2 1 0 1 1

3 1 1 0 2

4 1 2 1 −1


 , (22)

and similarly to Equation (15), we use theB matrix to one-to-one map probabilities into expected values,

that is:



1

η1

η2

η3


 =




1 1 1 1

0 0 1 2

0 1 0 1

−2 1 2 −1







p1

p2

p3

p4


 , (23)

and:



p1

p2

p3

p4


 =




3
5

−1
5

−2
5

−1
5

1
5

−2
5

7
10

1
10

2
5

1
5

−3
5

1
5

−1
5

2
5

3
10

− 1
10







1

η1

η2

η3


 . (24)
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Then, by expressing probabilities as a function of the expectation parameters in Equation (21), we

obtain the following invariant in η associated with the model:

(4η1 + 3η2 − η3 − 2)(η1 + 2η2 + η3 − 3)2 + (4η1 − 7η2 − η3 − 2)(η1 − 3η2 + η3 + 2)2 = 0 . (25)

From the linear relationship between probabilities and expectation probabilities, we know that on the

interior of the full marginal polytope, there exists a unique η3 which can be computed as a function of

the other expectation parameters. Solving Equation (25) for η3 allows one to express explicitly the value

of η3 given (η1, η2) and represent the surface associated with the invariant in the full marginal polytope.

However, the cubic polynomial in Equation (25) in general admits three roots. The unique value of η3
can be obtained from the roots of the cubic polynomial, by imposing that η3 must be real and belong to

the full marginal polytope given by Conv {(T1(x), T2(x), T3(x))|x ∈ Ω}.

We remind that the determinant ∆ associated with the cubic function in Equation (25) in the

η3 variable:

aη33 + bη23 + cη3 + d = 0 , (26)

with:

a = 1 (27)

b = −2η1 + η2 + 1 (28)

c = −(4η1 + 3η2 − 2)(η1 + 2η2 − 3) +
1

2
(η1 + 2η2 − 3)2 − (4η1 − 7η2 − 2)(η1 − 3η2 + 2)+

+
1

2
(η1 − 3η2 + 2)2 (29)

d = −1

2
(4η1 + 3η2 − 2)(η1 + 2η2 − 3)2 − 1

2
(4η1 − 7η2 − 2)(η1 − 3η2 + 2)2 (30)

is given by:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 . (31)

For ∆ = 0, the polynomial has a real root with multiplicity equal to three; for ∆ < 0, we have one real

root and two complex conjugates roots, while for ∆ > 0, there exist three real roots. The three roots of

the polynomial as a function of the coefficients are given by:

η3,k = −1

3

(
b+ ukC +

∆0

ukC

)
, (32)

for k ∈ {1, 2, 3}, with:

u1 = 1 , (33)

u2 =
−1 + i

√
3

2
, (34)

u3 =
−1− i

√
3

2
, (35)

and:

C =
3

√
∆1 +

√
(∆2

1 − 4∆3
0)

2
, (36)

∆0 = b2 − 3ac , (37)

∆1 = 2b3 + 9abc+ 27a2d . (38)
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For the cubic polynomial in η3 of Equation (25), ∆ < 0 for η2 − 1 6= 0 and for:

4η41−8η31η2+24η21η
2
2−20η1η

3
2−2η42−8η31−12η21η2+4η32+8η21+16η1η2−η22−4η1−2η2+1 > 0 . (39)

In Figure 3(a), we represent in blue the region of the space (η1, η2) where ∆ < 0, in red where ∆ > 0,

and the points where ∆ = 0 with a dashed line. For ∆ < 0, the only real root is η3,1, which identifies

the blue surface in the full marginal polytope in Figure 3(b). For ∆ > 0, it is easy to verify that only

η3,2 belongs to the interior of the full marginal polytope parametrized by (η1, η2, η3), since it satisfies the

inequalities given by the facets of the marginal polytope, and is represented in Figure 3(b) by the red

surface. Finally, the three real roots coincide for ∆ = 0, that is, for η2 = 1, and where:

4η41−8η31η2+24η21η
2
2−20η1η

3
2−2η42−8η31−12η21η2+4η32+8η21+16η1η2−η22−4η1−2η2+1 = 0 . (40)

(a) (b)

Figure 3. Marginal polytope of the exponential family in Equations (12) and (13) (a).

The dashed lines correspond to the points where ∆ = 0, where ∆ is the discriminant in

Equation (31); over the red regions ∆ > 0 and over the blue regions ∆ < 0. Representation

of the exponential family as a surface in the full marginal polytope parametrized by

(η1, η2, η3) (b). The blue surface is given by the unique real root η3,1 in Equation (32); the red

surface corresponds to the unique real root η3,2, which belongs to the full marginal polytope;

over the dashed lines, which have been computed solving Equation (40) numerically,

Equation (26) admits a real root with multiplicity equal to three.

In the polynomial ring Q[p1, p2, p3, p4], the model ideal:

I =
〈
p1 + p2 + p3 + p4 − 1, p21p4 − p2p

2
3

〉
(41)

consists of all the polynomials of the form:

A (p1 + p2 + p3 + p4 − 1) +B
(
p21p4 − p2p

2
3

)
, ∀A,B ∈ Q[p1, p2, p3, p4] .
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The algebraic variety of I uniquely extends the exponential family outside the positive octant. In the

language of commutative algebra, it is the real Zariski closure of the exponential family model, cf. [29].

It is a notable example of toric variety. The general theory is in the monograph [30], and the applications

to statistical models were first discussed in [31,32].

Let us discuss in some detail the parameterization of the toric variety as the submanifold of R4 defined

by Equations (20) and (21). The Jacobian matrix is:

J =

[
1 1 1 1

2p1p4 −p23 −2p2p3 p21

]
.

It has rank one, that is, there is a singularity, if, and only if,

2p1p4 = −p23 = −2p2p3 = p21 .

This is equivalent to p21 = p23 = 0, which is a subspace of dimension two, whose intersection with

Equation (20), is a line C in the affine space ∗E = {p ∈ R4|p1 + p2 + p3 + p4 = 1}. This (double)

critical line intersects the simplex along the edge δ2 ↔ δ4. Outside C, that is in the open complement

set, the equations of the toric variety are locally solvable in two among the pi’s under the condition that

the corresponding minor is not zero. To have a picture of what this critical set looks like, let us intersect

our surface with the plane p3 = 0. On the affine space p1 + p2 + p4 = 1, we have p21p4 = 0, that is the

union of the double line p21 = 0 with the line p4 = 0.

In the following, we derive a parameterization based on an algebraic argument, the Bézout theorem.

In fact, it is remarkable that the cubic surface defined by Equations (20) and (21) is a well known

example of ruled surface, see Exercise 5.8.15 in [33]. In fact, the singular line is a double line, so that

the intersection of the cubic surface with any plane through the singular line is of degree 1 = 3 − 2, by

the Bézout theorem, and thus, it is a line.

The line C is said to be double because the polynomial p21p4 − p2p
2
3 belongs to the ideal generated by

p21 and p23. Let us consider the sheaf of planes through the singular line defined for each [α : β] ∈ P 1 by

the equations:

P[α : β] = {p1 + p2 + p3 + p4 − 1 = 0, αp1 + βp3 = 0} .

Let us intersect each plane P[α : β] of the sheaf with the model variety M by solving the system

of equations: 




p1 + p2 + p3 + p4 = 1

p21p4 − p2p
2
3 = 0

αp1 + βp3 = 0

. (42)

On the critical line C, a generic point is parameterized as p(τ, 0) = (0, τ, 0, 1 − τ), which satisfies

Equation (42) for τ ∈ R. If 0 ≤ τ ≤ 1, then p(τ, 0) belongs to the edge δ2 ↔ δ4.

As the critical line is double and the intersection of the model variety with the plane of the sheaf is a

cubic curve, we expect the remaining part to be of degree 3 − 2 = 1, that is to be a line. Assume first

α, β 6= 0. Outside the critical line, as p1, p3 are not both zero and αp1+ βp3 = 0, then αp1 = −βp3 6= 0.

It follows (αp1)2 = (βp3)
2 6= 0; hence:

p21p4 − p2p
2
3 = 0 ⇒ β2(αp1)

2p4 − α2p2(βp3)
2 = 0 ⇒ β2p4 − α2p2 = 0 .
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We have found that for α, β 6= 0, the intersection between the plane P[α : β] and the model variety

M is the union of the critical line C and the line of equations:






p1 + p2 + p3 + p4 = 1

αp1 + βp3 = 0

−α2p2 + β2p4 = 0

. (43)

This line intersects the critical line where:

p1 = p3 = 0, p2 + p4 = 1,−α2p2 + β2p4 = 0 ,

that is in the point:

p([α : β], 0)) =

(
0,

β2

α2 + β2
, 0,

α2

α2 + β2

)
.

In parametric form, the line in Equations (43) is:

p([α : β], t) = p([α : β], 0) + ut ,

with u =
(
β, β

2(α−β)
α2+β2 ,−α, α

2(α−β)
α2+β2

)
,

p1([α : β], t) = βt

p2([α : β], t) =
β2

α2 + β2
+
β2(α− β)

α2 + β2
t

p3([α : β], t) = −αt

p4([α : β], t) =
α2

α2 + β2
+
α2(α− β)

α2 + β2
t

. (44)

The same equations hold in the previously excluded case αβ = 0.

Positive values of components 1 and 3 of the probability are obtained in Equation (44) for αβ < 0

and βt > 0, say α < 0, β > 0, t > 0. In this case, we have for component 2:

β2

α2 + β2
+
β2(α− β)

α2 + β2
t =

β2

α2 + β2
(1− (β − α)t) ,

which is positive if t < (β − α)−1. The same condition applies to component 4. As [α : β] =[
α

β−α
: β

β−α

]
, we can always assume β > 0 and β − α = 1 that is, α = β − 1; hence β < 1. The

parameterization of the positive probabilities in the model becomes:

p1(α, t) = (α+ 1)t

p2(α, t) =
α2 − (α2 + 2α+ 1)t+ 2α + 1

2α2 + 2α + 1

p3(α, t) = −αt

p4(α, t) = − α2t− α2

2α2 + 2α + 1

, 0 < t < 1,−1 < α < 0 . (45)
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For example, with α = −1
2
, we have:

p1(α, t) =
1

2
t

p2(α, t) =
1

2
(1− t)

p3(α, t) =
1

2
t

p4(α, t) =
1

2
(1− t)

, 0 < t < 1 .

In Figure 4(a), we represented the surface associated with the invariant of Equation (21) as a ruled

surface in the probability simplex, according to Equations (45), where the blue line corresponds to the

case α = −1
2
. The ruled surface corresponds to the surface in Figure 2 that was approximated by the

triangularization of a grid of points satisfying the invariant. In Figure 4(b), we represent the same lines

of Figure 4(a) in the chart (α, t).

δ 1

δ 3

δ 4

δ 2

(a)

−1 0
0

1

δ4

δ3 δ1

δ2

α

t

(b)

Figure 4. Representation of the exponential family in Equations (12) and (13) as a ruled

surface in the probability simplex (a) and in the parameter space (α, t) (b). The dashed line

corresponds to the critical edge δ2 ↔ δ4 and the blue line to the case α = −1
2
.

From Equation (45), we can express the expectation parameters η as a function of (α, t), i.e.,

η1 =
2α2 − (2α3 + 4α2 + α)t

2α2 + 2α + 1
, (46)

η2 = −t+ 1 , (47)

η3 = −(8α3 + 12α2 + 10α+ 3)t− 2α− 1

2α2 + 2α+ 1
. (48)

Notice that the dependence on (α, t) is rational. In Figure 5(a), the ruled surface has been represented in

the full marginal polytope, while in Figure 5(a), the lines have been projected over the marginal polytope.
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Let us invert Equation (45) to obtain the corresponding chart p 7→ (β, t). From p1 and p3, we obtain

β = p1/(p1 + p3). As p2 + p4 = 1− t, we have the chart:

β =
p1

p1 + p3
,

t = 1− p2 − p4 = p1 + p3 .

0 1 2
0

1

η1

η2

(a)

0
1

2

0

1
−2

−1

0

1

2

η1

η2

η3

(b)

Figure 5. Representation of the exponential family in Equations (12) and (13) as a ruled

surface in the marginal polytope (η1, η2) (a) and in the full marginal polytope parametrized

by (η1, η2, η3) (b). The dashed line corresponds to the critical line δ2 ↔ δ4 and the red line

to the case α = −1
2
.

It is remarkable that the model depends on the probability restricted to {1, 3}; similarly, the

expectation parameters depend on p1 and p3 only.

From the theory of exponential families, we know that the gradient mapping:

(θ1, θ2) 7→ ∇ψ(θ1, θ2) =
[

2 e(2 θ1+θ2)+eθ1

e(2 θ1+θ2)+eθ1+eθ2+1
e(2 θ1+θ2)+eθ2

e(2 θ1+θ2)+eθ1+eθ2+1

]

is one-to-one from R2 onto the interior of the marginal polytope M ; see Figure 3(b). The equations:

η1 =
ζ1 + 2ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η2 =
ζ2 + ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

are uniquely solvable for (η1, η2) ∈ M◦. We study the local solvability in ζ1, ζ2 of:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

that is,

0 = η1 + (η1 − 1)ζ1 + η1ζ2 + (η1 − 2)ζ21ζ2 ,

0 = η2 + η2ζ1 + (η2 − 1)ζ2 + (η2 − 1)ζ21ζ2 .
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The Jacobian is: [
(η1 − 1) + 2(η1 − 2)ζ1ζ2 η1 + (η1 − 2)ζ21
η2 + 2(η2 − 1)ζ1ζ2 (η2 − 1) + (η2 − 1)ζ21

]
.

If we introduce the extra variable η12, from Equations (15) and (18) we have the system:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η12 = 2ζ21ζ2 ,

Instead, if we use the variable η3, from Equations (16) and (41), it is possible to derive the equation of

the model variety in the η1, η2, η3 parameters. From Equation (18), we have:

η1 = Eζ [T1] =
ζ1 + 2ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η2 = Eζ [T2] =
ζ2 + ζ21ζ2

1 + ζ2 + ζ1 + ζ21ζ2
,

η3 = Eζ [T3] =
−2 + ζ2 + 2ζ1 − ζ21ζ2
1 + ζ2 + ζ1 + ζ21ζ2

.

Let us solve for the ζ, that is:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η3 = −2 + ζ2 + 2ζ1 − ζ21ζ2 .

There is another way to derive the model constraint in the η. In the example, the sample space has

four points; the monomials 1, T1, T2, T1T2 are a vector basis of the linear space of the columns of the

matrix A, in particular T3 is a linear combination:

Ω 1 T1 T2 T1T2 T3

1 1 0 0 0 −2

2 1 0 1 0 1

3 1 1 0 0 2

4 1 2 1 2 −1

−2 4 3 −5 =

.

It follows that:

η3 = Eθ [T3] = Eθ [−2 + 4T1 + 3T2 − 5T1T2]

= −2 + 4Eθ [T1] + 3Eθ [T2] + 3Covθ (T1, T2) + 3Eθ [T1] Eθ [T2]

= −2 + 4∂1ψ(θ) + 3∂2ψ(θ)− 5∂1∂2ψ(θ)− 5∂1ψ(θ)∂2ψ(θ)

= −2 + 4η1 + 3η2 − 5∂1∂2ψ(θ)− 5η1η2 .
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3.1. Border

Let us consider the points in the model variety that are probabilities, that is,

p1 + p2 + p3 + p4 = 1, p21p4 = p2p
2
3, p1, p2, p3, p4 ≥ 0 . (49)

From the equation above, we see that single zeros are not allowed, that is to say there are no

intersections between the model in Equation (49) and the open facets of the probability simplex. We now

consider the full marginal polytope obtained by adding the sufficient statistics T1T2, and parametrized

by (η1, η2, η12). By Equation (16), the marginal polytope is represented by the inequalities:

p1 = 1− η1 − η2 + η12 ≥ 0 ,

p2 = η2 −
1

2
η12 ≥ 0 ,

p3 = η1 − η12 ≥ 0 ,

p4 =
1

2
η3 ≥ 0 ,

which is a convex set with vertexes (0, 0, 0), (0, 1, 0), (1, 0, 0), (2, 1, 2), which corresponds to the full

marginal polytope associated to the sufficient statistics {T1, T2, T1T2}. As the critical set is the edge

δ2 ↔ δ4 in the p space, it is the edge (0, 1, 0) ↔ (2, 1, 2) in the η space.

We have the following possible models on the border of the probability simplex and on the border of

the full marginal polytope, where the values for η1 and η2 are obtained from Equation (15).

p1 p2 p3 p4 η1 η2

0 0 + + p3 + 2p4 p4

0 + 0 + 2p4 p2 + p4

+ 0 + 0 p3 0

+ + 0 0 0 p2

p1 p2 p3 p4 η1 η2

+ 0 0 0 0 0

0 + 0 0 0 1

0 0 + 0 1 0

0 0 0 + 2 1

That is, the domains that can be support of probabilities in the algebraic model are the faces of the

marginal polytope. This is general; see [20,34].

3.2. Fisher Information

Let us consider the covariance matrix of the sufficient statistics. Let us denote by A|12 the block of the

two central columns in A in Equation (14) and by p the row vector of probabilities. Then, the variance

matrix is:

AT|12 diag (p)A|12 − (pA|12)
TpA|12 = AT|12 diag (p)A|12 −AT|12p

TpA|12 = AT|12
(
diag (p)− pTp

)
A|12 .
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On each of the cases of probabilities supported by a single point, the matrix p − pTp is zero; hence,

the covariance matrix is zero. In each of the cases where the probability is supported by a facet, say

{1, 2}, the matrix p− pTp reduces to the corresponding block, and the covariance matrix is:

[
0 0 1 1

0 1 0 1

]



p1 − p21 −p1p2 0 0

−p1p2 p2 − p22 0 0

0 0 0 0

0 0 0 0







0 0

0 1

1 0

2 1




=

[
0 0

0 1

][
p1 − p21 −p1p2
−p1p2 p2 − p22

][
0 0

0 1

]

=

[
0 0

0 p2 − p22

]
.

The space generated by the covariance matrix is Q(0, 1), that is the affine space that contains the

facets itself. Analogous results hold for each facet, and this result is general.

We note that the determinant of the covariance matrix is a polynomial of degree six in the

indeterminates p1, p2, p3. This polynomial is zero on each facet.

The η parameters can be given as a function of either θ or ζ. We have:

η AT [pζ]

η1 (ζ1 + 2ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

η2 (ζ2 + ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

η3 (−2 + ζ2 + 2ζ1 − ζ21ζ2)/(1 + ζ2 + ζ1 + ζ21ζ2)

(50)

We know from the theory of exponential families that the mapping:

]0,∞[×]0,∞[∋ (ζ1, ζ2) 7→ (η1, η2) ∈ Conv {(T1(x), T2(x))|x ∈ Ω}◦

is one-to-one. We look for an algebraic inversion of the equations:

(1 + ζ2 + ζ1 + ζ21ζ2)η1 = ζ1 + 2ζ21ζ2 ,

(1 + ζ2 + ζ1 + ζ21ζ2)η2 = ζ2 + ζ21ζ2 .

If we rewrite Equations (50) as polynomials in ζ1, ζ2, we obtain:

η1 + (η1 − 1)ζ1 + η1ζ2 + (η1 − 2)ζ21ζ2 = 0 , (51)

η2 + η2ζ1 + (η2 − 1)ζ2 + (η2 − 1)ζ21ζ2 = 0 , (52)

−η3 + (η3 − 2)ζ1 + (η3 − 1)ζ2 + (η3 + 1)ζ21ζ2 = 0 . (53)

Gauss elimination produces a linear system in ζ1, ζ2 with coefficients that are polynomials in η1, η2, η3
to be considered with the implicit equation derived from p21p4 − p2p

2
3 = 0. The system is:

−2η2η3 − 2η1 + 2η2 = (−2η2η3 − 2η1 + 2)ζ1 + (−2η2η3 + 2η2 + 2η3 − 2)ζ2 ,

η2 = η2ζ1 + (η2 − 1)ζ2 .
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3.3. Extension of the Model

In this subsection, we study an extension to signed probabilities of the exponential family in

Equations (12) and (13) based on the representation of the statistical model as a ruled surface in the

probability simplex. Our motivation for such an analysis is the study of the stability of the critical points

of a gradient field in the η parameters, in particular when the critical points belong to the boundary

of the model. Indeed, by extending the gradient field outside the marginal polytope, we can identify

open neighborhoods for critical points on the boundary of the polytope, which allow one to study the

convergence of the differential equations associated with the gradient flows, for instance by means of

Lyapunov stability.

In the following, we describe more in detail how the extension can be obtained. Let a be a point along

the edge δ2 ↔ δ4 of the full marginal polytope parametrized by (η1, η2, η3) and b the coordinates of the

corresponding point over δ1 ↔ δ3 obtained by intersecting the line of the ruled surface through a with

the edge δ1 ↔ δ3. The values of the η2 coordinate for a and b are one and zero, respectively. The other

coordinates of b depend on those of a though α. First, we obtain the values of the η3 coordinates as a

function of the η1 coordinate. For a, we find the equation of the line to which δ2 ↔ δ4 belongs, given by:




η1

η2

η3


 =




0

1

1


 + u




2

0

−2


 =




2u

1

1− 2u


 , (54)

from which we obtain η3 = 1 − η1. Similarly, for the η3 coordinate of b, we consider the line through

δ1 ↔ δ3, that is:



η1

η2

η3


 =




0

0

−2


+ u




1

0

4


 =




u

0

4u− 2


 , (55)

which gives us η3 = 4η1− 2. Finally, for the η1 coordinate, we use Equations (44). In a, since t = 0 and

p1 = p3 = 0, then p2 =
β2

α2+β2 and p4 = α2

α2+β2 . From Equation (24), it follows that:

η1 =
2α2

2α2 + 2α + 1
. (56)

Similarly, for b, we have p2 = p4 = 0 and t = 1, so that p1 = α + 1 and p3 = −α. From Equation (24),

it follows that:

η1 = −α . (57)

As a result, the coordinates of a and b both depend on α as follows,

a =

(
2α2

2α2 + 2α + 1
, 1,

2α + 1

2α2 + 2α+ 1

)
(58)

b = (−α, 0,−4α− 2) (59)
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The ruled surface in the full marginal polytope is given by the lines through a and b described by the

following implicit representation, for −1 < α < 1 and 0 < t < 1,



η1

η2

η3


 =




−α
0

−4α− 2


+ t




2α3+4α2+α
2α2+2α+1

1
8α3+12α2+10α+3

2α2+2α+1


 . (60)

The ruled surface can be extended outside the marginal polytope by taking values of α, t ∈ R and

considering the set of lines through a and b for different values of α. For α → ±∞, the η1 coordinate

of b tends to ∓∞, while the η1 of a tends to one. For α→ ±∞, the ruled surface admits the same limit

given by the line parallel to δ1 ↔ δ3 passing through (1, 1, 0). The surface intersects the interior of the

marginal polytope for t ∈ (0, 1) and α ∈ (−1, 0). Moreover, the surface intersects the critical line twice,

for t = 0, α ∈ [−1, 0] and for t = 0, α /∈ [−1, 0].

In Figures 6 and 7, we represent the extension of the ruled surface outside the probability simplex

and in the (α, t) chart, while in Figures 8 and 9, the extended surface has been represented in the full

marginal polytope parametrized by (η1, η2, η3) and in the marginal polytope parametrized by (η1, η2).

−1 0

0

1

α

t

(a)

δ4

δ3

δ2

δ1

(b)

Figure 6. The segments that form the ruled surface in Figure 4 have been extended, for

−0.5 < t < 1.5. New lines described by Equations (60) have been represented for 0 <

α < exp(0.7) (shading from red to black for increasing values of α) and for exp(0.7)− 1 <

α < −1 (shading from red to white for decreasing values of α). The simplex in (b) has been

rotated with respect to Figure 4(a) to better visualize the intersection of the lines with the

critical edge δ2 ↔ δ4.
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δ4

δ3

δ2

δ1

Figure 7. Extension of the ruled surface associated with the exponential family in

Equations (12) and (13) as in Figure 6(b), for exp(3.5) − 1 < α < exp(3.5) and

−0.5 < t < 1.5; for α→ ±∞, the lines of the extended surface admit the same limit.

−1 0 1 2 3

0

1

η1

η2

(a)

−1
0

1
2

3

−1

0

1

2

−3

−2

−1

0

1

2

3

η2
η1

η3

(b)

Figure 8. The segments that form the ruled surface in Figure 5 have been extended, for

−0.5 < t < 1.5. New lines described by Equations (60) have been represented for 0 < α <

exp(1) (shading from blue to black for increasing values of α) and exp(1) − 1 < α < −1

(shading from blue to white for decreasing values of α). The full marginal polytope in (b)

has been rotated with respect to Figure 5(b) to better visualize the intersection of the lines

with the critical edge δ2 ↔ δ4.
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−2

−1

0

1
2

3

4

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

η2

η1

η3

Figure 9. Extension of the ruled surface associated with the exponential family in

Equations (12) and (13) as in Figure 8(b), for exp(3)−1 < α < exp(3) and −0.5 < t < 1.5;

notice that for α → ±∞, the lines of the extended surface admit the same limit.

3.4. Optimization and Natural Gradient Flows

We are interested in the study of natural gradient flows of functions defined over statistical models.

Our motivation is the study of the optimization of the stochastic relaxation of a function, i.e., the

optimization of the expected value of the function itself with respect to a distribution p in a statistical

model. Natural gradient flows associated with the stochastic relaxation converge to the boundary of the

model, where the probability mass is concentrated on some instances of the search space. To study the

convergence over the boundary, we proposed to extend the natural gradient field outside the marginal

polytope and the probability simplex, by employing a parameterization that describes the model as a

ruled surface, as we described in the tutorial example of this section.

In the following, we focus on the optimization of a function f : Ω → R, and we consider its stochastic

relaxation with respect to a probability distribution in the exponential family in Equations (12) and

(13). First, we compute a basis for all real-valued functions defined over Ω using algebraic arguments.

Consider the zero-dimensional ideal I associated with the set of points in Ω, and let R be the polynomial
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ring with the field of real coefficients; a vector space basis for the quotient ringR/I defines a basis for all

functions defined over Ω. In CoCoA [36], this can be computed with the command QuotientBasis.

Coming back to our example, with Ω = {1, 2, 3, 4}, by fixing the graded reverse lexicographical

monomial order, which is the default one in CoCoA [36], we obtain a basis given by {1, x1, x2, x1x2},

so that any f : Ω → R can be written as:

f = c0 + c1x1 + c2x2 + c12x1x2 . (61)

We are interested in the study of the natural gradient field of F (p) = Ep[f ]. Recall that

T3 = 4x1 + 3x2 − 5x1x2 − 2 and η3 = E[T3], so that:

E[x1x2] =
1

5
(4η1 + 3η2 − η3 − 2) , (62)

which implies:

Fη(η) = c0 −
2

5
c12 +

(
c1 +

4

5
c12

)
η1 +

(
c2 +

3

5
c12

)
η2 −

1

5
c12η3 . (63)

In order to study the gradient field of Fη(η) over the marginal polytope parameterized by (η1, η2),

we need to express η3 as a function of η1 and η2. In order to do that, we parametrize the exponential

family as a ruled surface by means of the (α, t) parameters. Moreover, this parametrization has a natural

extension outside the marginal polytope, which allows one to study the stability of the critical points on

the boundary of the marginal polytope. We start by evaluating the gradient field of Fα,t(α, t) in the (α, t)

parametrization, then we map it to the marginal polytope in the η parameterization.

By expressing (η1, η2) as a function of (α, t), we obtain:

Fα,t(α, t) =
2α2(c1 + c12) + (2α2 + 2α + 1)(c0 + c2)− (2α2(c1 + c12) + (2α2 + 2α + 1)(c1α+ c2))t

2α2 + 2α + 1
.

(64)

If we take partial derivatives of Equation (64) with respect to α and t, we have:

∂αFα,t(α, t) =
4(α2 + α)(c1 + c12)− ((4α4 + 8α3 + 12α2 + 8α + 1)c1 + 4(α2 + α)c12)t

4α4 + 8α3 + 8α2 + 4α + 1
, (65)

∂tFα,t(α, t) = −2α2c12 + (2α3 + 4α2 + α)c1 + (2α2 + 2α + 1)c2
2α2 + 2α+ 1

. (66)

In the (α, t) parameterization, the Fisher information matrix reads:

Iα,t(α, t) = Eα,t[−∂2 log p(x;α, t)] =
[

4α2−(4α4+8α3+12α2+8α+1)t+4α
4α6+12α5+16α4+12α3+5α2+α

0

0 −(t2 − t)−1

]
. (67)

Finally, the natural gradient becomes:

∇̃Fα,t(α, t) = Iα,t(α, t)
−1∇Fα,t(α, t) (68)

=

[
(4α6+12α5+16α4+12α3+5α2+α)(4(α2+α)c1+4(α2+α)c12−((4α4+8α3+12α2+8α+1)c1+4(α2+α)c12)t)

(4α4+8α3+8α2+4α+1)(4α2−(4α4+8α3+12α2+8α+1)t+4α)
(2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)(t2−t)

2α2+2α+1

]
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We obtained a rational formula for the natural gradient in the (α, t) parameterization, which can

be easily extended outside the marginal polytope. However, notice that the inverse Fisher information

matrix and the natural gradient are not defined for:

t =
4(α2 + α)

4α4 + 8α3 + 12α2 + 8α + 1
. (69)

We also remark that over the boundary of the model, for t ∈ {0, 1} and α ∈ {−1, 0}, the determinant of

the inverse Fisher information vanishes, so that the matrix is not full rank. It follows that the trajectories

associated with natural gradient flows with initial conditions in the interior of the marginal polytope

remain in the marginal polytope.

In order to study the natural gradient field over the marginal polytope, we apply a reparameterization

of a tangent vector from the (α, t) parameterization to the (η1, η2) parameterization. Indeed, by the chain

rule and the inverse function theorem, we have:

∇Fη(α, t) = ∇Fα,t(α, t)TJ(α, t)−1 (70)

The Jacobian of the map (α, t) 7→ (η1, η2) is:

J(α, t) =



 − (6α2+8α+1)t−4α
2α2+2α+1

− 2(2α2−(2α3+4α2+α)t)(2α+1)
(2α2+2α+1)2

−2α3+4α2+α
2α2+2α+1

0 −1



 , (71)

with inverse:

J(α, t)−1 =




4α4+8α3+8α2+4α+1

4α2−(4α4+8α3+12α2+8α+1)t+4α
− 4α5+12α4+12α3+6α2+α

4α2−(4α4+8α3+12α2+8α+1)t+4α

0 −1



 . (72)

It follows that:

∇Fη(α, t) =




4(α2+α)c1+4(α2+α)c12−((4α4+8α3+12α2+8α+1)c1+4(α2+α)c12)t

4α2−(4α4+8α3+12α2+8α+1)t+4α

−4(α3+α2)c12−4(α2+α)c2+(2(2α4−α2)c12+(4α4+8α3+12α2+8α+1)c2)t
4α2−(4α4+8α3+12α2+8α+1)t+4α



 . (73)

Notice that, as for the inverse Fisher information matrix, the inverse Jacobian J(α, t)−1 is not defined

for t which satisfies Equation (69).

We compute the inverse Fisher information matrix by evaluating the covariance between the sufficient

statistics of the exponential family. Since over Ω, we have x21 = x1 + x1x2 and x21 = x1, it follows that:

Iη(η)
−1 =

[
1
5
(9η1 + 3η2 − η3 − 2)− η21

1
5
(4η1 + 3η2 − η3 − 2)− η1η2

1
5
(4η1 + 3η2 − η3 − 2)− η1η2 η2 − η22

]
. (74)
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By parameterizing I−1
η with (α, t), we have:

Iη(α, t)
−1 (75)

=




4α4+8α3−(4α6+16α5+20α4+8α3+α2)t2+4α2+(4α5−12α3−8α2−α)t

4α4+8α3+8α2+4α+1
− (2α3+4α2+α)t2−(2α3+4α2+α)t

2α2+2α+1

− (2α3+4α2+α)t2−(2α3+4α2+α)t
2α2+2α+1

−t2 + t



 .

Finally, we derive the following rational formula for the natural gradient over the marginal polytope

parametrized as a ruled surface by (α, t):

∇̃Fη(α, t) = Iη(α, t)
−1∇Fη(α, t) (76)

=


 −

((4α6+16α5+20α4+8α3+α2)c1+ 2(2α5+4α4+α3)c12+(4α5+12α4+ 12α3+6α2+α)c2)t2−4(α4+2α3+ α2)c1+
−4(α4+2α3+α2)c12−((4α5− 12α3−8α2−α)c1+2(2α5+2α4− 3α3−2α2)c12+(4α5+12α4+12α3+ 6α2+α)c2)t

4α4+8α3+8α2+4α+1

− (2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)t2−(2α2c12+(2α3+4α2+α)c1+(2α2+2α+1)c2)t
2α2+2α+1


 .

3.5. Examples with Global and Local Optima

We conclude this section with two examples of natural gradient flows associated with two different f

functions. First, consider the case where c0 = 0, c1 = 1, c2 = 2, c3 = 3, so that:

Ω x1 x2 f1

1 0 0 0

2 0 1 2

3 1 0 1

4 2 1 10

. (77)

The function admits a minimum on {1}. In Figure 10, we plotted the vector fields associated with

the vanilla and natural gradient, together with some gradient flows for different initial conditions, in

the (α, t) parameterization. In Figure 11, we represent the vanilla and natural gradient field over the

marginal polytope in the (η1, η2) parameterization. Notice that, as expected, differently from the vanilla

gradient, the natural gradient flows converge to the unique global optima, which corresponds to the vertex

where all of the probability is concentrated over {1}. In the (α, t) parameterization, the flows have been

extended outside the statistical model by prolonging the lines of the ruled surface, and as we can see,

they remain compatible with the flows on the interior of the model, in the sense that the nature of the

critical point is the same for trajectories with initial conditions on the interior and on the exterior of the

model. In other words, the global optima is an attractor from both the interior and the exterior of the

model and similarly for the other critical points on the vertices, both for saddle points and the unstable

points, where the natural gradient vanishes.
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(a)

−1 0
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1
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5

6

7

8

9

10

(b)

Figure 10. Vanilla gradient field and flows in blue (a) and natural gradient field and flows in

red (b), together with level lines associated with Fα,t(α, t) in the (α, t) parameterization, for

c0 = 0, c1 = 1, c2 = 2 and c3 = 3; the dashed blue lines in (b) represent the points where

∇̃Fα,t(α, t) is not defined; see Equation (68).
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Figure 11. Vanilla gradient field in blue (a) and natural gradient field and flows in red (b),

together with level lines associated with Fη(α, t) over the marginal polytope, for c0 = 0,

c1 = 1, c2 = 2 and c3 = 3.

In the second example, we set c0 = 0, c1 = 1, c2 = 2, c3 = −5/2, and we have:

Ω x1 x2 f2

1 0 0 0

2 0 1 2

3 1 0 1

4 2 1 −1

(78)

so that f2 admits a minimum on {4}. In Figures 12 and 13, we plotted the vector fields associated with

the vanilla and natural gradient, together with some gradient flows for different initial conditions, in the

(α, t) and (η1, η2) parameterization, respectively. As in the previous example, natural gradient flows

converge to the vertices of the model; however, in this case, we have one local optima in {1} and one
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global optima in {4}, together with a saddle point in the interior of the model. Similarly to the previous

example, in the (α, t) parameterization, the flows have been extended outside the statistical model, and

the nature of the critical points is the same for trajectories with initial conditions in the statistical model

and in the extension of the statistical model.

−1 0

0

1

α

 

 

t

−1

−0.5

0

0.5

1

1.5

2

(a)

−1 0

0

1

α

 

 

t

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure 12. Vanilla gradient field and flows in blue (a) and natural gradient field and flows in

red (b) as in Figure 10, for c0 = 0, c1 = 1, c2 = 2 and c3 = −5
2
.
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−0.5

0

0.5

1
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Figure 13. Vanilla gradient field in blue (a) and natural gradient field and flows in red (b) as

in Figure 11, for c0 = 0, c1 = 1, c2 = 2 and c3 = −5
2
.

We conclude the section by noticing that in both examples, for certain values of t in Equation (69),

the natural gradient flows are not defined on the extension of the statistical model. As represented in the

figures, once a trajectory encounters the dashed blue line in the (α, t) parameterization, the flow stops at

that point.

4. Pseudo-Boolean Functions

We turn to discuss a case of considerable practical interest to see which of the results obtained in the

example of the previous section we are able to extend.

For binary variables, we use the coding ±1, that is x = (x1, . . . , xn) ∈ {+1,−1}n = Ω. For

any function f : Ω 7→ R, with multi-index notation, f(x) =
∑

α∈L aαx
α, with L = {0, 1}n and

xα =
∏n

i=1 x
αi

i , 00 = 1. If M ⊂ L∗ = L \ {0}, the model where p ∈ E if:
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p ∝ exp

(
∑

α∈M

θαX
α

)
=
∏

α∈M

(
eθα
)Xα

has been considered in a number of papers on combinatorial optimization; see [3–5]. The following

statements are results in algebraic statistics; cf. [20,35]. Let P1 =
{
f ∈ RΩ

∣∣∑
x∈Ω p(x) = 1

}
.

Proposition 6 (Implicitization of the exponential family). Given a function p : Ω → R, then p ∈ E if,

and only if, the following conditions all hold:

1. p(x) > 0, x ∈ Ω;

2.
∑

x∈Ω p(x) = 1;

3.
∏

x : xβ=1 p(x) =
∏

x : xβ=−1 p(x) for all β ∈ L∗ \M .

Proof. (⇒) If p ∈ E , then p(x) > 0, x ∈ Ω (Item 1) and
∑

x∈Ω p(x) = 1 (Item 2). Moreover,

log p(x) =
∑

α∈M θαx
α − ψ(θ). The function log p is orthogonal to each Xβ, β ∈ L∗ \ M .

Hence:

0 =
∑

x∈Ω

log p(x)xβ =
∑

x : xβ=1

log p(x)−
∑

x : xβ=−1

log p(x) =

log
∏

x : xβ=1

p(x)− log
∏

x : xβ=−1

p(x) , (79)

which is equivalent to Item 3.

(⇐) Oppositely, the computation in Equation (79) implies that log p is orthogonal to each Xβ; hence,

there exists θ, such that log p =
∑

α∈M θαX
α + C. Now, Item 2 implies C = −ψ(θ).

Let R[Ω] denote the ring of polynomials in the indeterminates {p(x)|x ∈ Ω}. Given a binary model

M , the set of polynomials:




∏

x : xβ=1

p(x)−
∏

x : xβ=−1

p(x)

∣∣∣∣∣∣
β ∈ L∗ \M



 ,

generates an ideal J (M), which is called the toric ideal of the model M . Its variety V(M) is called the

exponential variety of M .

Proposition 7.

1. The exponential variety of M is the Zariski closure of the exponential model E .

2. The closure E of E in P≥ is characterized by p(x) ≥ 0, x ∈ Ω, together with Items 2 and 3 of

Proposition 6.
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3. The algebraic variety of the ring R[p(x) : x ∈ Ω], which is generated by the polynomials∑
x∈Ω p(x)− 1,

∏
x : xβ=1 p(x)−

∏
x : xβ=−1 p(x), β ∈ L∗ \M , is an extension E1 of E to P1.

4. Define the moments ηα =
∑

x∈Ω xαp(x), α ∈ L, i.e., the discrete Fourier transform of p, with

inverse p(x) = 2−n
∑

α∈L x
αηα. There exists an algebraic extension of the moment function

E ∋ p 7→ η(p) ∈M◦ to a mapping defined on E1.

Proof. 1. According to the implicitization Proposition 6, the exponential family is characterized by

the positivity condition together with the algebraic binomial conditions.

2. This follows from the implicit form, and it is proven, for example, in [20].

3. By definition.

4. As the mapping from the probabilities to the moments is affine and one-to-one, such a

transformation extends to a one-to-one mapping from the extended model to the affine space of

the marginal polytope.

We conclude this section by introducing the so-called no three-way interaction example.

On Ω = {0, 1}3, the full model in the statistics 0 7→ 1, 1 7→ −1, that is t = (−1)x = 1 − 2x, is

described by the matrix:

D3 =




1 T3 T2 T2T3 T1 T1T3 T1T2 T1T2T3

000 1 1 1 1 1 1 1 1

001 1 −1 1 −1 1 −1 1 −1

010 1 1 −1 −1 1 1 −1 −1

011 1 −1 −1 1 1 −1 −1 1

100 1 1 1 1 −1 −1 −1 −1

101 1 −1 1 −1 −1 1 −1 1

110 1 1 −1 −1 −1 −1 1 1

111 1 −1 −1 1 −1 1 1 −1




. (80)

Note the lexicographic order of both the sample points and the statistics’ exponents.

The exponential family without the interaction term T1T2T3 is the same model as the toric model

without the three-way interaction, which is based on the matrix:

B =




C ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

000 1 0 0 0 0 0 0

001 1 1 0 1 0 1 0

010 1 0 1 1 0 0 1

011 1 1 1 0 0 1 1

100 1 0 0 0 1 1 1

101 1 1 0 1 1 0 1

110 1 0 1 1 1 1 0

111 1 1 1 0 1 0 0




. (81)
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that is the probabilities as a function of the ζ’s are:




p1 = c

p2 = cζ1ζ3ζ5

p3 = cζ2ζ3ζ6

p4 = cζ1ζ2ζ5ζ6

p5 = cζ4ζ5ζ6

p6 = cζ1ζ3ζ4ζ6

p7 = cζ2ζ3ζ4ζ5

p8 = cζ1ζ2ζ4

. (82)

The toric ideal of the toric model in Equation (82) is generated by the polynomial:

p2p3p5p8 − p1p4p6p7 = 0 , (83)

this means that the closure of the exponential family is given by the solution of the equations:




p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1

p2p3p5p8 − p1p4p6p7 = 0
. (84)

The η parameters are the expected values of the sufficient statistics of the full model,




η1

η2

η3

η4

η5

η6

η7




=




000 001 010 011 100 101 110 111

001 1 −1 1 −1 1 −1 1 −1

010 1 1 −1 −1 1 1 −1 −1

011 1 −1 −1 1 1 −1 −1 1

100 1 1 1 1 −1 −1 −1 −1

101 1 −1 1 −1 −1 1 −1 1

110 1 1 −1 −1 −1 −1 1 1

111 1 −1 −1 1 −1 1 1 −1







p1

p2

p3

p4

p5

p6

p7

p8




. (85)

In the ring:

R = Q[p1, p2, p3, p4, p5, p6, p7, p8, η1, η2, η3, η4, η5, η6, η7] (86)

we can consider the ideal I generated by the Equations (84) together with Equations (85). The

elimination ideal:

J = I ∩Q[η1, η2, η3, η4, η5, η6, η7] (87)

will express the model as a dependence between the η’s.

Computation with CoCoA [36] gives the following polynomial:

f(η1, η2, η3, η4, η5, η6; η7) =

η21η3η4+η
2
2η3η4−η33η4−η3η34+η21η2η5−η32η5+η2η23η5+η2η24η5+η3η4η25−η2η35−η31η6+η1η22η6+η1η23η6

+η1η
2
4η6+η1η

2
5η6+η3η4η

2
6+η2η5η

2
6−η1η36−2η1η2η4−2η1η3η5−2η2η3η6−2η4η5η6+η3η4+η2η5+η1η6

+
(
−2η1η2η3 − 2η1η4η5 − 2η2η4η6 − 2η3η5η6 + η21 + η22 + η23 + η24 + η25 + η26 − 1

)
η7

+ (η3η4 + η2η5 + η1η6) η
2
7 + (−1)η37 . (88)
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The equation:

f(η1, η2, η3, η4, η5, η6; η7) = 0 (89)

is an expression of the model in the expectation parameters, and this expression is a polynomial equation.

We know unique solvability in η7 if (η1, η2, η3, η4, η5, η6) is in the interior of the marginal polytope. As in

the example of the previous section, it is possible to intersect the polynomial invariant in Equation (83)

with one or more sheaves of hyperplanes around some faces of the simplex, in order to lower the degree

of the invariant and thus decompose the model as the convex hull of probabilities on the boundary of the

model. We do not describe the details here, and we postpone the discussion of this example to a paper

which is in preparation.

5. Conclusions

Geometry and algebra play a fundamental role in the study of statistical models, and in particular in

the exponential family. In the fist part of the paper, starting from the definition of the natural gradient

over an exponential family, we described the relationship between its expression in the basis of the

sufficient statistics and in the conjugate basis. From this perspective, the terms natural gradient and

vanilla gradient, to denote gradients evaluated with respect to the Fisher and the Euclidean geometry,

together with their duality in the natural and expectation parameters, assume a new meaning, since these

definitions depend on the choice of the basis for the tangent space.

In order to study natural gradient flows for a generic discrete exponential model and, in particular,

their convergence, it is convenient to move to the mixture geometry of the expectation parameters and

to study trajectories over the marginal polytope. However, in order to obtain explicit equations for the

flows, it is necessary to determine the dependence between the moments associated with the sufficient

statistics of the model, which are constrained to belong to the marginal polytope, and the remaining

moments, which on the other side are not free. Such a relationship, which for finite search spaces is

given by a system of polynomial invariants, cannot be easily solved explicitly in general. In the second

part of the paper, by using algebraic tools, we proposed a novel parameterization based on ruled surfaces

for an exponential family, which does not require to solve the polynomial invariant explicitly. We applied

our approach to a simple example, and we showed that the surface associated with the model in the full

marginal polytope is a ruled surface. We claim that these results are not peculiar to the example we

described, and we are working towards an extension of this approach in a more general case.
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