
Received December 24, 2019, accepted January 5, 2020, date of publication January 9, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965280

Joint Sparse Channel Recovery With Quantized
Feedback for Multi-User Massive MIMO Systems
FARZANA KULSOOM 1, ANNA VIZZIELLO 1, HASSAN NAZEER CHAUDHRY 2,
AND PIETRO SAVAZZI 1
1Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
2Department of Electrical, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Farzana Kulsoom (farzana.kulsoom01@universitadipavia.it)

ABSTRACT Accurate channel state information (CSI) at the transmitter is an essential prerequisite for
transmit beamforming in massive multiple input multiple output (MIMO) systems. However, due to a
large number of antennas in massive MIMO systems, the pilot training and feedback overhead become
a bottleneck. To resolve this issue, the research work presents a novel framework for frequency division
duplex (FDD) based multi-user massive MIMO system. A 2-step quantization technique is employed at
the user equipment (UE) and the CSI is recovered at the base station (BS) by applying the proposed
compressed sensing (CS) based algorithms. The received compressed pilots are quantized by preserving
1 bit per dimension direction information as well as the partial amplitude information. Subsequently, this
information is fed back to the BS, which employs the proposed quantized partially joint orthogonal matching
pursuit (Q-PJOMP) or quantized partially joint iterative hard thresholding (Q-PJIHT) CS algorithms to
recover the CSI from a limited and quantized feedback. Indeed, an appropriate dictionary and the hidden
joint channel sparsity structure among users is exploited by the CS methods, resulting in the reduction
of the feedback information required for channel estimation. Simulations are performed using singular
value decomposition (SVD) and minimum mean square error (MMSE) beamforming utilizing the estimated
channel. The results confirm that the proposed 2-step quantization approaches the system with channel
knowledge without quantization, thus overcoming the training and feedback overhead problem. Moreover,
the proposed 2-step quantization outperforms 1-bit quantization, at the cost of slightly higher complexity.

INDEX TERMS Compressed sensing, joint channel estimation, quantization, channel state information
(CSI), multiple input multiple output (MIMO), sparse channel estimation, dictionary.

I. INTRODUCTION
Massive multiple input multiple output (MIMO) is one of the
emerging technology in wireless communication. It employs
a large number of transmit antennas at the base station (BS),
which makes the system more reliable and enhances the
throughput compared to traditional MIMO [1]. The high
throughput is achieved by improving spectral efficiency, miti-
gating inter-user interference and employingmore directional
beams [1]. The massive MIMO system can serve various
users simultaneously in the same time-frequency block, due
to the large deployment of antennas at the BS. Neverthe-
less, serving many users concurrently is challenging due
to the interference among them, which can be mitigated
if each user has its aligned beam. This is obtained with
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appropriate precoding/beamforming techniques at BS [2].
However, the accurate beamforming requires proper channel
state information (CSI) at the transmitter. Traditionally, CSI
can be obtained by using time division duplex (TDD) or
frequency division duplex (FDD) schemes.

In TDD, both uplink (UL) and downlink (DL) operate at
the same frequency bands, but in separate time slots. A chan-
nel estimate in one band can be utilized in the other, thanks to
channel reciprocity. Consequently, in TDD if the channel esti-
mate is obtained in UL, by employing the channel reciprocity,
this estimate is also applicable to DL. The primary constraint
of TDD is that acquisition and utilization of CSI should be
performed within the coherence time [3]. Therefore, the users
have to transmit their pilots simultaneously within this coher-
ence time. Since the pilots should be orthogonal to evade
interference among them, the limited number of available
orthogonal sequences may result in pilot contamination [3].
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Unlike TDD, in FDD the channel reciprocity is no longer
applicable since UL and DL are in separate bands. Despite
the advantage of channel reciprocity in TDD, FDD is impor-
tant in two ways; firstly, it is considered more robust to
delay-sensitive applications [4], secondly, most of the exist-
ing systems are already deployed in FDD. Therefore, it is of
great significance to improve and enhance the approaches to
obtain CSI in FDD systems. Since channel reciprocity can
not be exploited in FDD, DL and UL channels are separately
estimated. Typically, the training is done in DL by estimating
CSI at the users, this CSI is sent to the BS in the uplink
using a dedicated signaling link. In general, the number of
pilots required for training grows linearly with the number
of transmit antennas at the BS. Since massive MIMO have a
large number of BS antennas, the pilot training and feedback
overhead have become the bottle-neck in FDD [5].

One of the potential solutions to resolve the training over-
head problem is to explore an appropriate technique for
reducing the feedback overhead. The research work in [6]
and the experimental studies in [7] reveal that the increase
in the number of BS antennas results in limited prominent
transmission directions per user. Since there are few scatter-
ers at the BS side as compared to the number of antennas,
the channel matrix will tend to be sparse [7], [8]. In this
scenario, to estimate the channel, compressed sensing (CS)
paradigm can be utilized to represent a high dimensional
channel vector into low dimension [5], [6], [9]. The main
objective of the aforementioned research works is to reduce
the number of pilot training overhead by taking advantage
of the channel sparsity in general, without exploiting any
structure in the measurements. Besides the channel sparsity,
it has been observed that the users are mostly located in the
vicinity sharing common scatterers, for example, in offices,
playgrounds, streets, apartments. Due to these scatterers,
the channel is strongly correlated between the multi-antennas
of each user, known as ‘‘intra-user joint channel sparsity’’,
and among closely located distinct users, termed as ‘‘inter-
user joint channel sparsity’’ [10].

The research works in [11], [12], exploit grouping among
users to estimate the channel. The central idea is based on
grouping users with common channel statistics, which will
decrease the pilot overhead [11]. Subsequently, the inter-user
joint sparsity can be applied within each of these groups. The
research work [12] utilizes the beam-block sparsity model to
reduce the pilots in DL, which are then fed back to UL in
a quantized form and applied at BS to obtain CSI through
CS. However, [11] does not consider intra-user or partial joint
user sparsity. Other notable research works [13], [14] laid
the theoretical foundations for modeling intra and inter-user
joint sparsity, known as joint sparsity model (JSM). Utilizing
the ideas of JSM, a class of algorithms under the paradigm
of distributed compressed sensing (DCS) exploits Intra and
the inter-channel correlation between users to unveil joint
sparsity structure in massive MIMO systems [8], [15]–[17].
Although the research work in [8], [9] substantially reduced
the training overhead problem, the feedback pilot bits are

still considerably high. Thus, besides reducing the number
of measurements, some work has also been done to lower the
number of feedback bits using direct quantization [18], [19].
However, this type of direct quantization is complex and
requires several bits per symbol for decoding to achieve better
performance. Another extreme case of feedback reduction is
1-bit per dimension using CS algorithms as discussed in [16].
But, it hardly provides directional information and power
information is lost in this manner. The power control infor-
mation is very critical for CSI since it captures the effect of
scatterers, multipath fading and signal strength deterioration
with distance. To improve the performance, [12] presents
a scheme to quantize both the amplitude and phase of the
received pilots, thus preserving both directional and power
information, although in a different research problem. In [20]
spatial channel estimation is performed for FDD MIMO
interference alignment (IA)1 system, and a zero-feedback bit
solution is proposed. However, [20] assumes some predefined
channel directions and also that UL and DL spatial channel
clusters bounce on similar sub-paths.

The presented work is inspired by [12] in terms of con-
sidering both amplitude and phase information. However,
we have observed that it is more efficient to quantize the
complex pilot phase information with 1-bit per dimension as
in [16] and acquire partial amplitude information by averag-
ing the amplitude of compressed received pilots. Therefore,
the phase information, in 1-bit compressed form as [16]
along with the amplitude information, is sent back to the
BS using a more simplified technique than [12]. While [12]
uses eigenbeam model (EBM), our work is based on vir-
tual channel model (VCM) that uses Fourier basis instead
of eigenbasis [7]. Although VCM and EBM models are
comparable in terms of system capacity and performance,
VCM is inherently less complex, is more suitable for uni-
form linear arrays (ULAs) and can be readily extendable to
frequency-selective channel [7].

In more details, this research work presents quantized
feedback-based algorithms for partially joint channel esti-
mation in massive MIMO systems, preserving both power
and directional information. The pilots are transmitted from
BS to each user equipment (UE), which are then quantized
using a two-step quantization method and fed back to BS.
The BS uses the proposed CS-based recovery algorithms
to recover the channel from the quantized feedback: quan-
tized partially joint orthogonal matching pursuit (Q-PJOMP)
or quantized partially joint iterative hard thresholding (Q-
PJIHT). This recovered channel information is utilized by the
transmit beamforming to reduce inter-user interference. Two
types of transmit beamforming, namely (i) minimum mean
square error (MMSE) or regularized zero-forcing (RZF) and
(ii) singular value decomposition (SVD), are employed with
realistic estimated imperfect channel information, as opposed

1The IA transforms the signal on the transmitters to be aligned in the signal
subspace, for maximum multiplexing gain.
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to [8], [16] that assume perfect channel knowledge to perform
beamforming.

Effectively, we have focused on multiple aspects of com-
munication and presented a complete system for CSI acqui-
sition spanning all three main stages: (i) channel estimation,
(ii) beamforming procedure, (iii) data detection.

The main contributions of this work are as follows:
• This research work presents two novel distributed
CS-based algorithms, Q-PJOMP and Q-PJIHT, to esti-
mate a partially joint channel by utilizing quantized
feedback in massive MIMO systems. The feedback
bits are reduced without compromising significant per-
formance gain while preserving power and directional
information, as compared to [16] that considers only
directional information.

• An efficient dictionary-based sparsifying matrix has
been adopted, which is more effective as compared to
the square DFT based sparsifying matrix especially for
the frequency selective channel.

• Besides improved channel estimation algorithms, two
beamforming techniques, namely MMSE and SVD, are
applied to reduced inter-user interference. Indeed we
consider a scenario where the BS communicates simul-
taneously with multiple UEs through multiple beams.

• A realistic CSI estimate is acquired and utilized in
the transmit beamforming procedure, as compared to
the common perfect channel knowledge assumption as
in [8], [16]. Furthermore, we have investigated a more
realistic frequency selective channel, instead of a flat
fading as in [8], [16].

Simulation results reflect that Q-PJOMP is the most suit-
able algorithm to estimate the partially joint channel from
quantized feedback. Moreover, by applying MMSE based
transmit beamforming, the system performance is signifi-
cantly improved.

The remainder of the paper is organized as follows. Sec. II
describes the massive MIMO OFDM based system model,
particularly the spatial correlations of users’ channels are
emphasized with limited feedback per dimension. Sec. III
addresses the proposed CS techniques for training and feed-
back schemes, i.e., Q-PJOPM and Q-PJIHT, exploiting the
distributed joint channel sparsity model. Sec. IV presents
the simulation results for performance evaluation, finally,
conclusions are drawn in Sec. V.

II. SYSTEM MODEL
A. MASSIVE MIMO OFDM SYSTEM
Consider a single-cell multi-user massive MIMO OFDM
transmission over a quasi-static frequency selective fading
channel. The system is composed of a BS and K users in FDD
mode. The number of antennas at the BS is equal to Nt , with
Nt very large, and each user is equipped with Nr antennas.
The overall system model can be represented as follows:

Yi = HiXi + Ni (1)

where Xi ∈ CNt×T is the transmitted signal in T time slots,
Hi ∈ CNr×Nt is the channel matrix from the BS to the
ith user, Ni ∈ CNr×T is the Gaussian noise, and Yi ∈ CNr×T

is the received signal on each ith user. The fading channel
between each transmit antenna and ith user is considered
as frequency-selective and has L uncorrelated channel taps.
For Nr × Nt MIMO channel, the frequency response can be
written as:

Hi(f ) =
L∑
l=1

βlar (θr,l)at (θt,l)e−j2π f τl (2)

where βl is the complex amplitude for l th path, τl is the
l th path delay, θr,l and θt,l are the transmitted and received
path angles and ar , at represents array steering and response
vectors of transmitted/received signal in the direction of θt /θr .
To mitigate frequency selective fading the OFDM scheme is
used [21]–[23]. An OFDM symbol duration Tsym = (No +
G) · Ts is considered, where No is the number of subcarriers

equally spaced in frequency at 1f =
1
Ts

, with the sampling

time Ts and G is the guard interval in number of samples,
which is set larger than the expected channel delay spread to
further reduce the inter-symbol interference (ISI) [21].

B. DISTRIBUTED JOINT CHANNEL SPARSITY MODEL
In a cell there are some dominant scattering clusters whose
position is determined from the specific attributes of the cell
itself, like the presence of buildings or other propagation
obstacles. These scatterers can be shared by users regardless
of their position [5]. Massive MIMO experiments [7] prove
that channel matrices at the user side is sparse due to the
limited local scatterers at the BS [15], and maybe jointly
correlated due to the shared common local scattering clus-
ters [24]. Thus, both per-link and joint channel sparsity can be
exploited through CS-based solutions to reduce training and
feedback overheads. The inter-user channel sparsity can be
further explained based on how scatterers are shared among
users:
• The scatterers shared among all users are known as com-
mon scatterers (CSc), such as, the CSc shared among all
UE in Fig. 1. These common scatterers will produce joint
sparsity.

• The scatterers for a single user or shared among the
subgroup of users is known as local scatterers (LSc), and
will exhibit partial joint sparsity. For example, in Fig. 1
LSc1, LSc2, and LSc3 are local scatterers for UE1, UE2,
and UE3 respectively, while, LSc1-2 is shared among
UE1 and UE2.

The presented research work considers a ULA model for
both BS and user side antennas. To represent spatio correla-
tion channel for ULA in angular domain, the virtual channel
representation can be considered. The experimental studies
in [7] confirm that spatial channel can be transformed into
angular domain as follows:

Ha
i = FHRiHiFTi , Hi = FRiH

a
i F

H
Ti (3)
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FIGURE 1. Illustration of joint sparsity structure in MIMO channel.

where FRi ∈ CNr×Nr and FTi ∈ CNt×Nt represent the unitary
matrices with Fourier basis. This transforms the channel at the
BS and the user side from a spatial domain to the virtual angle
domain. Ha

i ∈ CNr×Nt is the virtual channel representation
and can be considered equivalent to the actual spatial channel
Hi in Fourier domain [7]. The non-zero (c, d)-th entry of Ha

i
indicates the spatial path from the c-th BS transmit direction
to the d-th receive direction of the ith user. Equation (3)
has been used to represent the spatial channel in the angular
domain with the sparsifying matrix F [5], [8]. Although with
angular domain representation channel sparsity is guaranteed,
to obtain it explicitly for each link and joint channel sparsity,
the design of sparsifying matrix F is very critical. In [8]
and [16] a sparsifying matrix F is considered as square DFT
matrix, but in [5] and [9] it has been shown that, by introduc-
ing more redundancy in sparsifying matrix F, an improved
channel representation can be achieved, as will be detailed in
Sec. III.

Fig. 1 shows the system descriptionwith local and common
scatterers in a multi-user MIMO system. Fig.1(a) explains
the joint sparsity structure by displaying varying support
indexes (non-zeros entries) in different colors in the channel
matrix. For example, the scatterers shared among all users
are represented by the common support 2c indicated in red,
the support of the scatterers shared only by some users is
shown in green, and of the local scatterers is represented
in blue. The individual support 2i represents the non-zeros
entries of each user. Fig.1(a) shows the position of the support
in this joint sparsity structure, while Fig.1(b) shows that the
power values at these supports could be varying. Besides,
Fig.1(b) also gives a snapshot of the channel delay profile for
different users in this hypothetically generated propagation
environment.

The sparsity of the massive MIMO channel may be
explained as follows [8], [10], [16]:

1) Intra-User Joint Sparsity (Individual joint Spar-
sity):
Since there are more than one receiver antennas Nr
per user, the channel will exhibit intra-user joint spar-
sity. This effectively means that there will be channel
dependency among different antennas of each user at
the same time. This dependency is produced by local
scatterers. Consequently, the receiver channel matrix
elements will be extremely correlated and its row vec-
tors will usually have the same sparsity support. Specif-
ically, the matrixHa

i is a row sparse and for each user i,
the jth row vectorHa

i (j) will have same support2i such
that 0 < |2i| � Nt , i.e.,

2i1 = 2i2 = . . . = 2iNr ' 2i (4)

2) Inter-User Sparsity (Distributed Joint Sparsity):
Inter-user sparsity exploits the channel dependency
among different users at the same time [10]. It refers
to the scenario of a massive MIMO system where
different users are close enough to share some common
scatterers. Therefore, the channel matrices of different
users will be highly correlated and will have common
sparsity support 2c:

2c =

K⋂
i=1

2i (5)

This common sparse support will be a subset of individ-
ual sparse support if users are sharing some common
scatterers, such that 2c ⊆ 2i. However, if there are
only common scatterers among users, then the indi-
vidual sparsity support will be equal to the common
sparsity support. There is possibility that none of the
users are sharing any common scatterers, in that case,
2c = ∅ [8].
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FIGURE 2. Flow chart of the overall framework of CSI acquisition and utilization.

C. LIMITED FEEDBACK BASED CHANNEL RECOVERY AND
BEAMFORMING
The current subsection discusses the overall procedure for
channel recovery from the quantized feedback pilots and uti-
lization of that estimate for transmit beamforming as shown
in Fig. 2. The BS sends pilots in the DL, which are quantized
at each UE and are fed back to the BS via a dedicated uplink
signaling channel. The BS utilizes these quantized pilots to
exploit channel’s hidden joint sparsity for channel estima-
tion using distributed CS algorithms. Eventually, the recov-
ered channel is employed for beamforming at the transmitter
for more reliable data detection at the receiver. The overall
system description of the quantized feedback and channel
estimation is summarized in Framework and further given
in Fig. 2. Each step of Fig. 2 is explained in detail as follows:

F Step-1 Downlink training: As discussed in Sec. I,
to obtain CSI of the DL at the transmitter in FDD, the pilots
are sent in DL. For this purpose, the BS broadcasts T common
training symbols to theK users over the downlink. Therefore,
the received pilots for the ith user can be written as:

Ypi = HiXp + Ni (6)

where Xp ∈ CNt×T is the concatenated transmitted pilots,
and Ypi ∈ CNr×T is the received pilots on each ith user as
shown in step-1 of Fig. 2.
F Step-2 Quantization: The received pilotsYpi are quan-

tized at each UE to reduce the number of feedback bits,
as shown in step-2 of Fig. 2. It is represented as Q(Ypi),
however, the quantization process may also induces some

Framework Joint Channel Recovery Framework From
Quantized Feedback
Step-1: A common training pilot vector Xp is transmitted
from BS to all the users.
Step-2: Each user’s received pilots are quantized using two
steps:
(a) The averaged amplitude µi of the received pilot vector

Ypi is calculated for each user. Then these averaged
amplitudes are quantized to 2 bits per user;

(b) The sign information is achieved with 1 bit per dimen-
sion from the received pilots:
S(Ypi) = S(HiXp) such that
S(Ypi) = sign(Re(Ypi))+ jsign(Im(Ypi)).

Step-3: Each user feedbacks the obtained quantized and
reduced Ypi to BS.
Step-4: The channel is jointly recovered for all users from the
quantized feedback pilots Ypi using distributed CS at BS.

error as follows:

Ypi = Q(Ypi)+ 0i = Q(HiXp + Ni)+ 0i (7)

where Q(.) is the uniform quantization function that maps
the complex pilots to bits [+1, −1] and 0i is the quanti-
zation error. In the presented work, pilots are quantized by
preserving both direction and amplitude, as opposed to [16],
where pilots are quantized to the extreme 1-bit case. The 1-bit
scheme lacks power information, having only directional
information, this results in poor channel estimate. There-
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fore, we have considered averaged quantized amplitudes of
the received pilot for each user. The averaged amplitude
µi =

1
Pt

∑Pt
i |Ypi| of the received complex pilot Ypi is deter-

mined for each user. Subsequently, these averaged amplitudes
are quantized to 2 bits per user. Furthermore, the direction
information is computed using 1 bit per dimension from the
received pilots, given as:

Ypi = sign(Re(Ypi))+ jsign(Im(Ypi)) (8)

The amplitude information µ is fed back along with the
direction information to the BS.

F Step-3 Channel recovery using CS: The quantized
pilots determined in step 2 are fed back to BS in UL. At the
BS, CS-based algorithms are applied to recover the channel.
The BS employs the 2-bit partial amplitude information per
users along with 1 bit per dimension direction information
of each user to recover the channel jointly for all users. It is
important to mention that, since the users are sharing the
channel, partial amplitude along with direction information is
sufficient to jointly estimate the partially correlated channel.
For this purpose, the CS-based JOMP [8] and BIHT algo-
rithms [16] are modified. This facilitates channel recovery
using quantized feedback information.We have proposed two
novel distributed CS-based algorithms for better analysis in
terms of complexity and performance. The Q-PJOMP given
in Algorithm 1 and Q-PJIHT is given in Algorithm 2, respec-
tively, with further details in Sec. III.
F Step-4 Beamforming: During step 3 the estimate of

the channel Ĥi becomes available at the BS side, and it
is employed to achieve transmit beamforming, as shown in
step 4 of Fig. 2. The precodingmatrix is constructed by apply-
ing this estimate, it overcomes the inter-user interference and
decorrelates users in a highly correlated environment. Fur-
thermore, the precodingmatrix is beneficial for data detection
to decorrelate users. In particular, we have focused onMMSE
or RZF, as shown in equation (9). It attempts to maintain
strong signal gain while limiting interference among users.
MMSE based precoding is more reliable than ZF, since ZF
amplifies the noise in the presence of highly correlated user
channel. Moreover, MMSE precoder is not only robust for
MU-MIMO systems where users are located in the vicinity,
but it also provides stable performance at high SNRs [25].
MMSE precoder is considered as the more suitable choice for
linear precoding in MIMO based wireless systems [25], [26].
For MMSE based precoding, the received signal model in
equation (1) is revisited by including the beamformingmatrix
W as follows:

MMSE



G = ĤH (ĤĤH
+ λI)−1

η =

√
Nt

Tr(GGH )
W = ηG
Yi = XiWiHi + Ni

(9)

In the above equation, λ = Ntσ 2/K is the regularization
factor, if λ = 0, the MMSE precoder becomes equal to a

ZF. The MMSE optimal precoder G is obtained from the
estimated channel Ĥ of all users. In the next step,G is scaled
with the power scaling factor η to minimize the mean square
error (MSE) under the BS transmit power constraints [27].
Primarily, η is used for power allocation at the BS tominimize
the total power consumption under some given noise and
interference related constraints. While λ attempts to maintain
the strong signal gain with limited interference among users.
Besides the MMSE precoder in equation (9), for compari-
son purpose, an SVD based beamforming is also applied,
as shown in equation (11). It can be noted that we do not
assume perfect channel knowledge. Accordingly, the estimate
of realistic channel can be decomposed using SVD, and is
given as follows:

Ĥi = Ûi3̂iV̂H
i (10)

where Ûi ∈ CNr×Nr and V̂i ∈ CNt×Nt represent the unitary
matrices, such that V̂H

i V̂i = ÛiÛH
i = I and 3̂i ∈ CNr×Nt is

a diagonal matrix. Since we have considered realistic chan-
nel Ĥi, the estimated channel characteristics will not exactly
match with that of the ideal channel. Consequently, the uni-
tary property VH

i V̂i = I does not hold any more and this
may induce interference. Nevertheless, these ramifications
can be combated provided the channel estimate is robust.
Based on SVD decomposition, the equation (1) is revised and
beamforming equations can be given as:

SVD


X̂i = V̂H

i Xi

Yi = HiXi+Ni = (Ui3iVH
i )Xi+Ni, ∀i ∈ K

ÛH
i Yi = ÛH

i (Ui3iVH
i )V̂iX̂i+ÛH

i Ni, ∀i ∈ K
Ŷi = 3iX̂i+N̂i

(11)

where X̂i is the precoded signal at the transmitter, N̂i = ÛH
i Ni

is the noise term, and Ŷi = ÛH
i Yi is the decoder for the

transmit beamformer at the receiver side.

III. COMPRESSIVE CHANNEL ESTIMATION WITH
LIMITED FEEDBACK
The current section focuses on channel estimation at BS using
CS algorithms. It is performed by employing the quantized
pilots received on BS from UE, as indicated in step-3 of
Fig. 2. We here discuss compressed sensing algorithms and
dictionary design in more detail.

A. COMPARISON OF DICTIONARY AND DFT BASIS FOR
MEASUREMENT MATRIX DESIGN
A channel that exhibits only a few dominant propagation
paths may be considered sparse and is approximated as a lin-
ear combination over a known basis or dictionary, resulting in
a sparse channel response [21]. Conventionally, DFT basis φ
have been utilized for sparse channel representation [8], [12],
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[16], [21], [28] as shown below.

φ =
1
√
Nt


e−j2πk1,1 . . . e−j2πk1,Nt
e−j2πk2,1 . . . e−j2πk2,Nt

...
. . .

e−j2πkNt ,1 . . . e−j2πkNt ,Nt


The usage of the DFT basis is compliant with the theoretical
results of signal estimation in CS [29], therefore, the DFT
basis are employed in sparse channel representation. Con-
sidering normalized DFT basis φ as a sparsifying matrix,
the sparse channel response can be written as, Ĥi = φBsi,
where Bsi ∈ CNt×Nr is the sparse matrix. As described earlier
in equation (3), such modeling is applied to represent spatial
channel response into the angular domain, also known as the
virtual channel model. Though, the DFT basis represents the
channel only in a few directions. In a real-world scenario,
the actual signal can emanate from arbitrary directions, which
may differ from the one represented in the DFT matrix. This
results in leakage effect and poor channel estimate. In case the
channel is highly correlated or exhibits multipath, the leakage
effect worsens even further [5].

To estimate the channel accurately, a robust and effective
basis is an essential prerequisite. To construct an improved
and substantial basis or dictionary, we extended the squared
DFT matrix by proposing added redundancy and consid-
ering the channel delay profile as in [9]. The objective
is to build a more flexible and enhanced representation
of the channel. In the dictionary formulation, the channel
delay profile τch can be represented using OFDM sample
time Ts and guard interval G, for each dictionary point as
follows:

τch = [0, α, 2α, · · · · · · (M − 1)α] (12)

where M is the length of dictionary column, α is step size in
the range of 0 toM and is given as α = [G ·Ts− (G ·Ts/M )].
To avoid inter-symbol interference (ISI), the step size α is
constrained with τmax not exceeding G, i.e., (τmax < G) [21].
To formulate the dictionary basis D for the channel response,
the OFDM symbol duration Tsym and the delay profile can be
utilized as follows:

D =


e−j2πk1τ1 e−j2πk1τ2 · · · e−j2πk1τM

e−j2πk2τ1 e−j2πk2τ2 · · · e−j2πk2τM

... . . .

e−j2πkNt τ1 e−j2πkNt τ2 · · · e−j2πkNt τM


where τ (m) = τch(m)/Tsym is the channel delay nor-
malized by OFDM symbol duration Tsym, having m =

{1, 2, · · ·M}. To effectively estimate a channel with multiple
paths, the guard interval and channel delay profiles must be
taken into account. Comparable to DFT basis, the channel
response can be sparsely represented in dictionary D based
sparsifying matrix, Ĥi = DBsi. The Bsi ∈ CM×Nr is the
sparse matrix such that (‖Bsi‖0 � Nt ). Equation (1) can be

rewritten as:

Ypi = AĤi + Ni = ADBsi + Ni (13)

where A is the measurement matrix, it can be constructed by
utilizing the transmitted pilots Xp and sub DFT basis or sub-
dictionary. In further detail, a sub-dictionary D ∈ CPt×Nt

can be derived from dictionary D ∈ CNt×M , subsequently,
the measurement matrix A can be expressed as:

AD = XH
p ⊗D (14)

The basis D comprises of specially selected rows of D
associated with the pilot locations [21], as shown in equa-
tion (15). The transmitted pilots Xp are built according to
Rademacher distribution (RD) consisting of equally likely
symbols taken from [+1,−1]. Subsequently, they are mul-
tiplied by a phase rotation and can be formulated as XPn =

[P1e−jπ l1P2e−jπ l2 . . .Pte−jπ lPt ], wherePt represents the total
number of transmitted pilots for the nth transmit antenna.

AD = XH
p ⊗


e−j2πk1τ1 · · · e−j2π ·k1τNt
e−j2πk2τ1 · · · e−j2π ·k2τNt

...

e−j2πkPt τ1 · · · e−j2π ·kPt τNt

 (15)

whereAD ∈ CPt×Nt represents the measurement matrix con-
structed from known pilots and dictionary. For comparison,
the measurement matrix A is computed using two equivalent
approaches; firstly, starting from D as already discussed in
equation (15), and secondly, through DFT basis φ, that is
shown in equation (16).

Aφ = XH
p ⊗


e−j2πk1,1 . . . e−j2πk1,Nt
e−j2πk2,1 . . . e−j2πk2,Nt

...
. . .

e−j2πkPt ,1 . . . e−j2πkPt ,Nt

 (16)

Aφ ∈ CPt×Nt is calculated from DFT sub matrix. It is
noteworthy that the construction of the measurement matrix
AD is different from Aφ used by [8], [16].
In the case D, A and Ypi are known in equation (13), the

solution of ‖Bsi‖0 will yield the channel estimate. Solving
‖Bsi‖0 will provide an exact solution, however, it is NP-hard
problem. The severity of predicament can be reduced if we
relax l0 norm to some higher norm such that l2 norm i.e., min
‖Bsi‖1,2. Where, the ‖Bsi‖1,2 is the summation of l2 norm
of each row in Bsi [5]. The aforementioned optimization
problem can be formulated for joint channel estimation at
BS [30], as shown in equation (17)

min
{Bsi∀i}

K∑
i=1

‖Ypi − ADBsi‖2 ≤ ε (17)

The above mentioned minimization problem is very chal-
lenging, due to both individual and joint sparsity among
different users. By solving the above optimization problem,
instead of obtaining a channel estimatewith training overhead
proportional to Nt , it is possible to obtain a good channel
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estimate which is proportional to the sparsity level s of the
sparse channel with s� Nt .

B. CONSTRAINTS FOR STABLE RECOVERY
Several constraints and properties have been discussed in
the literature for the stable sparse signal reconstruction of
the measurement matrix A. For example, the accuracy of
recovery parameters can be determined in caseA satisfies the
null space property (NSP), restricted isometry property (RIP)
or mutual coherence, however, NSP or RIP is difficult to
measure. For guaranteed sparse signal recovery, it is adequate
to only satisfy themutual coherence property for themeasure-
ment matrix A [21], [31].
Theorem 1: In mutual coherence, the maximum absolute

and normalized inner product between the columns of mea-
surement matrix A is analyzed. It determines the correlation
among the columns of the measurement matrix and can be
formulated as in [21]:

µ{A} = max
1≤i≤j≤Nt ,i6=j

|Ai,Aj|

‖Ai‖2‖Aj‖2

= max
1≤i≤j≤Nt ,i6=j

|AH
i Aj|

‖Ai‖2‖Aj‖2
(18)

The mutual coherence of A at the pilot locations can be
written as:

µ{A} = max
1≤i≤j≤Nt ,i6=j

×

∑Pt
l=1(Xp(kl)e−j2πklτi/Nt )(Xp(kl)ej2πklτj/Nt )∑Pt

l=1 |Xpl |
2

(19)

= max
1≤i≤j≤Nt ,i6=j

∑Pt
l=1 |Xp(kl)|2ej2πklτ (j−i)/Nt )∑Pt

l=1 |Xp(kl)|2
(20)

Since our complex pilots are equi-power, we can conveniently
assume that: (|(Xp(k1)| = |(Xp(k2)|..... = |(Xp(kPt )| = 1).
Consequently, the normalized equation (20) can be re-written
as:

µ{A} = max
1.≤i≤j≤Nt ,i6=j

Pt∑
l=1

1
Pt

1ej2πklτ(j−i)/Nt ) (21)

From equation (21) it is evident that the value of µ{A} will
not rely on the pilot symbols, instead it only depends on
the selected columns of dictionary D. The dictionary D is a
sparsifying matrix and is employed to realize the channel, it is
mostly designed before channel estimation. Consequently,
if D is constructed tactfully, during the channel estimation
µ{A} will remain small and fixed. In short, from theorem 1 it
is obvious that, for efficient channel estimation, a minimum
coherence value is desired, therefore, the objective is to min-
imize µ{A}. The value of µ is generally in the range of [0-1],
and the smaller value is desired to achieve better recovery
[31].

The sparse channel reconstruction is based on the assump-
tion that the channel response is sparse. In other words,
the channel energy is uniformly distributed among the few

dominant taps. However, the exact positions of these dom-
inant taps are not known a priori and must be estimated for
the effective channel measurement [32]. To estimate the exact
positions, a redundant basisD is required. In conclusion, from
the reduced and quantized pilots Ypi and the dictionary D,
the channel estimate Ĥi is obtained at the BS by utilizing the
CS algorithms (i. e., Q-PJOMP, and Q-PJIHT), discussed in
detail in the following subsection.

C. ALGORITHMS FOR SPARSE CHANNEL ESTIMATION
In some cases, it has been observed that the sparse data
exhibit special structure in its measurement, for example,
in a certain measurement, the sparse coefficients may form
a group or block of zero and non zero entries. Such sparsity
structure is known as group/block sparsity [12], [33]. This
sparsity structure can be formulated by employing multiple
measurements, known as joint sparsity [8], [16], [34]. In joint
sparsity, each row of N vectors tends to be zero or non-zero
simultaneously. The research work [35] demonstrates that
the performance gain can be achieved if such structures are
exploited in sparse measurements of the observed data. Con-
sequently, the hidden joint sparsity structure of the corre-
lated multi-users MIMO channel is exploited in the proposed
DCS algorithms Q-PJOMP and Q-PJIHT. In both methods,
it has been assumed that the sparsity information is known
at the BS, which can be determined using slow-timescale
stochastic learning [36], [37]. The proposed Q-PJOMP and
Q-PJIHT are presented in Algorithm 1 and 2, respectively,
where 2-step quantization methods are labeled as A, 1-bit
binary algorithm is indicated with B, and the common lines to
both algorithms are marked with AB. If the algorithm 1 and
2 are viewed without label A, they transform into 1-bit Q-
PJOMP/Q-PJIHT. Similarly, inspecting the algorithms with-
out label B will convert them into the 2-step Q-PJOMP/Q-
PJIHT. Both of the algorithms are presented subsequently in
the following subsections.

1) CHANNEL RECOVERY WITH Q-PJOMP (ALGORITHM 1)
The current subsection describes Q-PJOMP for partially
joint channel estimation. Although several research works
present the solution with joint sparsity through OMP based
approaches [38], [39], the system with individual and par-
tially joint sparsity still requires additional investigation. In
[39] simultaneous joint OMP (SOMP) for multiple measure-
ments sharing joint support is investigated. In the current
work, the system with individual and partially joint support
is considered. To handle this kind of structured sparsity,
in the literature some works are already present. For example,
in [40] a generalized joint sparsity model (GJSM) is devel-
oped.

Another research work [8] applies GJSM to exploit the
hidden joint sparsity in massive MIMO channels for efficient
resource utilization. Their main objective is to reduce the
training overhead, which turns out in lowering the feedback
overhead, although the number of feedback bits is still very
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Algorithm 1 Quantized Partially Joint-OMP
1 (AB): Input:Ypi : i ∈ K , D
2 (AB): Measurement matrix← A,

support = sc, si
3 (A) : Averaged quantized amplitude← Q(µ)
4 (AB): {Thresholds : η1 < 1, η2 > 1}
5 (AB): Output: Channel estimate Ĥi

Procedure:
Step 1 - Initialization:

6 (AB): support :{2i = 0,2c = 0}
7 (A) : µ′← Q′(µ)
8 (AB): Compute Ypi from (8) and A from (15) or (16)
9 (A) : The angle of Ypi and the de-quantized amplitude

are used to rebuilt Ypi

Ypi← µ′
(
cosθYpi + jsinθYpi

)
and

10 (AB): Initialize residual Resi = Ypi
11 (AB): Step 2 - Identify the common support:

while t ≤ sc or ‖AHResi‖2F ≥ η1 then
identify the common support 2c that solves opti-
mization problem
2t ← Argmax

s

∑K
i |〈A

H
s Resi〉|

2c← 2c ∪2t
12 (AB): Determine the orthogonal projector Po onto the

span of the atoms indexed in 2c
Po← (As)(As)†

yo← PoYpi
Residual Update:

13 (B) : Resi← Ypi − sign(Re(yo))+ jsign(Im(yo))
14 (A) : Resi← Ypi − µ

′

(
cosθyo + jsinθyo

)
t ← t + 1

end
15 (AB): Step 3 - Identify the individual support: initial-

ize 2i← 2c
while ti ≤ |si − sc| or ‖Resi‖2F ≤ η2 then
2ti← Arg max

s
|〈AH

s Resi〉|

2i← 2i ∪2ti
Residual Update:

16 (B) : Resi← Ypi − (sign(Re(yo))+ jsign(Im(yo))
17 (A) : Resi← Ypi − µ

′

(
cosθyo + jsinθyo

)
ti← ti + 1

end

Step 4 - Channel estimate The channel estimate
is obtained

18 (AB): Bsi = (A2i )
†Ypi

Ĥi = DBsi

high. Therefore, our focus is not only to reduce the number of
measurements by taking advantage of joint sparsity structure
among users channel but also to limit the number of feedback

bits through a 2-step quantization process, while ensuring
efficient reconstruction.

To reduce the training overhead, our approach is inspired
by [8] and [9]. In [8] the training overhead is lowered by
considering the partially joint support structure among the
user’s channel. While in our previous work [9] it is achieved
by utilizing a flexible and robust dictionary-based measure-
ment matrix. Besides reducing the training overhead, this
work also lowers the number of feedback bits by introduc-
ing a 2-step quantization method. Q-PJOMP is based on a
greedy algorithm select-discard OMP (SD-OMP) [40]. It can
perform individual as well as partially joint sparse channel
approximation by choosing the ‘‘best match’’ projection of
multi-user quantized received pilots onto the span of the
measurement matrix.

Initially, the received pilots are recomputed applying the
de-quantized mean vector µ and the angle of 1-bit quantized
vectorYpi (line 9 in algorithm 1). Subsequently, the algorithm
detects the common support for all the users, which consists
of jointly selecting one column from the measurement matrix
A in each iteration (line 11 step-2 in algorithm 1). The
main intuition behind this selection is to determine an atom
(column index) that contributes to the maximum amount of
residual energy across all signals [41]. The indices that appear
in common support �c are likely to be estimated by most of
the users. In each iteration, new support is appended to the
existing support set unless a stopping criterion is satisfied.
Another important step is to orthogonalize the residual Resi
with the selected atom (column) of the measurement matrix
(line 12 of Algorithm 1) so that each atom is chosen only
once as in [39], [42]. In the next step, the individual support
of each user is identified as in standard OMP (lines 15 step-3
in algorithm 1) [42]. Indeed, besides the common support,
also a few individual supports may be present in each signal.
Note that the indices of the measurement matrix which were
already been taken by common support, are discarded by the
individual support. The rest of the procedure is the same as the
common support identification. Afterward, the complex pilot
at each support index is recomputed and updated (lines 13
and 14 for common support and lines 16 and 17 for indi-
vidual support in algorithm 1) in a design similar to [43],
although the overall procedure and problem are different from
the proposed. Finally, the channel is estimated using the LS
approach (lines 18 step-4 in algorithm 1). To achieve stable
recovery, there are different stopping criteria. For example,
the algorithm will run for a particular number of iteration
or will be executed until the norm of residual remains pos-
itive ‖Resi‖ ≥ η2. In our case, the system will halt if the
correlation between the atom of a matrix A and the residual
drops below a threshold η1;, which we set (η1 = 0.04) in our
simulation.

2) CHANNEL RECOVERY WITH Q-PJIHT (ALGORITHM 2)
We here describe the Q-PJIHT algorithm to estimate partially
joint sparse channel, whose performance is then compared
with the previously detailed Q-PJOMP.
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Algorithm 2 Quantized Partially Joint-IHT
1 (AB): Input:{Ypi : i ∈ K }, D
2 (AB): Measurement matrix← A}
3 (AB): Sparsity level S← sc, si,
4 (A) : Averaged quantized amplitude← Q(µ)

5 (AB): Step size: η←
1−
√

S
M

M
6 (AB): Output: Channel estimate Ĥi

Procedure:
Step 1 - Initialization:

7 (A) : µ′← Q′(µ)
8 (AB): Compute Ypi from (8) and A from (15) or (16)
9 (AB): The angle of Ypi and the de-quantized amplitude

are used to rebuilt Ypi

10 (A) : Ypi← µ′
(
cosθYpi + jsinθYpi

)
11 (AB): Initialize residual Resoi = Ypi

Bosi← AHResoi
2i← 0
2c← 0

Step 2 while( maximum iteration) do
12 (AB): Bn+1si = Bnsi + ηA

HResni
13 (AB): Identify the common support 2c that solves the

optimization problem
2t ← Arg max

s

∑K
i |〈A

H
s Resi〉|

2c← 2c ∪2t
Repeat the process sc times

14 (AB): Identify the individual support:
Initialize 2i← 2c
2ti← Arg max

s
|〈AH

s Resi〉|

2i← 2i ∪2ti
Repeat the process |si − sc| times

15 (AB): Hard threshold all the entries except those indexed
in 2i

Bn+1si ← HT (Bn+1si ,2i)
Residual Update :

16 (AB): yo← A2 Bn+1si
17 (B) : Resn+1← Ypi − sign(Re(yo)+ jsign(Im(yo)

18 (A) : Resn+1← Ypi − µ
′

(
cosθyo + jsinθyo

)
end

19 (AB): Step 3 - Channel estimate
The spare channel is estimated by repeating the
process until Ypi is consistent with Bsi or the stop-
ping criteria is met. Ĥi← DBsi

The research work [16] presents the 1-bit solution with
joint sparsity through IHT based approaches. However,
the system with joint sparsity and quantized feedback still
require improvements. In [44] 1-bit quantization is proposed,
later to reduce hardware cost and system processing burden,

the research work [16] utilizes this 1-bit per dimension to esti-
mate the partially joint channel in a massive MIMO system.
The proposed Q-PJIHT algorithm explores both individual
and joint sparsity support as in [16], although we apply a dif-
ferent quantization procedure that includes the amplitude as
well as the sign information. The proposed work also selects
the optimal step size (η) depending on the sparsity level and
dictionary length M . Indeed, since IHT is a gradient descent
based algorithm, its step size must be chosen optimally for
better convergence [45].

Initially, in Algorithm 2, the received pilots are recomputed
by applying the de-quantized mean vector and the angle
of 1-bit quantized vector Ypi (step-1 line 10 in Algorithm 2).
Subsequently, after initializing the residual and the support,
the algorithm detects the common support (step-2 line 13 in
Algorithm 2) for all the users. In the next step, the individual
support is calculated (step-2 line 14 in Algorithm 2) in the
same way performed in Algorithm 1. The algorithm is based
on gradient descent technique that works iteratively to realize
a robust estimate. Although standard IHT based algorithms
are computationally simple and take less memory than stan-
dard OMP based methods, they have several challenges while
dealing with the practical problem. As an example, the stable
signal recovery highly depends on the selection of step size
η, sparsity parameter [45] and number of iterations.

IV. PERFORMANCE EVALUATION
The performance of the proposed scheme is evaluated using
various CS techniques and different metrics. The proposed
2-step Q-PJIHT is compared with 1-bit Q-PJIHTwhose algo-
rithmic construction is inspired by 1-bit BIHT [16]. The
2-step Q-PJIHT differs from 1-bit BIHT in terms of con-
sidering channel direction and partial amplitude information.
Similarly, the Q-PJOMP is proposed and its 1-bit and 2-step
versions are taken into account for analysis. Q-PJOMP has
considered the equivalent joint channel sparsity model as in
JOMP [8]. Moreover, both Q-PJIHT and Q-PJOMP differ
from [8], [16] in terms of employing more robust sparsifying
basis D. The primary goal of this presented framework is to
reduce the number of measurements and feedback bits while
preserving high performance.

A. SIMULATION SETUP
We consider a MIMO-OFDM system, with Nt = 128 trans-
mit antennas, Nr = 2 receive antenna and K = 10 number
of users. The BS uses 256 OFDM subcarriers for downlink
transmission while some sub-carriers are employed for pilot
sequences and others for data. Specifically, during the first
phase of training, only training pilots are sent without data,
while in the second phase both data and pilots are transmitted
in combo fashion. The dictionary length M is set to 300,
whose value can be increased to reduce the error rate at the
cost of higher processing. After varying M up to 512 we
selected 300 as a good compromise between performance
and computation. We assume a system without frequency
offset among the local oscillators at the transmitter and the
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receivers. Moreover, the multipath fading channel with iid
additive white Gaussian noise with zero mean and unit vari-
ance is considered. The multipath channel length Ltaps is set
equal to 6, whose consequent ISI is directly solved by the
OFDM guard interval G, moreover, the length of G is set
to 16. The joint sparsity sc and the individual sparsity si
parameters are chosen to be 6 and 10 respectively, where sc
and si are defined in Sec. II-B. Table 1 summarizes the system
parameters. In the following subsections, the performance
analysis is presented evaluating different metrics, i. e., signal
to noise ratio (SNR) degradation, normalized mean squared
error (NMSE) as in [8] for the channel state information at the
transmitter (CSIT), and bit error rate (BER) while detecting
the data at each user terminal.

TABLE 1. Simulation parameters.

B. SNR DEGRADATION
Although we developed the full system including channel
estimation, beamforming procedure and data detection, our
main aim is the channel estimation. Thus, in this subsection
we specifically evaluate the effect of both the received pilots
quantization and the number of employed pilots on the chan-
nel estimate through SNR degradation, as shown in Fig. 3.
In particular, equation (22) gives the averaged SNR loss
obtained using the estimated channel with different numbers
of pilot symbols as in [16]. For channelHi and its estimate Ĥi,
the precoder wi is the maximizer of ‖wH

i HiHH
i wi‖

2
2 and ŵi

is the maximizer of ‖ŵH
i ĤiĤH

i ŵi‖
2
2, respectively. The overall

SNR loss in dB can be calculated as follows

SNRdeg = 10log10
‖wH

i HiHH
i wi‖

2
2

‖ŵH
i ĤiĤH

i ŵi‖
2
2

(22)

Around 200 simulations have been performed to obtain
the channel estimate Ĥi and the precoder ŵi, which are
used in equation (22) to calculate the averaged SNR degra-
dation. Fig. 3 analyzes the SNR degradation employing
Q-PJIHT or Q-PJOMP having 1-bit or 2-step quantiza-
tion using either DFT or dictionary-based sparsifying matri-
ces. It can be observed that when the feedback overhead
approaches 48 pilots, the SNR degradation exceeds 2 dB
in 1-bit method [16], which is more than the degradation
achieved by the proposed 2 bit Q-PJOMP.

Overall, the proposed 2-step Q-PJOMP outperforms the
other schemes, which is due to several reasons: firstly,
Q-PJOMP is more efficient than the IHT based algorithm

(Q-PJIHT). Secondly, since the choice of η is critical in
IHT [45], a flexible gradient step size η is employed in
the Q-PJIHT algorithm. The η is used as per sparsity level
requirements in each iteration, contrary to a fixed-size of
0.01 used in [16]. Thirdly, the 2-step quantization preserves
both amplitude and phase information rather than having
only direction information as in the compared 1-bit feedback
method [16]. Finally, our system employs a dictionary-based
sparsifying matrix, which, as shown in [9], is more robust to
estimate the channel as compared to earlier research works
[8], [16]. From Fig. 3 it can be easily noticed that with
64 pilots in the magnified view, the proposed quantized feed-
back Q-PJOMP with a dictionary-based approach surpasses
the performance of almost all feedback based algorithms.
Moreover, by increasing the number of pilots, the SNR loss
drops down to almost zero for all the solutions. Finally, focus-
ing on the proposed Q-PJOMP method in Fig. 3, the 2-step
quantization reflects less degradation as compared to the 1-bit
quantization.

FIGURE 3. Averaged SNR degradation for 1-bit and 2-step quantization
using DFT and Dictionary basis.

C. CSIT NMSE ANALYSIS VERSUS COMMON SUPPORT
Fig. 4 illustrates the NMSE of CSIT while increasing the
common support sc, under the same simulation parameters [8]
for the comparison purpose. The simulation parameters are
enlisted as followed: number of transmit pilot P = 45,
Nt = 160, Nr = 2, K = 40, si = 17 and SNR = 28 dB.
NMSE has been calculated as follows:

NMSE = E

(
‖Hi − Ĥi‖F

‖Hi‖F

)
(23)

The individual and joint sparsity levels are generated using
the spatial channel model (SCM)2 as in [8], [16]. Fig. 4
reveals as the common support sc increases among users,
the system performance improves, i. e., when the channel

23rd generation partnership project(3GPP) and the international telecom-
munication union(ITU) has developed a spatial channel model(SCM) to
model various urban and rural propagation scenarios [46]
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FIGURE 4. NMSE of CSIT vs common support for 1-bit, 2-step
quantization using Q-PJOMP and without quantization, under P = 45,
Nt = 160, Nr = 2, K = 40, si = 17 and transmit SNR = 28 dB.

between users is more correlated. The results confirm that the
2-step quantization provides a better estimation than the 1-bit
scheme and approaches the techniques without quantization
with a much lesser number of bits. The 1-bit quantization
method (1-bit DFT Q-PJOMP) in Fig. 4 has the worst per-
formance because it uses only direction information and also
DFT basis, instead of the more robust dictionary as in 1-bit
Dictn Q-PJOMP. Comparing only the methods without quan-
tization, it can also be observed that the proposed JOMP
algorithm with a dictionary basis gives better performance
than DFT based JOMP [8]. This point validates one of our
contributions that joint channel estimation is more reliable
with dictionary basis.

D. CSIT NMSE ANALYSIS VERSUS NUMBER OF USERS
Fig. 5 illustrates the NMSE of CSIT while increasing the
numbers of users. The NMSE is calculated by using equa-
tion (23). The simulation parameters are enlisted as followed:
number of transmit pilot P = 45, Nt = 160, Nr = 2,
sc = 10, si = 17 and SNR = 28 dB and number of users
are increased from 10 to 40. From Fig. 5 it can be noticed that
the performance improves when the number of users increase.
The performance gain is due to the fact that the proposed
algorithm utilized the distributed joint sparsity between user’s
channel matrices to jointly detect the common support. With
more number of users, the system will have adequate ampli-
tude knowledge and improved common support resulting in
a reliable estimate. It can be observed that the performance
is improved if both amplitude and directional information
is considered, as in 2-step quantization. All the algorithms
utilizing the dictionary basis for the estimate of CSIT have
superior performance.

E. CSIT NMSE ANALYSIS VERSUS NUMBER OF RECEIVE
ANTENNAS
Fig. 6 illustrates the NMSE of CSIT while increasing the
number of antennas at each user by using equation (23). The

FIGURE 5. NMSE of CSIT vs number of users for 1-bit, 2-step quantization
using Q-PJOMP and without quantization, under P = 45, Nt = 160,
Nr = 2, sc = 10, si = 17 and transmit SNR = 28 dB.

FIGURE 6. NMSE of CSIT vs number of antennas at each user for 1-bit,
2-step quantization using Q-PJOMP and without quantization, under
P = 45, Nt = 160, user = 40, sc = 10, si = 17 and transmit
SNR = 28 dB.

simulation parameters are enlisted as followed: number of
transmit pilot P = 45, Nt = 160, users = 40, sc = 10,
si = 17 and SNR = 28 dB and number of antennas at
each user are increased from 1 to 9. From Fig. 6 it can be
seen that with the increase in number of receive antenna at
each user the performance improves, due to the individual
joint sparsity present in the channel matrix. Hence, the CSIT
quality will be enhanced by increasing Nr . As expected,
similarly to Fig. 5 and 4, the performance of 2-step quanti-
zation is better than 1-bit quantization. Moreover, with the
dictionary basis, the CSIT estimate is improved as compared
to the DFT basis in all cases. Hence, by increasing the num-
ber of antennas at the mobile station more reliable individ-
ual joint support is identified, resulting in a robust channel
estimate.

F. BER ANALYSIS
Fig. 7 and 8 present the comparison of BER versus SNR
for data detection techniques utilizing SVD and MMSE
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FIGURE 7. Averaged Multi-user detection with quantized CSIT based
MMSE beamforming (1-bit, 2-step Q-PJOMP) and without quantization.

FIGURE 8. Averaged Multi-user data detection with quantized CSIT based
beamforming (1-bit, 2-step Q-PJIHT) and without quantization.

based beamforming. The channel estimate required for beam-
forming is obtained using quantized feedback and apply-
ing CS techniques based on JOMP and JIHT. Moreover,
the beamforming obtained without quantized feedback is
presented for comparison purposes. It is worth noting in Fig. 7
that beamforming based on channel estimate acquired using
1-bit feedback has a wider gap from the algorithms with-
out quantization. Moreover, Q-PJOMP with MMSE based
precoding gives better results than its SVD counterpart. As
shown in Fig. 7 and 8, the proposed 2-step quantization
methods show better performance when applying MMSE
beamforming than SVD.

Specifically, at high SNR MMSE outperforms SVD since
it is more power-efficient. On the contrary, Fig. 7 and 8 illus-
trate that both 1-bit versions of the proposed algorithms, i. e.,
1-bit Q-PJIHT and Q-PJOMP, show lower performance when
employingMMSE than SVD in all the SNR range. The reason
may be due to the fact that 1-bit quantization lacks power

FIGURE 9. Averaged Multi-user detection with quantized CSIT based
MMSE beamforming (1-bit, 2-step Q-PJOMP) with varying channel
taps L.

information while MMSE is a power efficient beamformer,
therefore without power information it is not performingwell.
By comparing Fig. 7 and 8, it can be observed that Q-PJOMP
exhibits better performance as compared to Q-PJIHT for
almost all the cases with and without quantization. Fig. 9
shows the effect of multipath fading over data detection by
employingMMSE beamforming utilizing quantized 1-bit and
2-step feedback using Q-PJOMP based channel estimates.
It can be observed that, as expected, by increasing the number
of channel taps from 2 to 5 the BER performance in all
cases is reduced, though the proposed technique yields the
improved results.

G. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, the computational complexity comparison
between the proposed IHT based algorithm Q-PJIHT and
OMP based algorithm Q-PJOMP is given. The overall com-
putational complexity for Q-PJOMPmethod isO(K sMNr T )
and for Q-PJIHT isO(I KMNrT ), where I is the total number
of iterations. The complexity in terms of Big-O notation
will be the same for the 1-bit and the 2-step quantization
versions of the proposed algorithms, since Big-O notation
shows how an algorithm’s complexity scale when the num-
ber of parameters are increased. However, while processing
the algorithms with real hardware, the lower computational
complexity of 1-bit method compared to the 2-bit algorithm
will be more noticeable in terms of processing time. Table 2
presents the comparison of computational time per user for
2-step and 1-bit Q-PJOMP/Q-PJIHT. Three different transmit
antennas setting has been considered: Nt = [50, 100, 150].
As expected, the computational time increases with the num-
ber of transmit antennas. Furthermore, the 2-step algorithms
(Q-PJOMP/Q-PJIHT) are more expensive than 1-bit meth-
ods. This is due to the processing of the channel amplitude
information and rebuilding complex pilots from both ampli-
tude and direction information, nevertheless, the analysis
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TABLE 2. Complexity comparison for mu-massive MIMO under
parametric setting P = 45, N = 2, K = 40, sc = 9, si = 17, P = 28 dB AND
Nt = 50,100, 150.

reveals that the difference is not very significant. Finally,
comparing Q-PJOMP with Q-PJIHT, it has been observed
that iterative hard thresholding based techniques (1-bit and
2-step quantization) are generally much slower than the
orthogonal matching pursuit based techniques since they
require a certain number of iteration to reach an optimal
point.

V. CONCLUSION
We have presented distributed compressed sensing based
channel estimation techniques for the partially joint channel
in a massiveMIMO system. A novel Q-PJOMP and Q-PJIHT
based channel estimation algorithms are proposed that utilize
limited quantized feedback. Our system reduces training and
feedback overhead for channel estimation by employing a
fewer number of pilots along with a limited number of feed-
back bits. The channel is jointly recovered for all users by
applying DCS at BS from 2-step quantized feedback. Results
revealed that SNR degradation with 2-step quantized feed-
back is less than 1 dB for 64 pilots. Furthermore, as the num-
ber of pilots grows, the SNR degradation approaches closer
to zero. Additionally, the presented dictionary-based system
aids in reducing the training and feedback overhead. This is
achieved by exploiting an improved CS algorithm and pilot
design. Finally, when the channel among users is highly cor-
related and exhibits added common support, the jointly esti-
mated channel at BS will reduce the computational resources
and time. Future work comprises of extending the proposed
massive MIMO scheme to localization issues for improving
performance [47], [48], which could be achieved by exploit-
ing a large number of serving antennas.
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