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We give a decomposition for the dual space of some Banach Function Spaces as the Zygmund
space EXPα of the exponential integrable functions, the Marcinkiewicz space Lp,∞, and the Grand
Lebesgue Space Lp),θ .

1. Introduction

Let Ω be a set of Lebesgue measure |Ω| < +∞.
In this paper, we deal with the following issue. What is the difference between the dual

space X∗ and the associate space X′ of a Banach Function Space X?
By associate space X′ of X we mean the space determined by the associate norm ρ′:

ρ′
(
g
)
= sup

{∫

Ω
fg dx : f ∈ M+, ρ

(
f
) ≤ 1

}
(1.1)

as in Definitions 2.3 and 2.4.
If X is a reflexive Banach Function Space, then the dual space X∗ is canonically

isometrically isomorphic to the associate space X′ [1, page 23]. On the other hand, for
example, if we consider the Orlicz space EXP(Ω) of exponentially integrable functions, which
is not reflexive, the associate space (EXP(Ω))′ coincides with the Zygmund space L logL(Ω),
while the dual can be represented by

(EXP(Ω))∗ = L logL(Ω) ⊕ (exp(Ω)
)⊥
, (1.2)
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where exp(Ω) is the closure of L∞(Ω) with respect to the EXP norm (see [2, Chapter IV], [3]
and also Corollary 3.4).

Our aim is to show that the decomposition for the dual space as in (1.2) holds in a
more general setting: namely, if X is a rearrangement invariant Banach Function Space on Ω
such that its fundamental function ϕX verifies

ϕX(0+) = 0, (1.3)

then,

X∗ = X′ ⊕ (Xb)⊥, (1.4)

where Xb denotes the closure of L∞(Ω) in X. We stress that, due to assumption (1.3), our
argument is much shorter than the corresponding one, treated in Zaanen ([4, Section 70,
Theorem 2, page 467]) in the more abstract setting of normed Köethe spaces. (See also [2,
Chapter IV, Proposition 2.8 and Theorem 2.11]).

In Section 3, we consider our decomposition in the particular case of EXPα spaces,
Marcinkiewicz spaces, and the Grand Lebesgue Spaces, specifying case by case the expression
of the associate space.

Let us note that in general a Banach Function Space X can be identified with a closed
subspace of (X′)∗ [1], while the spaces mentioned in our particular cases verify

X =
(
X′)∗ (1.5)

as shown in Theorem 3.7.

2. Preliminaries

LetΩ be a set of Lebesguemeasure |Ω| < +∞ and letM+
o be the set of all measurable functions,

whose values lie in [0,+∞], finite a.e. in Ω.

Definition 2.1. A mapping ρ : M+
o → [0,+∞] is called a Banach function norm if, for all

f, g, fn (n = 1, 2, 3, . . .) in M+
o , for all constants a ≥ 0, and for all measurable subsets E ⊂ Ω,

the following properties hold.

ρ
(
f
)
= 0 ⇐⇒ f = 0 a.e. in Ω,

ρ
(
af
)
= aρ

(
f
)
,

ρ
(
f + g

) ≤ ρ
(
f
)
+ ρ
(
g
)
,

0 ≤ g ≤ f a.e. in Ω =⇒ ρ
(
g
) ≤ ρ

(
f
)

,

0 ≤ fn ↑ f a.e. in Ω =⇒ ρ
(
fn
) ↑ ρ

(
f
)
,

|E| < +∞ =⇒ ρ
(
χE

)
< +∞,

|E| < +∞ =⇒
∫

E

fdx ≤ CEρ
(
f
)

(2.1)

for some constant CE, 0 < CE < ∞, depending on E and ρ, but independent of f .
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Definition 2.2. If ρ is a Banach function norm, the Banach space

X =
{
f ∈ M : ρ

(∣∣f
∣
∣) < +∞} (2.2)

is called a Banach Function Space.
For each f ∈ X, define

∥∥f
∥∥
X = ρ

(∣∣f
∣∣). (2.3)

Recall that the simple functions are contained in every Banach Function Spaces X [1].

Definition 2.3. If ρ is a function norm, its associate norm ρ′ is defined on M+
o by

ρ′
(
g
)
= sup

{∫

Ω
fg dx : f ∈ M+, ρ

(
f
) ≤ 1

}
. (2.4)

Definition 2.4. Let ρ be a function norm and let X = X(ρ) be the Banach Function Space
determined by ρ. Let ρ′ be the associate norm of ρ. The Banach Function Space X′ = X(ρ′)
determined by ρ′ is called the associate space of X.

In particular, from the definition of ‖f‖X , it follows that the norm of a function g in the
associate space X′ is given by

∥∥g
∥∥
X′ = sup

{∫

Ω
fg dx : f ∈ X,

∥∥f
∥∥
X ≤ 1

}
. (2.5)

Definition 2.5. A function f in a Banach Function Space X is said to have absolutely continuous
norm in X if ‖fχEn‖X → 0 for every sequence {En}∞n=1 satisfying En → ∅ a.e. The set of all
functions in X of absolutely continuous norm is denoted by Xa. If X = Xa, then the space X
itself is said to have absolutely continuous norm.

Definition 2.6. Let f ∈ Mo. The function

μf(λ) =
∣∣{x ∈ Ω :

∣∣f(x)
∣∣ > λ

}∣∣ ∀λ ≥ 0 (2.6)

is called the distribution function of f . The decreasing rearrangement of f, f∗, is defined on
[0, |Ω|] by

f∗(t) = inf
{
λ > 0 : μf(λ) ≤ t

}
, (2.7)

where here we use the convention inf ∅ = +∞.
Two functions having the same distribution function are called equimeasurable.
Let us recall that a function norm ρ is said to be rearrangement invariant (briefly, “r.i.”) if

ρ(f) = ρ(g) for every couple of equimeasurable functions. The Banach Function Space arising
from a r.i. function norm is called a rearrangement-invariant space.
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By f∗∗ : (0,∞) → [0,∞], we denote the function given by

f∗∗(t) =
1
t

∫ t

0
f∗(s)ds, (t > 0). (2.8)

The function f∗∗ is nonincreasing and verifies f∗(t) ≤ f∗∗(t) (t > 0).

Definition 2.7. Let X be a r.i. Banach Function Space determined by a function norm ρ. For
each t ∈ [0, |Ω|], let Et ⊆ Ω be a set of measure t. The fundamental function of X, ϕX(t), is
defined by

ϕX(t) = ρ
(
χEt

)
=
∥
∥χEt

∥
∥
X. (2.9)

Definition 2.8. Let 1 ≤ p ≤ ∞ and α ∈ R, then the Zygmund space Lp(logL)α(Ω) is the set of all
measurable functions f in Ω for which the quantity

∥∥f
∥∥
Lp(logL)α(Ω) =

∥∥∥∥

(
1 + log

( |Ω|
t

))α

f∗(t)
∥∥∥∥
Lp(0,|Ω|)

(2.10)

is finite.
For p = 1 and α = 1 we will replace L1(logL)1(Ω) by L(logL)(Ω).

With these notations, the usual space EXPα of the exponentially integrable functions cor-
responds to the Zygmund space (L∞/(logL)1/α)(Ω) and consists of all measurable func-
tions f in Ω for which the quantity

∥∥f
∥∥
L∞/(logL)1/α(Ω) =

∥∥f
∥∥
EXPα(Ω) = sup

0<t<|Ω|

(
1 + log

( |Ω|
t

))−1/α
f∗(t) (2.11)

is finite.
All these spaces are particular cases of the Orlicz spaces.
Let φ : [0,∞) → [0,∞) be a right-continuous, increasing function, such that φ(0) = 0

and limt→∞φ(t) = ∞, then the function defined by

Φ(t) =
∫ t

0
φ(s)ds (2.12)

is calledN function; it is a continuous, convex, increasing function such that limt→∞(Φ(t)/t) =
+∞ and limt→ 0(Φ(t)/t) = 0.

Definition 2.9. The Orlicz space LΦ(Ω) consists of all measurable functions f on Ω for which
there exists some λ > 0 such that

−
∫

Ω
Φ

(∣∣f
∣∣

λ

)

< ∞, (2.13)

where −
∫
Ω stands for (1/|Ω|) ∫Ω.
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This is a Banach space with respect to the Luxemburg norm:

∥
∥f
∥
∥
LΦ(Ω) = inf

{

λ > 0 : −
∫

Ω
Φ

(∣
∣f(x)

∣
∣

λ

)

dx ≤ 1

}

. (2.14)

The Orlicz spaces are a standard example of rearrangement-invariant Banach Function
Space: the associate space of LΦ(Ω) is given by LΦ̃(Ω), where Φ̃ denotes the complementary
function of Φ, defined by

Φ̃(t) = max{st −Φ(s) : s ≥ 0}. (2.15)

Moreover, we notice that, for Φ(t) = tp, Φ(t) = tp(log t)α, and Φ(t) = et
α − 1, the Orlicz space

associated reduces, respectively, to the spaces Lp(Ω), Lp(logL)α(Ω) and to EXPα(Ω).

Definition 2.10. Given 1 ≤ p, q ≤ ∞, the Lorentz space Lp,q(Ω) consists of all measurable
functions f in Ω for which

∥∥f
∥∥
p,q =

⎧
⎪⎨

⎪⎩

∫∞

0

[
t1/pf∗(t)

]q dt
t
, 0 < q < ∞,

sup
t>0

t1/pf∗(t), q = ∞
(2.16)

is finite.
The space Lp,∞(Ω) = Weak-Lp(Ω) is known as theMarcinkiewicz space, and it is another

example of r.i. Banach Function Space.
The quantity (2.16) is not a norm since the triangle inequality may fail; however, for

p > 1, replacing f∗(t)with f∗∗(t), we obtain a norm equivalent to (2.16).
In particular, for q = ∞, in the case of a nonatomic measure space, (2.16) is equivalent

to

sup
{
|E|1/p−1

∫

E

∣∣f
∣∣dx, E ⊂ Ω measurable

}
. (2.17)

Now, we recall the definitions of Grand and Small Lebesgue Spaces, introduced,
respectively, in [5] and in [6].

Definition 2.11. Let 1 < p < +∞ and θ ≥ 0; theGrand Lebesgue Space Lp),θ is the Banach Function
Space of all measurable functions f on Ω such that

∥∥f
∥∥
p),θ = sup

0<ε<p−1

(
εθ−
∫

Ω

∣∣f
∣∣p−ε dx

)1/(p−ε)
(2.18)

is finite.
Notice that

Lp),0(Ω) = Lp(Ω), Lp),1(Ω) = Lp)(Ω). (2.19)
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If 1 < p < +∞ and p′ is its Hölder conjugate exponent, according to [7], the Small Lebesgue
Space L(p′,θ can be identified as the set of all measurable functions f on Ω such that

∥
∥f
∥
∥
(p′,θ = sup

{∣∣
∣
∣

∫

Ω
fg dx

∣∣
∣
∣ :
∥
∥f
∥
∥
Lp),θ(Ω) ≤ 1

}
(2.20)

is finite.
The Grand and Small Lebesgue Spaces are r.i. Banach Function Spaces [7].

Definition 2.12. A vector space V is the direct sum of its subspaces U and W, denoted by V =
U ⊕W , if and only if

V = U +W = {u +w : u ∈ U,w ∈ W},
V ∩W = {0}. (2.21)

Elements v of the direct sum U ⊕W are representable uniquely in the form

u +w : u ∈ U , w ∈ W. (2.22)

Definition 2.13. Let X be a Banach space andM ⊂ X a vectorial subspace of X. The orthogonal
spaceM⊥ of M is

M⊥ =
{
f ∈ X∗ :

〈
f, x
〉
= 0 , ∀x ∈ M

}
, (2.23)

where 〈., .〉 is the duality inner product.
It is known thatM⊥ is a closed subspace of X∗.
We conclude this section by recalling some classical results, which will be useful in the

sequel.

Theorem 2.14 (Hölder’s inequality [1]). Let X be a Banach Function Space with associate space
X′. If f ∈ X and g ∈ X′, then fg is integrable and

∫

Ω
fg dx ≤ ∥∥f∥∥X

∥∥g
∥∥
X′ . (2.24)

Lemma 2.15 (see [1, Lemma2.6, page 10]). In order that a measurable function g belongs to the
associate space X′, it is necessary and sufficient that fg is integrable for every f in X.

Theorem 2.16 (see [1, Theorem 2.7, page 10]). Every Banach Function SpaceX coincides with its
second associate space X′′ = (X′)′.

Theorem 2.17 (see [1, Theorem 2.9, page 13]). The associate spaceX′ of a Banach Function Space
X is canonically isometrically isomorphic to a closed norm-fundamental subspace of the Banach space
dual X∗ of X.

Proposition 2.18 (see [1, Proposition 2.10, page 13]). IfX and Y are Banach Function Spaces and
X ⊂ Y (continuous embedding), then Y ′ ⊂ X′ (continuous embedding).
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Theorem 2.19 (see [1, Theorem 3.11, page 18]). Let X be a Banach Function Space. Then, Xa ⊆
Xb ⊆ X.

Corollary 2.20. If Xa = X, then Xb = X.

Theorem 2.21 (see [1, Theorem 3.13, page 19]). The subspaces Xa and Xb coincide if and only if
the characteristic function χE has absolutely continuous norm for every set E of finite measure.

Theorem 2.22 (see [1, Corollary 4.2, page 23]). LetX be a Banach Function Space. IfXa contains
the simple functions, then (Xa)

∗ = X′.

Theorem 2.23 (see [1, Corollary 4.3, page 23]). The Banach space dual X∗ of a Banach Function
SpaceX is canonically isometrically isomorphic to the associate spaceX′ if and only ifX has absolutely
continuous norm.

Theorem 2.24 (see [1, Theorem 5.5, page 67]). Let (Ω, μ) be a totally σ-finite nonatomic measure
space and let X be an arbitrary rearrangement-invariant space over (Ω, μ). The following conditions
on X are equivalent:

(i) limt→ 0+ϕX(t) = 0;

(ii) Xa = Xb;

(iii) (Xb)
∗ = X′,

where ϕX(t) is the fundamental function of X.

3. Main Results

In this Section, we establish a decomposition for the dual space of a r.i. Banach Function
Space.

Theorem 3.1. Let X be a rearrangement-invariant Banach Function Space on Ω. For each t ∈
[0, |Ω|], let E be a subset of Ω with |E| = t and let ϕX(t) be the fundamental function of X.

If

lim
t→ 0+

ϕX(t) = 0, (3.1)

then the following decomposition

X∗ = X′ ⊕ (Xb)⊥ (3.2)

holds.

Proof. Let l ∈ X∗, for all measurable sets F in Ω, we define the set function

ν(F) = l
(
χF

)
, (3.3)
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which is σ-additive and absolutely continuous with respect to the Lebesgue measure |F|.
Thus, ν has a locally integrable Radon-Nikodym derivative g and

l
(
f
)
=
∫

Ω
fg dx, for any f ∈ L∞(Ω). (3.4)

Since l ∈ X∗ for all f ∈ X, it is

l
(
f
) ≤ K

∥
∥f
∥
∥
X , (3.5)

where K is a constant. Hence, for all f ∈ L∞,

∫

Ω
fg dx ≤ K

∥
∥f
∥
∥
X. (3.6)

By Lemma 2.15, it follows that g ∈ X′.
To any g ∈ X′, we can associate the functional

lg : f ∈ Xb −→
∫

Ω
fg dx. (3.7)

By Hölder’s inequality, lg belongs to X∗
b
, which is equivalent to X′ thanks to Theorem 2.24.

Finally, let ls be defined by ls = l − lg , then ls(f) = 〈ls, f〉 = 0 for all f ∈ Xb. Therefore,
ls belongs to (Xb)

⊥.
Hence,

l = lg + ls ∈ X′ +X⊥
b . (3.8)

Since it is easily seen that X′ and X⊥
b
, subspaces of X∗, verify X′ ∩ X⊥

b
= {0}, then the proof is

complete.

Remark 3.2. Let us point out that, by Theorem 2.24, the decomposition (3.2) can also be
written as

X∗ = (Xb)∗ ⊕ (Xb)⊥, (3.9)

X∗ = (Xa)∗ ⊕ (Xa)⊥. (3.10)

Corollary 3.3. Let X be an Orlicz space, then

X∗ = X′ ⊕ (Xb)⊥

= (Xb)∗ ⊕ (Xb)⊥

= (Xa)∗ ⊕ (Xa)⊥.

(3.11)
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Proof. If X = LΦ(Ω) is an Orlicz space, then the fundamental function is

ϕX(t) =
1

Φ−1(1/t)
, ∀t ∈ ]0, |Ω|] (3.12)

(see [7]). Therefore, limt→ 0+ϕX(t) = 0 and the claim follows from Theorem 3.1 and
Remark 3.2.

Corollary 3.4. Let X = EXPα(Ω), α > 0, then

(EXPα(Ω))∗ = L log1/αL(Ω) ⊕ (expα(Ω)
)⊥

=
(
expα(Ω)

)∗ ⊕ (expα(Ω)
)⊥
,

(3.13)

where expα(Ω) denotes the closure of L∞(Ω) in EXPα(Ω).

Proof. The result follows by Corollary 3.3, and by (EXPα(Ω))′ = L log1/αL(Ω), α > 0, (see
[1]).

Corollary 3.5. Let p ∈]1,∞[, p′ be its Hölder conjugate exponent and X = Lp,∞(Ω), then

(Lp,∞(Ω))∗ = Lp′,1(Ω) ⊕
(
L
p,∞
b (Ω)

)⊥
. (3.14)

Proof. The Marcinkievicz space Lp,∞(Ω) is the largest of all rearrangement-invariant spaces
having the same fundamental function as Lp(Ω) (see [1]), which is

ϕLp(t) = t1/p. (3.15)

Moreover, the associate space of Lp,∞(Ω) (see [1]) is, up to equivalence of norms, the Lorentz
space Lp′,1(Ω).

Therefore, the statement easily follows by Theorem 3.1.
A decomposition of the dual of Lp,∞ was also given in [8].

Corollary 3.6. Let p ∈ ]1,∞[, θ ≥ 0 and X = Lp),θ(Ω), then

(
Lp),θ(Ω)

)∗
= L(p′,θ(Ω) ⊕

(
L
p),θ
b (Ω)

)⊥
. (3.16)

Proof. Let ϕX(t) be the fundamental function of the space Lp),θ(Ω), then

ϕX(t) ≈ t1/p
[
log
(
1
t

)]−θ/p
(3.17)

as t → 0+ (see [7]).
Therefore the claim easily follows by Theorem 3.1 and by the relation (Lp),θ(Ω))

′
=

L(p’,θ(Ω) (see [7]).
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In the next theorem, we show the relation between a Banach Function SpaceX and the
dual of its associate space (X′)∗.

Theorem 3.7. Let X be a Banach Function Space, then the following inclusion

X ⊆ (X′)∗ (3.18)

holds, with equality occurring if and only if the associate space X′ of X has absolutely continuous
norm.

Proof. By Theorem 2.17 applied to the Banach Function Space X′, we may identify (X′)′ with
a closed subspace of (X′)∗; hence, Theorem 2.16 implies

X = X′′ =
(
X′)′ ⊆ (X′)∗. (3.19)

Furthermore, ifX′ has absolutely continuous norm, that isX′ = X′
a, since every Banach

Function Space contains the simple functions, by Theorem 2.22 applied to the space X′ and
by Theorem 2.16, we have (X′)∗ = (X′

a)
∗ = (X′)′ = X′′ = X.

On the other hand, ifX = (X′)∗, then (X′)′ = X = (X′)∗, and Theorem 2.23 yields thatX′

has absolutely continuous norm.

Remark 3.8. An example of a Banach Function Space verifying the proper inclusion in (3.18)
is given by the Lebesgue space L1. In fact, if X = L1, then

(
X′)∗ =

((
L1
)′)∗

= (L∞)∗ ⊃ L1, (3.20)

as confirmed by the fact that L∞ has not absolutely continuous norm.
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