Hindawi Publishing Corporation

Applied Computational Intelligence and Soft Computing
Volume 2010, Article ID 505194, 10 pages
doi:10.1155/2010/505194

Research Article

A Distributed Bio-Inspired Method for Multisite Grid Mapping

I. De Falco,! A. Della Cioppa,? U. Scafuri,! and E. Tarantino!

! Institute of High Performance Computing and Networking, National Research Council of Italy, Via P. Castellino 111,

80131 Naples, Italy

2 Natural Computation Laboratory, DIIIE, University of Salerno, Via Ponte don Melillo 1, 84084 Fisciano (SA), Italy

Correspondence should be addressed to I. De Falco, ivanoe.defalco@na.icar.cnr.it

Received 31 July 2009; Revised 8 January 2010; Accepted 20 March 2010

Academic Editor: Chuan-Kang Ting

Copyright © 2010 I. De Falco et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing
distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an
application on a grid presumes three successive steps: the localization of the available resources together with their characteristics
and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at
last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources
change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As
the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous
environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and
efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time
required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the

use of the grid resources. The proposed mapper is tested on different scenarios.

1. Introduction

A grid [1] is a decentralized heterogeneous multisite system
which aggregates geographically dispersed and multiowner
resources (CPUs, storage system, network bandwidth, etc.).
From user’s perspective, a grid is a collaborative compu-
tationally intensive problem-solving environment in which
users execute their distributed jobs. Each job, made up of a
collection of separate cooperating and communicating tasks,
can be processed on the available grid resources without
user’s knowledge on where they are or even who owns them.

It is noted that the execution times of distributed appli-
cations and the throughput of parallel multicomputer sys-
tems are heavily influenced by the task mapping and sche-
duling which, in case of large and disparate set of grid
resources, become still more impractical even for experi-
enced users. In fact, grid resources have a limited capacity
and their characteristics vary dynamically as jobs change and
randomly arrive. Since, in many cases, single-site resources
could be inefficient for meeting job requirements, multisite
mapping must be adopted to provide all the possible bene-

fits. Obviously, this latter concern further complicates the
mapping operation.

On the basis of these considerations, it is clear that an
efficient mapping is possible only if it is supported by a fully
automated grid task scheduler [2].

Naturally when a new job is submitted for execution on a
grid, the dynamical availability and the pertaining workload
of grid resources imply that, to select the appropriate
resources, the grid task scheduler has to know number and
status of the resources available in that moment. Hence
such a scheduler, hereinafter referred to as Metascheduler,
is not simply limited to the mapping operation, but must
act in three successive phases: resource discovery, mapping
or task/node allocation and job scheduling [3].

The resource discovery phase, which has to determine
the amount, type, and status of the available resources, can
obtain this information either by specific tables based on
statistical estimations in a particular time span or gathered
tracking periodically and forecasting dynamically resource
conditions [4, 5]. For example, in Globus Toolkit [6], which
is the middleware used for building grids, global information



gathering is performed by the Grid Index Information Ser-
vice which contacts the Grid Resource Information Service
to acquire local information [7].

In the mapping phase, the Metascheduler has to select, in
accordance with possible user requirements, the nodes which
opportunely match the application needs with the available
grid resources.

Finally, in the last phase the Metascheduler establishes the
schedule timing of the tasks on the nodes. To have that all
the tasks will be promptly coscheduled, our Metascheduler
selects, in line with job requirements, resources conditions
and knowledge of the different local scheduling policies, only
the nodes, even belonging to different sites, which in that
moment are able to coschedule the tasks assigned to them.
This last assumption avoids to perform the job scheduling
phase. It is noted that, if locally supported, an alternative
to attain the coscheduling could be to make advance
reservations. However, this approach, which requires that
resource owners have a good planning on their own tasks,
presents difficulties to be employed in a shared environment.

As concerns the resource discovery phase, the Metasched-
uler here implemented determines the available nodes con-
sidering historical information pertaining the workload as
a function of time, and the characteristics of each node by
using specific tables.

In this paper, the attention is focused only on the map-
ping phase. Since mapping algorithms for traditional parallel
and distributed systems, which usually run on homogeneous
and dedicated resources, for example, computer clusters,
cannot work adequately in heterogeneous environments [1],
other approaches have been proposed to cope with different
issues of the problem [8-12].

Generally the allocation of jobs to resources is performed
respecting one or more optimization criteria like minimal
makespan, minimal cost of assigned resources, or maximal
throughput and so on. Here, in contrast to the classical
approach [13-15] which takes into account the grid user’s
point of view and aims at minimizing the completion time
of the application task, we deal with the multisite mapping
problem from the grid manager’s point of view. Thus, our
aim is to find the solution which minimizes execution
time and communication delays, and optimizes resource
utilization using at the minimum the grid resources it has
to exploit at the most.

Unfortunately, the mapping problem, already known as
NP-complete for parallel systems [16, 17], becomes even
more difficult in a distributed heterogeneous environment
as in grid systems. Moreover, in the future, grids will be
characterized by an increasing number of sites and nodes per
site, so as to meet the ever growing computational demands
of large and diverse groups of tasks. Hence, it has seemed
natural to devote attention to the development of mapping
tools based on heuristic optimization techniques, as, for
example, evolutionary algorithms. Several evolutionary-
based techniques have been used to face the task allocation
in a heterogeneous or grid environment [10, 13-15, 18-22].

Within this paper, a distributed version of Differential
Evolution (DE) [23, 24] approach is proposed. This tech-
nique is attractive because it requires few control parameters,
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it is relatively easy to implement, effective and efficient in
solving practical engineering problems. Unlike all the other
existing evolutionary approaches which simply search for
mapping the job onto just one site [21], we deal with a
multisite approach.

Then, differently from other methods which face the
problem of mapping in a heterogeneous environment for
applications developed according to a specific paradigm, as,
for example, the master/slave model in [25, 26], we do not
make hypotheses about the application graph. Moreover, as
a further distinctive issue with respect to other approaches in
literature [12], we consider the nodes making up the sites as
the lowest computational unit taking into account its actual
load.

Paper structure is as follows: Section 2 illustrates our
evolutionary approach to the mapping problem. Section 3
describes the distributed DE algorithm, while Section 4
reports on the test problems faced and outlines the results
achieved. Lastly, Section 5 contains conclusions and future
works.

2. Differential Evolution for Mapping

2.1. The Technique. Differential Evolution is a stochastic and
reliable evolutionary optimization strategy which presents
noticeable performance in optimizing a wide variety of
multidimensional and multimodal objective functions in
terms of final accuracy and robustness, and overcomes many
of the already existing stochastic and direct search global
optimization techniques [27-29]. In particular, given a mini-
mization problem with g real parameters, DE faces it starting
with a population of M randomly chosen solution vectors
each made up by q real values. At each generation, new
vectors are generated by a combination of vectors randomly
chosen from the current population. The outcoming vectors
are then mixed with a predetermined target vector. This
operation is called recombination and produces the trial
vector. Many different transformation schemes have been
defined by the inventors to produce the candidate trial vector
[23, 24]. To explicit the strategy they established a sensible
naming-convention for each DE technique with a string like
DE/x/y/z. In it, DE stands for Differential Evolution, x is a
string which denotes the vector to be perturbed (best = the
best individual in current population, rand = a randomly
chosen one, rand-to-best = a random one, but the current
best participates in the perturbation too), y is the number
of difference vectors taken for perturbation of x (either 1
or 2), while z is the crossover method (exp = exponential,
bin = binomial). We have chosen the DE/rand/1/bin strategy
throughout our investigation. In this model, a random
individual is perturbed by using one difference vector and
by applying binomial crossover. More specifically, for the
generic ith individual in the current population three integer
numbers 7y, 13, and 73 in {1,..., M} differing one another
and different from i are randomly generated. Furthermore,
another integer number s in the set {1,...,q} is randomly
chosen. Then, starting from the ith individual a new trial one
i’ is generated whose generic jth component is given by

Xi; = Xp; +F - (x,lj —x,zj) (1)
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provided that either a randomly generated real number p in
[0.0,1.0] is lower than a value CR (parameter of the DE,
in the same range as p) or the position j under account is
exactly s. If neither is verified, then a simple copy takes place:
xr; = xi;. Fisa real and constant factor which controls the
magnitude of the differential variation (x,lj - x,zj), and is a
parameter of the algorithm.

This new trial individual x; is compared against the ith
individual in the current population and is inserted in the
next population if fitter. This basic scheme is repeated for a
maximum number of generations g.

2.2. Definitions and Assumptions. In this work, we refer to
a grid as a system constituted by one or more sites, each
containing a set of nodes, while to a job as a set of distributed
tasks, each with various requirements [8, 30-33]. In absence
of virtual or dedicated links, sites generally communicate by
means of internet infrastructure.

In each site, single node and multinode systems are
present. With single node we intend a standalone compu-
tational system provided by one or more processors and
one or more links, while with multinode we refer to a
parallel system. Moreover, we assume that the node is
the elementary computation unit and that the proposed
mapping is task/node. Each node executes the tasks arranged
in two distinct queues: the local queue (L;) for the locally
submitted tasks and the remote queue (R;) for those
presented via grid. The tasks in R, can be executed only if
there are not ready tasks in L,. While the tasks in L, will
be scheduled on the basis of the locally established policy, a
First-Come-First-Served (FCFS) strategy with priority must
be adopted for those in R;. According to this scheduling
policy, to perform the mapping process both the currentlocal
and grid workloads are taken into account.

To focus the mapping problem in the premised grid
we need information on the number and on the status of
both accessible and demanded resources. Consequently, we
assume to have a grid application subdivided into P tasks
(demanded resources) to be mapped on n nodes (accessible
resources) with n € {1,...,N}, where P is fixed a priori and
N is the number of grid nodes.

We have to know node capacities (the number of instruc-
tions computed per time unit), network bandwidth and load
of each grid node in a given time span. In fact, the available
power of each node varies over time due to the load by the
original users in shared-resource computing. In particular,
we need to know a priori the number of instructions «;
computed per time unit on node i. Furthermore, we assume
to have cognition of the communication bandwidth f;;
between any couple of nodes i and j. It should be noted that
Bij is the generic element of an N X N symmetric matrix
B with very high values on the main diagonal, that is, 8;
is the bandwidth between two tasks on the same node. We
suppose that this information is contained in tables based on
statistical estimations in a particular time span.

In general, grids address nondedicated resources since
they have their own local workloads. This affects the
availability of local performance. Thus we must consider
these load conditions to evaluate the expected computation

time. There exist several prediction models to face the
challenge of nondedicated resources [34, 35]. For example,
as attains the computational power, we suppose to know the
average load ¢;(At) of the node i at a given time span At
with ¢;(At) € [0.0,1.0], where 0.0 means a node completely
discharged and 1.0 a node locally loaded at 100%. Hence
(1 — ¢;(At)) - a; represents the fraction of power at node i
available for executing grid tasks.

As an example, if the resource is a computational node,
the conditions collected could be the fraction of CPU
which can be destined to the execution of the newly started
processes, and the fraction of bandwidths which could be
different in conformity with the remote hosts involved in the
communication.

As regards the resources requested by the job, we assume
to know for each task k the respective number of instructions
yk to be executed and the number of communications Y,
between the kth and the mth task for all m # k. Obviously,
Yim 1s the generic element of a P X P symmetric matrix v
with all null elements on the main diagonal.

All this information can be obtained either by a static
program analysis, or by using smart compilers or by
other emerging tools which automatically generate them.
For example, the Globus Toolkit includes the Resource
Specification Language which constitutes an XML format to
define application requirements [7].

2.3. Encoding. In general, any mapping solution should be
represented by a vector p of P integers in the set {1,...,N}.
To obtain g, the real values provided by DE in the range
[I,N + 1[ are truncated before evaluation. The truncated
value | y; | denotes the node onto which the task 7 is mapped.
As long as the mapping is considered by characterizing
the tasks by means of their computational needs yx only,
this is an NP-complete optimization problem, in which the
allocation of a task does not affect that of the other ones,
unless one attempts to load more tasks on the same node.
If, instead, also communications Y., are taken into account,
the mapping problem becomes by far more complicate. In
fact, the allocation of a task on a given node can cause that
the optimal mapping needs that also other tasks must be allo-
cated on the same node or in the same site, so as to decrease
their communication times and thus their execution times,
taking advantage of the higher communication bandwidths
existing within any site compared to those between sites.
Such a problem is a typical example of epistasis, that is, a
situation in which the value taken on by a variable influences
those of other variables. This situation is also deceptive, since
a solution g, can be transformed into another with better
fitness p, only by passing through intermediate solutions,
worse than both g, and u,, which would be discarded. To
overcome this problem we have introduced a new operator,
named site mutation, applied with a probability p,, any time
a new individual must be generated. When this mutation
is to be carried out, a position in the current solution g is
randomly chosen. Let us suppose its value refers to a node
belonging to a site C;. This value is equiprobabilistically
modified into another one which is related to a node of
another cluster, say C;. Then, any other task assigned to C; in



the current solution is let randomly migrate to a node of C;
by inserting into the related position a random value within
the bounds for C;. If site mutation does not take place, the
classical transformations typical of DE must be applied.

2.4. Fitness. The two major parties in grid computing,
namely, resource consumers who submit various applica-
tions, and resources providers who share their resources,
usually have different motivations when they join the grid.
Currently, most of objective functions in grid computing are
inherited from traditional parallel and distributed systems.
As attains applications, grid users and providers of resources
can have different demands to satisfy. As an example users
could be interested in the total cost to run their application,
while providers could pay more attention to the throughput
of their resources in a particular time interval. Thus objective
functions can meet different goals.

In our case, the fitness function calculates the summation
of the execution times of the set of all the tasks on the basis
of the specific mapping solution.

Use of Resources. Denoting Tfjomp and 7;7™", respectively,

the computation and the communication times requested to
execute the task i on the node j it is assigned to the generic
element of the execution time matrix 7 is computed as
Tj=1 ¢+ T (2)
In other words, 7;; is the total time needed to execute
task i on node j and is evaluated on the basis of the
computation power and of the bandwidth which remain
available once deducted the local workload. Let 73 be the
summation on all the tasks assigned to the jth node for the
current mapping. This value is the time spent by node j in
executing computations and communications of all the tasks
assigned to it by the proposed solution. Of course, it does
not consider the time intervals in which these tasks are idle
waiting for communicating, so that tasks dependency does
not influence the results of the mapping proposed. Clearly, 7;
is equal to zero for all the nodes j not included in the vector
U, that is, all the nodes which do not have assigned tasks.
Considering that all the tasks are coscheduled, the time
required to complete the application execution is given by the
maximum value among all the 7;. Then, the fitness function
is
— S
() = max_{ri}. 3)
The goal of the evolutionary algorithm is to search for the
smallest fitness value among these maxima, that is, to find the
mapping which uses at the minimum, in terms of time, the
grid resource it has to exploit at the most.
If during the DE generation of new individuals the
offspring has the same fitness value as its parent, then it is
selected the individual for which

N
O*(u) = D75 (4)
j=1
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is smaller. This quantity represents the total amount of time
dedicated by the grid to the execution of the job. Obviously,
such a mechanism takes place also for the selection of the best
individual in the population. This choice aims at meeting
the requirements of resource providers, favouring mappings
which exploit best the shared resources.

It should be noted that, though the fitness values of the
proposed mapping are not related to the completion time of
the application, ® and ®* can be seen, respectively, as the
lower and the upper bound of the job execution time.

The pseudocode of our DE for mapping is shown in the
following Algorithm 1.

3. The Distributed Algorithm

Our Distributed DE (DDE) algorithm is based on the clas-
sical coarse-grained approach to Evolutionary Algorithms,
widely known in literature [36]. It consists in a locally linked
strategy, the stepping stone-model [37], in which each DE
instance is connected to d instances only. If, for example,
we arrange them as a folded torus, then each DE instance
has exactly four neighbouring subpopulations as shown
in Figure 1, where the generic DE algorithm is shown in
black, and its neighbouring subpopulations are indicated
in grey. The subpopulation under examination is, thus,
“isolated” from all the other ones, shown in white, and it
can communicate with them in an indirect way only, through
the grey ones. Moreover every M; generations (Migra-
tion Interval), neighbouring subpopulations are allowed to
exchange individuals. The percentage of individuals each
subpopulation sends to its neighbours is called Migration
Rate (Mp).

A design decision is the quality of the elements to be
sent; they might be the best ones or randomly chosen
ones. Another decision must be taken about the received
individuals; they might anyway replace the worst individuals
in the population or substitute them only if better, or
they might finally replace any individual (apart from the
very best ones, of course). It is known from literature that
the number of individuals sent should not be high, nor
should the exchange frequency, otherwise the subsearch in
a processor might be very disturbed by these continuously
entering elements which could even be seen as noise [36].
This mechanism allows to achieve both exploitation and
exploration, which are basic features for a good search.
Exploration means to wander through the search space so
as to consider also very different situations, looking for the
most hopeful (favourable) areas to be intensively sampled.
Exploitation means that one area is thoroughly examined,
so that we can be confident in being able to state whether
this area is promising. By making use of this approach, good
solutions will spread within the network with successive
diffusions, so more and more processors will try to sample
that area (exploitation), and, on the other hand, there will
exist at the same time clusters of processors which will
investigate different subareas of the search space.

Within this general framework, we have implemented a
distributed version for DE, which consists of a set of classical
DE schemes, running in parallel, assigned to different
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begin

begin
fori=1to M do
begin

if (pom < pm)

apply site mutation
else

begin

for j = 1togdo
begin

else
x,"j = x,‘J
end
if O(xy) < O(x;)

else

end
end
end
end

randomly initialize population X = (x1,..
evaluate fitness @ for all the individuals x;
while (maximal number of generations g is not reached) do

choose a random real number p,,, € [0.0,1.0]

choose three integers r1, 7, and r; € {1,..., M}, withr #r #rs#i
choose an integer number sin {1,...,q}

choose a random real number p € [0.0,1.0]
if ((p < CR)OR (j = 5))
Xiry =Xy +F - (%0 = X))

insert x; in the new population

insert x; in the new population

~>x-M)

ALGORITHM 1

FiGuUrE 1: The folded torus topology.

processing elements arranged in a folded torus topology, plus
a master. The master process acts as an interface to the user: it
simply collects the current local best solutions of the “slave”
processes and saves the best among them at each generation.

Besides, this latter is compared with the overall best found so
far and, if fitter, becomes the new overall best and is shown
to the user.

4. Experiments and Findings

Before effecting any kind of experiment the structure of
the available resources and the features of the machines
belonging to each site must be known. Generally, sites of a
grid architecture have different number of systems (parallel
machines, clusters, supercomputers, dedicated systems, etc.)
with various characteristics and performance. To perform a
simulation, we assume to have a grid composed of N = 58
nodes subdivided into five sites denoted with A, B, C, D,
and E with 16, 8, 8, 10, and 16 nodes, respectively. This grid
structure is outlined in Figure 2 while an example of the site
B, made up by four single nodes and a four-node cluster, is
shown in Figure 3.

Hereinafter, we will denote the nodes by means of the
numbers shown in Figure 2, so that, for example, 20 is the
fourth node in site B, while 37 is the fifth node in site D.

Without loss of generality, we suppose that all the nodes
belonging to the same site have the same power « expressed
in terms of millions of instructions per second (MIPS) as
shown in Table 1.
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FiGure 2: The grid architecture.
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FIGURE 3: An example of site B.

TaBLE 1: Power of nodes for each site expressed in MIPS.

Sites A B C D E
o 500 900 2000 1700 700

For the sake of simplicity, we have hypothesized for each
node three communication bands. The first is the bandwidth
Bii available when tasks are mapped on the same node
(intranode communication), the second is the bandwidth
Bij between the nodes i and j belonging to the same site
(intrasite communication), and the third is the bandwidth ;;
when the nodes i and j belong to different sites (intersite
communication). Besides, we presume that all the S;s have
the same very high value (10 Gbit/s) so as to yield the related
communication time negligible with respect to intrasite and
intersite communications.

For each site, the bandwidth of the output link is
supposed equal to that of the input link. In our case, the
intersite bandwidths are reported, with the addition of the
intrasite bandwidths, in Table 2.

Moreover we assume to know the average load of
available grid resources for the time span of interest.

A generally accepted set of heterogenous computing
benchmarks does not exist and the detection of a representa-
tive set of such benchmarks remains a current and unresolved
challenge. To evaluate the effectiveness of our DDE-based
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TaBLE 2: Intersite and intrasite bandwidths expressed in Mbit/s.

A B C D E
A 10
B 2 100
C 6 3 1000
D 5 10 7 800
E 2 5 6 1 100

approach we have decided to investigate different application
tasks with particular attention to both computation-bound
and communication-bound tasks as the load of grid nodes
varies.

After a very preliminary tuning phase, the parameters of
each DDE have been set as follows: M = 30, g = 1000, CR =
0.3, F = 2.0, py = 0.2, My = 50, and My = 1. This set of
parameters is left unchanged for all the experiments carried
on.

Our DDE can be profitably used for mapping of message
passing applications. Here we have used the Message Passing
Interface (MPI) [38] which is a widely used standard library
which makes the development of grid applications more
accessible to programmers with parallel computing skills.
Actually, many MPI library implementations, as MPICH-
G2 [39], MagPle [40], MPI_Connect [41], MetaMPICH [42]
and so on, allow the execution of MPI programs on groups
of multiple machines potentially based on heterogeneous
architectures. However, all these libraries require that users
must explicitly specify the resources to be used and they
may have enormous difficulties to select, at the best, the
appropriate resources for their works in grid environments.

The DDE algorithm has been implemented in C language
and all the experiments have been effected on a cluster of 17
(1 master and 16 slaves) 1.5 GHz Pentium 4 interconnected
by a FastEthernet switch.

For each test problem 20 DDE executions have been
carried out, so as to investigate the dependence of the results
on the random seed. Each execution has required 13s for a
total of 260s for each set of experiments. It should be noted
that if the situation described at the end of Section 2.4 takes
place when comparing the results of the different runs, the
same tie-break mechanism is adopted.

Once defined the evolutionary parameters and the grid
characteristics, different scenarios must be designed to
demonstrate the effectiveness of the approach over a broad
range of realistic conditions. To ascertain the degree of
optimality, different tests are conceived to allow a simple
comparison between a manual calculation and the solution
provided by the mapping tool. Note that, for the sake of
simplicity, in the experiments reported, we suppose that the
local load of a node is constant during all the execution time
of the application task allocated to it. Obviously, a variable
load would require only a different calculation but it would
not invalidate the approach proposed. In the following, we
show the mapping results attained for these experiments.

The first experiment has regarded an application of P =
12 tasks with yx = 90 Giga Instructions (GI), Yk, = 0 for
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TaBLE 3: Findings for each experiment.

Exp. no. 1 2 3 4 5 6 7 8

[ 52.94 52.94 128.57 139.19 180.00 271.73 484.77 128.57
o* 571.76 587.64 2571.42 2744.59 5387.14 8693.28 5817.29 1781.22
ny 20 15 20 15 3 4 3 20
O, 52.94 62.20 128.57 156.64 218.25 298.50 939.97 128.57
o 0.00 16.46 0.00 31.01 16.48 13.73 255.29 0.00

all k,m € {1,...,P}, and ¢;(At) = 0 for all the nodes. The
mapping solution found by our DDE is:

u = 1{25,26,27,28,29,30,31,32,41,42,35,36}.  (5)

As expected, the mapping procedure has allocated all the
tasks on the most powerful available nodes, eight belonging
to the site C and four to site D.

In the second experiment, all the parameters remain
unchanged except the load. In particular, we have supposed
£(At) = 0.7 on the two nodes 31 and 32 and £(At) = 0.5
on the three nodes 40, 41, and 42. In this hypothesis, the
mapping solution found is

u = {25,34,27,28,37,30,39,38,33,29,36,26}.  (6)

As it can be observed the solution again involves the most
powerful nodes (six belonging to C and six to D), discarding
correctly the loaded nodes in those sites.

In the third experiment, we have P = 20 with y; = 90 GI,
Yim = O forall k,m € {1,...,P} and €(At) = 0.9 for all the
nodes of the sites B and D, while for the site C we assume
¢i(At) = 0.8 for i € {25,...,28} and ¢;(At) = 0.6 fori €
{29,...,32}. The mapping solution discovered by our DDE
is

p =143, 44, 45, 46,47,29,49,50,51, 52,53, 54, 55, 56,

(7)
57,58,48,30,31,32}.

It is worth noticing that in this load conditions the
mapping procedure has chosen once again the most powerful
nodes: 4 of C with ¢;(At) = 0.6 which are those with a minor
load and 16 of E.

The same solution has been obtained in the fourth exper-
iment where we have just introduced the communications
Yim = 10 Mbit for all k, m € {1,...,P}.

In the fifth experiment, we have left unchanged both the
load conditions and the number of instructions that each
task k has to effect (yx = 90 GI). Simply we have considered
P = 36 and removed all the communications among the
tasks. The allocation is outlined in the following

p=11,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16,
47,50,44,57,46, 31,29, 54,49, 51, 55, 53, 30, (8)
32,45,52,43,58,56,48}.

This solution, according to the load conditions, has
mapped 16 tasks on the 16 nodes of A, 16 on all the nodes

of E, and 4 on the 4 nodes of C which present the lowest load
(0.6).

In the sixth experiment, we have merely added a
communication Yk, = 10 Mbit for all k,m € {1,...,P}. The
result is:

u=11,2,3,4,5,6,7,8,9,10,11,12,13,14, 15, 16, 43,
45,51,28,58,49,46,52,47,48,56,27,57,50,30, (9)

29,25,32,31,26}.

Such a solution provides 16 tasks on the 16 nodes of site
A, 12 on the site E, and 8 on all the nodes of C. It can be
noted that the mapping proposed has selected four nodes
of C which are loaded at 0.8, and therefore less powerful
than the other discharged nodes of E, to exploit the major
bandwidth among nodes allocated on the site C with respect
to the intersite bandwidth between C and E.

The influence of the communications is highly evidenced
in the successive experiment where, leaving unchanged all
the other conditions, the communication ¥, has been set
to 100 Mbit for all k,m € {1,..., P}. The mapping proposed
has allocated all the 36 tasks on the 16 nodes of site E. In fact,
the time requested to perform the communications becomes
relevant compared to the computation time and thus it is
advantageous to allocate more tasks on each node of site E
rather than to subdivide them on nodes of different sites. The
solution is

u =153,47,43,44, 47,48, 45,49, 50, 46, 46, 48, 49, 50, 43,
44,53,51,51,45,52,52, 54, 54, 56, 57,57, 55, 55, 56,

58,58,43,47,53,55}.
(10)

As an example of the behavior shown by our tool,
Figure 4 reports the evolution of the best run achieved
for this last test. Namely, we depict the best, average and
worst fitness values among those sent to the master by the
16 slaves at each generation. Since the initial generation
the average, the best and the worst fitness values decrease
over generations, and this continues until the end of the
run. Every now and then several successive generations take
place in which no improving solutions are found, and this
results in best, average and worst values becoming more and
more similar. Then, a new better solution is found and the
three values become quite different. The described behavior
implies that good solutions spread only locally among linked
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FIGURE 4: Behavior of fitness as a function of the number of
generations for the best run of experiment 7.

subpopulations without causing premature convergence to
the same suboptimal solution on all the slaves, which is a
positive feature of the system.

The final experiment has attained a job with P = 36, yx =
90 GI for k € {1,...,12}, yx = 9 Gl for k € {13,...,36},
Vim = 0 forall k,m € {1,...,24} and yi,, = 10 Mbit for all
k,m € {25,...,36}, while the load conditions are the same
of the previous experiment. The mapping found is

u =143,44,45,46,47,48,31,32,51,52, 53, 30, 55, 56, 57,
58,29,57,58,31,58,57,58,57,29,29, 29, 29,29, 29,

29,30,29,29,29,32}.
(11)

From the mapping proposed, it can be observed that 17
tasks are placed on C and 19 are allocated on E. In particular,
three of the tasks with y, = 90 GI have been mapped on three
nodes of C with £(At) = 0.6 (nodes 30, 31 and 32) and the
remaining 9 with the same computational requirements on 9
nodes of site E, while the fourth node of C with £(At) = 0.6
(node 29) has been used to allocate 10 tasks each with y; =
9GI and i, = 10 Mbit for all (k, m) € {25,...,36}.

In Table 3, for each experiment (Exp. no) the best fitness
values for ® and ®* are outlined and, for all the 20 runs,
the number of occurrences (1) of the best result, the average
fitness values (@, ), and the standard deviations o are shown.

The tests performed have evidenced a high degree of
efficiency of the proposed model in terms of both goodness
of the solutions provided and convergence times. In fact,
efficient solutions have been quickly provided independently
of work conditions (heterogenous nodes diverse in terms of
number, type, and load) and kind of jobs (computation or
communication bound).
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5. Conclusions and Future Works

This paper faces the multisite mapping problem in a
grid environment by means of Differential Evolution. In
particular, the goal is the minimization of the degree of use
of the grid resources by the proposed mapping. The results
show that a Distributed Differential Evolution algorithm is a
viable approach to the important problem of grid resource
allocation. A comparison with other methods is impossible
at the moment due to the lack of approaches dealing with
this problem in the same operating conditions as ours. In
fact, some of these algorithms, such as Min-min, Max-min,
and XSuffrage [12], are related to independent tasks and their
performances are affected in heterogenous environments. In
case of dependent tasks, the classical approaches apply the
popular model of Direct Acyclic Graph (DAG) differently
from our approach in which no assumptions are made about
the communications among the processes since we have
hypothesized tasks coscheduling.

Future works will include an investigation of the different
DE schemes, together with a wide tuning phase for parameter
sets, to experiment their effectiveness in facing the problem
under exam.

A dynamic measure of the load of grid nodes will be
examined. Furthermore, we have supposed that the cost
per MIPS and Mbit/s is the same for all the grid nodes.
Since nodes with different features have different costs, in
the future these costs will be added to the other parameters
considered in the mapping strategy.

Finally, since Quality of Service (QoS) assumes an impor-
tant role for many grid applications, we intend to enrich
our tool so it will be able to manage multiple QoS require-
ments as those on performance, reliability, bandwidth, cost,
response time, and so on.
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