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Abstract
The study of networks pervades science. The techniques of networks are recently being applied to
biomedical disciplines, where the complexity of biomedical systems requires new schemes that can
process elevated volumes of datawith high efficiency. Artificial neural networks, onwhichmuch of
artificial intelligence relies, are statisticalmodels partiallymodeled on biological neural networks.
They are capable ofmodeling and processing nonlinear relationships between inputs and outputs in
parallel—in opposition to deterministicmodels and classical computation schemes, which perform
tasks in linear sequences of calculations andmay fail to keep upwith the challenges of complex
biological systems. For these biological or bio-inspired systems, the performance of the networks
depends on their topological characteristics. Here, we generated a large number of configurations of
points in a plane, inwhich the entropy s of the configurations was varied over large intervals. Then, we
connected points using theWaxmanmodel to obtain the corresponding networks. In correlating the
entropy (s) to the small-world coefficient (SW) of those networks, we found that SWvaries
hyperbolically with s as SW=0.88+0.28/s, where s is expressed inmillibits per node. Since the
entropy of a distribution of points depends in turn on the density of those points in the plane, such a
relationship suggests that the distribution ofmass (s) in a complex systemdetermines the topological
characteristics (SW) of that system. The small-world-ness of the system, in turn, determines its
information efficiency. Thesefindingsmay have implications in neuromorphic engineering, where
chipsmodeled on biological brainsmay lead tomachines that are able, as for some examples, to
diagnose diseases, develop drugs and drug delivery systems faster, design personalized treatments
targeted to patient’s needs.

1. Introduction

Small world networks are networks with high values of clustering coefficient of the nodes of the networks and
very short paths between them (Watts and Strogatz 1998, Strogatz 2001,Watts 2003). Small world networks
typically feature over-abundance of hubswith a high number of connections: recently, they have sparked
interest because it is believed that networks with a small world topologymay feature enhanced signal
propagation speed and computational capabilities compared to regular, periodic or randomgrids of the same
size. Small world graphs lie between the extremes of order and randomness (Watts 2003, Crutchfield 2012)—
they are used tomodel dynamical systemswhere the efficiency of the systems depend less on the components of
the system taken in isolation andmore on the fact that a large number of components form complex networks.
Examples of small world networks have been reported infields such as cell biology and neuroscience (Achard
et al 2006, Bullmore and Sporns 2012), theoretical virology (Moore andNewman 2000), systems dynamics
(Lago-Fernández et al 2000), in the analysis of the topological characteristics of theworldwideweb and social
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networks (Comellas et al 2000). In other reported studies (Takahashi et al 2010), it has been demonstrated that
the functional and anatomical connectivity among individual neurons exhibits small-world architectures. In
references (Marinaro et al 2015,Onesto et al 2017), some of the authors of the present paper used surfaces with
controlled nanotopography to guide the organization of neuronal cells into small world networks with enhanced
information flows. Using experiments, information theory approaches and network analysis, we have
demonstrated that the formation of the fundamental computation units of the nervous system (such as cortical
mini-columns in the cerebral cortex) is guided by the interplay between energyminimization, information
optimization and topology. For these systems, the biological functions are determined by the geometrical form,
structure and size of the systems themselves.

Here, we correlated the entropy s of distributions of nodes in a plane to the small world coefficient SW of the
corresponding networks obtained bywiring those nodes with a probabilisticWaxmanmodel.Moreover, using
information theory variables and computer simulations, we found the amount of information transported in a
grid as a function of s.These s SW- maps can be used as a preliminarymathematical reference to determine
the topological characteristic of a structure without direct knowledge of its internal connections. This studymay
have implications in bio computing, biosensors operations and neural cell based sensors, the diagnosis and
analysis of neurodegenerative disorders, neural development (Decuzzi and Ferrari, 2010, Chiappini et al 2015,
Onesto et al 2017), the analysis of cell-surface interactions and problems at the bio interface, the assembly of cells
into complex structures.

2. Experimental section

2.1. Generating clustered distributions of points in the plane
Wegenerated sets of points in the planewith different values of density. To do this, we placed in a bounded
domain 1000 points where the coordinates of the points were randomly picked from a uniformdistribution.
Then, we chose in the domain afixed position (center) towardwhich the entire systemwas left free to evolve.
Then, for each point x y,o o( ) of the initial set, we recalculated its coordinates as

x c

y c

cos

sin 1
f x

f y

d J
d J

= +
= + ( )

where c c,x y( ) are the coordinates of the center, H l ,od d= x( )/ od is the initial distance between the considered
point and the center, l is a cut off distance chosen as 0.25 times the length of the domain, H 1= is a constant
(Gentile et al 2013). Thus points are displaced proportionally to their distance to the center and to the exponent
.x x was varied in the 0.2 5- intervals to obtain distributions with an increasing degree of clustering (figure 1).
By varying the number of centers between1and 4,we generated different series of points in the plane (figure 2).

2.2.Determining the spatial density of node distributions
In order to extract the entropy of the distributions, for each node configurationwefirstly derived the
corresponding density.

To do this, we counted the number n of points fallingwithin a cut-off distance cd from a specified point i and

divided the result by the sumof the n s’i computed over all the nodes of the set N : p i n n .i i

N
iå=( ) / Thus p i( )

is the density of points in the neighborhood of i (figure 3).We repeated the process iteratively for each point in
the distribution.Notice that, by construction, p is valued between 0 and1,moreover, the values of p s¢ sumup to

Figure 1. Starting fromuniformdistributions, points having an increasing degree of clusteringwere generated by varying x between
0.2 and 5.
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unity: therefore p i( ) is the probability offinding a node in the neighborhood of i. For the present configuration,
we set cd as w N ,cd = / where w is the initial length of the domain. This value for cd enables large n s¢ and
statistical significance of the analysis, still ensuring that the p i( ) is evaluatedfinely without loss of information
on the local scale.

Figure 2. Sets of 1000 points with a number offixed centers between 1 and 4, towardwhich the systemwas left free to evolve.

Figure 3. Sets of points in the planewith different values of density were generated (a). Corresponding 3Ddensity distribution (b) and
2Ddensity distribution (c).
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2.3. 2.3. Determining the entropy of node distributions
Upon evaluation of the probability function p i p ,i=( ) we determine the entropy associated to specific
distributions of nodes using the definition of entropy given by Shannon(Shannon 1948)

S set p plog 2
i

i i2å= -( ) ( )

i.e., themeasure of entropy associatedwith each possible data value is the negative logarithmof the probability
mass function for the value.Notice that entropy ismeasured in bits if the logarithm is takenwith base 2. From
equation (2) it readily follows that, for a same initial number of points N , intermediate densities have higher
entropy than distributions with lower and higher density values. Thus, clustered sets of points with high p s¢ have
—typically –lower values of entropy than uniformdistributions of points with small p s.¢

Generally, entropy refers to disorder or uncertainty, and the definition of entropy used here (Shannon
information entropy) is directly analogous to the definition used in statistical thermodynamics and the
Boltzmann’s (Campisi andKobe 2010):

S state K ln 3b= W( ) ( ) ( )

andGibbs’s (Swendsen 2008,Županovi andKui 2018)

S set K p pln 4b
i

i iå= -( ) ( )

equations, where Kb is the constant of Boltzmann, and W is the number ofmicrostates (various combinations of
particles in various energy states) that can yield the givenmacrostate.

2.4. Connecting nodes through theWaxman algorithm
From the distributions of points in the planewe determined the corresponding graphs by connecting nodes by a
wiring algorithm.Weused theWaxmanmodel (Waxman, 1988,Marinaro et al 2015), whereby the probability
of being a link between two nodes exponentially decreases with the Euclidean distance between those nodes. For
a given set of two nodes u and v, the link probability, P u v,( ) is defined as:

P u v e, 5d u v L,a= b-( ) ( )( )/

where d is the Euclidean distance between nodes u and v, and L is the largest possible Euclidean distance
between two nodes of the grid. In the equation, a and b are theWaxmanmodel parameters and, upon tuning
these, the graphmay bemore or less dense. a and b should be chosen between 0 and 1. Selecting smaller values
of these parameters results in a smaller number of links. For the present configuration, these parameters were set
to 1a = and 0.025.b = The probability P varies between 0 for a pair of nodes with an ideally infinite distance,
and1 for a pair of nodes with an ideally zero distance. The information about the connections among the nodes
in a graph is contained in the adjacencymatrix A a ,ij= where the indices i and j run through the number of
nodes N in the graph; a 1,ij = if there exists a connection between i and j, a 0ij = otherwise (Chartrand and
Zhang, 2012, Barabási, 2016). In the analysis, reciprocity between nodes is assumed, and thus if information can
flow from i to j, it can reverselyflow from j to i. In the framework of graph theory, we call a similar network an
undirected graph.Notice that this property translates into symmetry of A being a a .ij ji= Moreover, a 0.ij =
We showed above how to derive the distances between nodes dij in the networks. On the basis of d,wemay
decidewhether a pair of nodes is connected, we use at this end the formula:

e R 0 6d Li j, a -b- ( )/

inwhich R is a constant thatwe have chosen being 0.05 and 0.2 so that the probability of being a connection
varies, for different configurations, between P 0.95= and P 0.8.=

Equation (5) describes the probability P of being a link between two nodes; as such, it is comprised between
0 and 1: it is the likelihood that two neurons establish a connection in real, biological networks, based on their
distance. Then, by comparing these values of probability to a threshold R, arbitrarily chosen between 0 and 1,we
make a decision onwhether nodes of the network are connected (P R> ) or not (P R< ). The comparison,
operated through equation (6), makes a probability collapse into a deterministic value, similarly to thewave
function collapse in quantummechanics. The smaller R, the higher the number of connections between nodes
of the networks. TheWaxmanmodelmakes an hypothesis on the probability of connection between neurons as a
function of their distance. In reference (Ercsey-Ravasz et al 2013), from experimental data of cortical
connectivity in themacaque, it has been deduced a law that describes the probability fij of a neuronal projection

between two neurons, i and j, as f c e ,ij
dij= l- where c and l are some constant values, and dij is the distance

between them. The formof this equation being justified by the fact that projections at longer distances come at a
metabolic cost for individual neurons.

Remarkably, theWaxmanmodel that we used in the present study, incorporates the data analyzed by Ercsey-
Ravasz and colleagues in their 2013 article. The formof the dependence between the (i)node to node distance
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and the (ii) inter-nodal connection is the same in themodel as in the experimental data provided by Ercsey-
Ravasz and colleagues, being an exponential decay.However, differently from the experimental data—that are
relative to very special configurations or conditions, i.e. cortical connectivity in themacaque—the parameters of
theWaxmanmodel enables themodel to reproduce a variety of different systems, beingmore general in scope
than a simple set of data.

Figure 4 shows an example of distributions of points in the plane routed by theWaxman algorithm. Points
were generated by gradually shifting points, sampled from initially uniformdistributions, towards two
accumulation points (cluster centers) to an extent proportional to the exponent .x The parameter x was varied
between 0.2 and 5.Points were then connected using a probability of connectivity P 0.9.=

2.5. Network analysis
For the generated graphs, we quantified their network parameters, i.e. the clustering coefficient (Cc), the
characteristic path length (cpl) and the small world coefficient (SW ).

In graph theory, the clustering coefficient is ameasure of the degree towhich nodes in a graph tend to cluster
together. Cc ranges from 0 (none of the possible connections among the nodes are realized) to1 (all possible
connections are realized and nodes group together to form a single aggregate). The clustering coefficient is
defined as (Chartrand andZhang 2012, Barabási 2016):

Figure 4.Example of distributions having two centers, for different values of ,x and corresponding networks obtained bywiring the
nodes by aWaxmanmodel with a network connection probability P 0.9.=
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C
E

k k

2

1
7i

i=
-( )

( )

where k is the number of neighbors of a generic node i, Ei is the number of existing connections between those,
k k 1 2-( )/ being themaximumnumber of connections, or combinations, that can exist among k nodes.
Notice that the clustering coefficient Ci is defined locally - the global value Cc is derived upon averaging Ci over
all the nodes that compose the graph. The characteristic path length is defined as the average number of steps
along the shortest paths for all possible pairs of network nodes (Chartrand andZhang, 2012, Barabási, 2016).We
shall call theminimumdistance between a generic couple of nodes the shortest path length Spl ,( ) which is
expressed as an integer number of steps.Here, we calculate the Spl between any combination of nodes nl and nm

using the Seidel’s algorithm (Seidel, 1995). The algorithm accepts as input the adjacencymatrix A and produce as
output amatrix D where the elements of D, D ,ij represent the length of the shortest path from vertex i to vertex
j in the graph. Then, the characteristic path length Cpl is calculated like the average of Spl over D.The algorithm
is a classical, 1992 solution for theAll-Pairs-Shortest-Path (APSP) problem for unweighted undirected graphs: it
finds path-lengths recursively by the power of the adjacencymatrix. It is based on the observation that the
product a aik kj is1 if there is a path of length 2 from j to i via k, and 0 otherwise. The total number of paths of

length 2 from j to i, via any other vertex, is a a A A A .
k

N
ik kj ij ij

2å = =[ · ] Generalizing to paths of arbitrary
length r,we find that Aij

r is the number of paths of length r that connect j to i.The algorithmnecessitates to
multiply the adjacencymatrix by itself repeatedly: it solves theAPSP problem in a time O M N Nlog ,( ( ) ( )) where
M N( ) denotes the time necessary tomultiply two N N´ matrices of small integers, that in turn is known to
be o N .2.376( )

Once obtained the Cc and Cpl values, we can define a precisemeasure of small-world-ness, the small world
coefficient (SW), based on the trade off between high local clustering and short path length (Humphries and
Gurney 2008,Narula et al 2017).

A network G with n nodes and m edges is a small-world network if it has a similar path length but greater
clustering of nodes than an equivalent Erdos-Rényi (E–R) random graphwith the same m and n (an E–R
graph is constructed by uniquely assigning each edge to a node pair with uniformprobability) (Watts and
Strogatz 1998, Strogatz 2001,Watts 2003). Let Cplu and Ccu be themean shortest path length and themean
clustering coefficient for the E–R randomgraphs, obtained averaging the Cpl and the Cc of 20 uniform
distributions, and Cplgraph and Ccgraph the corresponding quantities for the graphs derived using themethods
described above.We can calculate:

Cc

Cc
8

graph

u

g = ( )

Cpl

Cpl
9

graph

u

l = ( )

Thus, the small world coefficient is

SW 10
g
l

= ( )

The categorical definition of small-world network above implies 1,l 1g  which, in turn,
gives SW 1.>

2.6. Simulating informationflows in 2Dnetworks of neuronal units
Weused a generalized leaky integrate andfiremodel (FitzHugh 1955, de la Rocha and Parga 2005) to simulate
information flow in bi-dimensional neural networks as described in Reference (Onesto et al 2016) and
recapitulated in this section.Nodes of a grid (network) are generated following themethods described above and
in the rest of the article. Each node in the grid is neuronal unit (computational unit) able to receive, elaborate and
transmit a signal to another neuronal unit in the grid. The temporal sequence of spikes that propagate along the
grid encodes the information transmitted over the entire network. The typical signal transmitted by a neuronal
unit over time is train of spikes (action potentials) thatmay be interpreted using information theory approaches
(Strong et al 1998, Borst andTheunissen 1999,Quiroga and Panzeri 2009).We represent the variability of
individual neurons in response to a long random stimuli sample with the total entropy H. Similarly, the noise
entropy N is the variability of the spike train in response to a sample of repeated stimuli. The information
content provided by the different spike trains is the difference between entropies: I H N .= - Weused a
generalized leaky integrate and firemodel (FitzHugh, 1955; de la Rocha and Parga, 2005) to simulate trains of
signals in bi-dimensional networks as described in Reference (Onesto et al 2016). Some nodeswere randomly
selected from the network and excitedwith a random andperiodic signal of time. Upon excitation, spikes
propagate in cascade in the grid. To simulate the flowof signal in the networks, we used a generalized leaky
integrate and firemodel (FitzHugh, 1955; de la Rocha and Parga, 2005). In individual neurons, electric pulses
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excite the neuron until the response (potential) at the postsynaptic sites reaches and surpasses a limiting value
(threshold potential), then, the target neuron produces an impulse (an action potential) that propagates in turn
to another neuron. This process is described by the following equation, inwhich themembrane potential V
obeys to a function of the sole time:

C
dV

dt
g V V I 11m l o stim= - - +( ) ( )

Where Cm is the capacitance of themembrane, gl is the conductance, Vo is the resting potential of the neuron.
The current Istim is the stimulus that excites the neuron until themembrane potential reaches a thresholdVth and
an action potential is released from the system.Neurons in a grid are described by a set of coupled differential
equations that generalizes themodel described by equation (11). Each node in the network sends and receives
information and this process ismediated through the integrate and firemodel and equation (11). Assuming
linearity, Istim is given by the superposition of current pulses J generated by the neurons i thatfire on a neuron j

I t d J t t 12stim

i

ij
rel

k

i
k


å åz d= -( ) ( ) ( ) ( )

Where rel is the number of neurotransmitter release events, d is theDirac delta function, ti
k is the timing of

individual pulses. In equation (12), z is a damping termwhich accounts for the inter-nodal distance d .ij Pulses
repeatedly excite a neuron untilV Vth= and an action potential is discharged from the target neuron. The action
potential generates in turn an impulse that propagates through the network. The generation of an action
potential at a node of the grid at a specific time is registered as an event. The temporal sequence of events encodes
the information transmitted over that grid. Resulting patterns ofmultiple spike trains are interpreted using
information theory approaches (Strong et al 1998; Borst andTheunissen, 1999;Quiroga and Panzeri, 2009).
Time spikes are grouped in sets of words, inwhich aword is an array of on (presence of a spike)/off (absence of a
spike) events in a binary representation. On sortingwords in order of decreasing occurrence in the train, one can
derive the associated Shannon entropy H as

H log 132åy J y J y= -
y

( ) ( ) ( ) ( )

that quantifies the average amount of information gainedwith each stimulus presentation. Entropy is
measured in bits if the logarithm is takenwith base 2. In the equation, J y( ) represents the probability with
which a stimulus y is presented in the set. If H is the variability of individual neurons in response to a long
random sample of stimuli (total entropy), and N is the variability of the spike train in response to a sample of
repeated stimuli (noise entropy), then information that the spike train provide about the input is the difference
between entropies I H N .= - This permits to derive information over all the nodes of the graph.

3. Results

3.1. Small world ness of distributions as a function of entropy
We report infigure 5(a) the small-world coefficient SW of networks of nodes in a plane against their entropy S,
derived using themethods described above for a large number of different configurations, for the exponent x
varying between 0.2 and 5 and aWaxman connection probability P 0.9.= Weobserve that, while generally SW
decreases with S, the larger the number of centers in a distribution, the higher the values of SW associated to a
specific value of entropy S (figure 5(a)). The formof the SSW( ) curves depends on the number of clusters for
which the sets of points were generated, owing to fact that, for lower values of entropy, the points in the
distributions are tightly packed together, that in turn leads to overestimate their density p when those points are
distributed around one or very few accumulation points. To generate a relationshipwhere dependence between
variables does not depend on the configuration used to determine it, for each configurationwe normalized S to

n :
i

N
i1å = s S n

i

N
i1å= =/ (figure 5(b)). In this representation, the scatter-plots of SW against s are the same

independently on the configuration used to derive them (figure 5(b)).
In the diagram, the values of s vary between s millibits node0.2 ,~ / for which the small-world-coefficient is

SW 3~ (highly clustered distributions), to s millibits node1.8 ,~ / for which SW 1~ (uniformdistributions).
Graphical representation of the small-world-ness against entropy and figure 5(b) indicate that SW varies
hyperbolically with s. Best fit of data yields the relationship (figure 6):

sSW 0.88 0.28 14= + ( )/

The formof equation (14) suggests that infinitesimal variations of s are directly transferred to SW. Since the
entropy is derived starting from the density  of points in the domain, this also suggests that that the density and
the topological properties of the distributions are tightly interwoven - and that the small-world-ness, the
clustering coefficient and the characteristic path length of a network are encoded in itsmass density function
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evaluated over the entire surface of the network. Thefirst derivative of the function can be readily calculated as
s A sSW ,2¶ ¶ = -/ / with A millibits node0.28 ,= / that indicates the sensitivity of SW to a change in entropy. In

reporting the sSW( ) characteristics infigure 7 for different values of theWaxman probability of connection P,
we observe the formof the of the sSW - relationship is preserved, with SW decreasingwith s,while the values
of A change, being A 0.22,P0.95 ~ A 0.28,P0.90 ~ A 0.69P0.8 ~ millibits node./ Results suggest that the correlation
between small-world-ness and entropy for a given distribution is a function of the number of connections in that
distribution, and the relationship between the twomay be described by the simple law:

SW s P3.28 15´ µ - ( )

The fact that the small world coefficient (SW ) of a set of nodes and the entropy (s) of those nodes are related,may
not be unexpected. The entropy of a systemof nodes can be determined from the distribution of the nodes in the
domain, that in turn is described by a probability function, i.e. local density.WithWaxman, the small world
coefficient would depend on the relative position and distance d between nodes, because the probability of two
nodes of being connected decays exponentially with d.While these two probability (used in the definition of s
and SW) are not exactly the same quantity, they both depend on the density of points in the domain. Rather than
being a circular argument, this indicates that the density (mass distribution) of a system, described by the sole
entropy, influences the connectivity of that system (i.e. the small world coefficient). This paper is an attempt to
find a quantitative relationship between these variables.We can comment even further on the formof
equation (14). The equation and the graphical representation of the s SW- relationship infigure 7, present an
asymptotic behavior in the limit of small (s 0 ) and large (s  ¥) s. In the limit of large entropies (s  ¥),

Figure 5. Small-world coefficient of networks of nodes in a plane against their entropy, derived for different configurationswith a
number of cluster centers varying between 1 and 4 and aWaxman connection probability P 0.9= (a). Same as in (a), except that the
values of entropy are divided by n

i

N
i1å =
(b).

Figure 6.Best fit of SW versus s data shows that SW varies with the reciprocal of s (P 0.9= ).
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the system tends to a network resulting from a randomdistribution of points, for which, bymathematical
definition of small world coefficient, SW 1.º Equation (14) reflects this boundary condition, yielding SW 1~
for s millibits node2 ,~ / and a value of small-world-ness slowly approaching 0.88, SW 0.88, for s . ¥ At
the other extreme, equation (14) predicts SW  ¥ for s 0. In the limit of vanishingly small entropies,
(s 0 ), nodes in the domain gather around few accumulation points, with extremely high values of density,
resulting in high values of clustering coefficient and small values of characteristic path length, that in turn yields
very large values of small-world-ness. Thus, the relationship that we found between s and SW is accurate for
intermediate values of s, andmay be less accurate at the extremes of s.The accuracy of the formula at low s may
be increased using an adaptive geometry, i.e. values of cut off distance cd (used in the definition of density) that
changes as a function of the local density p i .( )

3.2. Benchmarking themodel
To verify themodel capability to predict the small world ness of networks starting from their entropy values, we
artificially generated 5 different distributions of nodes in the plane, reported infigure 8. Thefirst 3 distributions
are agglomerates of points in the domain, where the number of agglomerates ranges from 6 for thefirst set, to 7
for the second set, to 9 for the third configuration. The distributions are generated by sampling the x and y
coordinates fromGaussian distributions where themeans are the positions of cluster centers, and the variance is
5. In the last two configurations, points are clustered around a circle (4) and a sine-wave (5): sets of points are
generated bymoving the center of aGaussian distributionwith variance 1 along the trajectory of the curves,
and sampling the point-coordinates from that distribution. For all configurations the number of points in the
domain is N 1000.= Using themethods described above, we derived for the distributions the corresponding
values of entropy as s 0.22,1 ~ s 0.26,2 ~ s 0.36,3 ~ s 0.23,4 ~ s 0.705 ~ bits per 1000 nodes. For all
distributions, we then connected the points in the domain using theWaxman algorithms and a probability of
connection P 0.9.= Using network analysis algorithmswe found the associated values of small-world-ness
being SW 2.15,exp

1 ~ SW 1.68,exp
2 ~ SW 1.98,exp

3 ~ SW 1.45,exp
4 ~ SW 1.045exp

5 ~ (figure 8). Expected values
of small-world-ness predicted from themodel and equation (14) are SW 2.16,theory

1 ~ SW 1.96,theory
2 ~

SW 1.66,theory
3 ~ SW 2.10,theory

4 ~ SW 1.28theory
5 ~ with small deviations between the prediction of themodel

and the true values of small-world-ness. For this test, the residuals are e 0.005,1 = e 0.14,2 = e 0.17,3 =
e 0.30,4 = e 0.18,5 = with a values of chi squared e 2.15.i

2 2 2åc s= ~/

3.3. Information transported in the networks
Weused themethods reported in references(Onesto et al 2016, Onesto et al 2017) to evaluate the amount of
information exchanged by the different grids as a function of the small-world-ness (entropy) of the grids.
Information is associated to the probability of an event.When the outcome of a process or the output of a
physical, biological, or chemical systemhas a low-probability value, the information that the response carries
about the stimulus is high. In the simulations, we assumed that nodes of the grid are artificial neurons capable to
receive a signal and integrating that signal over time.When the cumulative signal reaches a threshold that can be
arbitrarily tuned, the neuron in turn generates a signal that propagates in cascade in the grid. A similarmodel is
called a generalized leaky integrate and firemodel (FitzHugh, 1955, de la Rocha and Parga, 2005), amore
sophisticated evolution of themodel inwhich single computational components are arrayed in systemswith a
greatmany of elements - to form functional neuronal networks - has been recently developed by some of the
authors of this paper (Onesto et al 2016,Onesto et al 2017,Onesto et al 2018). In a biological interpretation of the
scheme, the signal released by the neuron is an action potential, and the sequence and time pattern of action
potentials encodes the information transported in the network (Strong et al 1998, Borst andTheunissen 1999,

Figure 7.The diagrams show the small-world coefficient SW correlated to the entropy s of distributions of nodes in a plane, for
differentWaxman connection probabilities.
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Quiroga and Panzeri 2009). To decode information, one can use information theory approaches. The
information content of the system can be derived as the difference between the total entropy H and the noise N :
I H N .= - The total entropy is the variability of individual neurons in response to a long random stimuli
sample (Strong et al 1998, Borst andTheunissen, 1999,Quiroga and Panzeri, 2009). The noise entropy is the
variability of the spike train in response to a sample of repeated stimuli. The entropy (sometimes called Shannon
information entropy) of a signal can be determined as H log ,2åV J y J y= - y( ) ( ) ( ) where J y( ) denotes the
probability withwhich a stimulus y is presented in the response of the node to the disturbance V (Strong et al
1998, Borst andTheunissen, 1999, Quiroga and Panzeri, 2009; ). H quantifies the average amount of
information gainedwith each stimulus presentation. Using this framework, we verified the ability of neuronal
networks to elaborate information as a function of their topological properties.We simulated the propagation of
a disturbance from the center throughout the entire extension of the networks for different values of the small
world coefficient SW. Figure 9(a) reports patterns of information derived for a uniformdistribution of nodes
with SW 1~ and entropy s 1.5~ millibits/node. Figure 9(b) reports patterns of information derived for a
clustered distribution of nodes with SW 2~ and entropy s 0.25~ millibits/node. In this graphical
representation, the diameter of colored circumferences around individual nodes is proportional to the
information that at a generic time arrives at those nodes. Because of the characteristics of the network, for the
second configuration (SW 2~ ) information propagates far away from the point of application of the initial
disturbance - and generally the information transported through the nodes ismore intense compared to the
information transported in the randomnetworkwith SW 1.~ Infigure 9(c), we report the time evolution of
the signal in the network for SW 2.~ On can observe that the signal travels from the center to the periphery of
the networkwith continuity—the signal itself is persistent and decreasesmildly with the distance from the center
of the grid. For certain times of propagation, i.e. t 4,= the signal is amplifiedwith respect to the initial
disturbance. This is relevant, because the topology of the network can result in information confinement and
enhancement, similarly in concept to surface plasmons resonance in nano-optics devices (Stockman, 2008;
Gentile et al 2014).Moreover, we calculated the total information I transmitted in the networks as a function of
the networks characteristics (figure 9(d)). I is determined as the information delivered at a node of the grid
integrated over the entire grid and over thewhole duration of the process of propagation.We launchedmore
than 50 simulations per configuration.We found that I shows a very high sensitivity to the small world

Figure 8. Small-world coefficient against entropy for 5 different distributions of nodes in the plane. For all configurations the number
of points in the domain is N 1000.= The first 3 distributions are agglomerates of points in the domain; in the last two configurations,
points are clustered around a circle (4) and a sine-wave (5). The points in the domainwere connected using theWaxman algorithms
with a connection probability of P 0.9;= then, the associated values of small-world-ness were derived.
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coefficient and entropy of the networks. I is low for small values of small-world-ness SW (I 0.2SW1 ~ bits), and
increases with SW up to I 1.5SW2.9 ~ bits in networks with elevated SW 2.9.= Themaximumenhancement
factor of information is Q I I 7.5.E

SW SW2.9 1= ~/ Bonferroni post hot test indicates that information transmitted
within the networkswith SW 2.9= is statistically greater than information transmitted through the networks
with SW 1= (p 0.05= ). Results of this section are relevant in that they show that the distribution ofmass of a
systemmay determine its topological characteristics, which, in turn, regulate the information transfer rate and
efficiency of that system. Results suggest that from the analysis of the distribution of neurons in a system, one can
derive the efficiency of the system, and themaximum information that the system can convey about a stimulus,
without direct knowledge of the topology of the networks that they form.With implications in the study of
neurodegenerative diseases, regenerativemedicine, tissue engineering, neuromorphic engineering. Notice
though that herewe have not considered techniques to enhance the information transmitted through individual
channels, like noise cancellation or compensation, ormethods, such as orthogonal frequency division
multiplexing, for encoding digital data onmultiple carrier frequencies. The introduction of these algorithms,
some ofwhich are described in reference (Bibi et al 2018), may emphasize even further the importance of
geometry in networks science and information theory applied to biological systems.

4.Discussion and conclusions

Wegenerated distributions of points in which the density and entropy of the distributionswere varied over large
intervals.We then usedWaxman algorithms towire nodes and obtain networks with certain degrees of
connectivity. In correlating the small world coefficient SW of those networks to the entropy s of the nodes, we
found that s and SW are linked by a simple law that, for aWaxman probability of connectivity P 0.9,= reads as

sSW 0.88 0.28= + / —thus the larger the entropy of the distributions, the smaller the small world coefficient of
the corresponding networks.Here SW is expressed in non-dimensional units and s inmillibits per node.

Figure 9. Information flowof networks having a uniformdistribution (a) and a 2 centers configuration (b), wiredwith aWaxman
connection probability P 0.9.= Wederived how the initial disturbance propagates in the network (c) and the overall information
transmitted as a function of the small-world coefficient (e).
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Usingmathematicalmodels and computer simulations, we verified that networkswith high values of small-
world-ness and low values of entropy aremore information efficient than networkswith small values of small-
world-ness and high values of entropy. This is relevant because it indicates that the structure and distribution of
mass (s) in a complex systemsmay determine its topological characteristics (SW) that, in turn, influence the
information carried by the system. These findingsmay have implications in neuromorphic engineering, where
chips aremodeled on biological brains and designed to process sensory data inways not specifically
programmed.Neuromorphic chips attempt tomodel artificially themassively parallel way the brain processes
information—in opposition to the classical vonNeumann architecture, which shuttles data between a central
processor andmemory chips in linear sequences of calculations. In the brain, billions of neurons and trillions of
synapses respond to sensory inputs such as visual and auditory stimuli with unmatched efficiency. Those
neuronsmodify their topology in response to a change in input—in doing so, they can efficiently process images,
sounds and complex inputs that are otherwise untreatable by classical computingmethods. Artificial chips that
are being developed over time incorporate neural networks to imitate the architecture of the brain. In both, the
topological characteristics of the neurons activate exceptionally complex functions, such us language, object
recognition, intelligence and artificial intelligence, which differentiate - and are beyond the reach - of traditional
information schemes. In this scenario, relations like equation (11) that correlate the distribution of the smallest
computational elements of a system, to the small world ness and the information flowswithin that systems, are
tools that can be used in the rational design of bio-scaffolds for tissue engineering, regenerativemedicine, bio-
chips, intelligentmedical sensors and devices.
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