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Beclin 1
A role in membrane dynamics and beyond
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Beclin 1 (Atg6) is a well-known key regulator of autophagy.
Although Beclin 1 is enzymatically inert, it governs the
autophagic process by regulating PtdIns3KC3-dependent
generation of phosphatidylinositol 3-phosphate (PtdIns(3)P)
and the subsequent recruitment of additional Atg proteins that
orchestrate autophagosome formation. Furthermore, Beclin 1
is implicated in numerous biological processes, including
adaptation to stress, development, endocytosis, cytokinesis,
immunity, tumorigenesis, aging and cell death. Whether all of
these processes involve only the autophagy-inducing function
of Beclin 1 is now being seriously questioned, because Beclin 1
appears to exercise several non-autophagy functions.
Therefore, we should broaden our view of Beclin 1 as a
specialized molecule in autophagy to that of a multifunctional
protein. The central role of Beclin 1 in multiple signaling events
obviously requires tight regulation at multiple levels. Its
function is kept in check by diverse mechanisms, such as
epigenetic silencing, microRNA regulation, post-translational
modifications, and protein-protein interactions. Interestingly,
multiple diseases are associated with deficiency or malfunction
of Beclin 1, which makes it a potentially valuable target for
various therapies, including anticancer treatment. In this
review, we focus on Beclin 1 as a multifunctional protein,
discuss the variety of mechanisms by which it is controlled, and
give an overview of Beclin 1-associated pathologies.

Introduction

In the late 1990s, Beclin 1, a coiled-coil protein, was discovered as a
direct interactor of the anti-apoptotic B-cell lymphoma-2 (Bcl-2)
protein and was therefore given the name Bcl-2-interacting myosin-
like coiled-coil protein (Beclin 1).1 Beclin 1, also named Atg6, is
highly conserved in eukaryotes and belongs to the autophagy-related
(Atg) family of proteins, which are key regulators in autophagy.2 To
date, more than 30 Atg proteins have been identified in yeast and
about half of them have mammalian orthologs. Distinct types of
autophagy have been described, including macroautophagy, micro-
autophagy, and chaperone-mediated autophagy. Macroautophagy,
hereafter referred to as autophagy, is the best characterized. It is a
catabolic process involved in recycling of amino acids, nucleotides
and lipids: superfluous proteins and organelles are sequestered in
double-membrane vesicles (autophagosomes) and degraded in
lysosomes.3 In this way, autophagy also leads to the removal of
misfolded proteins, protein aggregates and damaged organelles, such
as mitochondria and endoplasmic reticulum, which could harm the
cell.4 Importantly, increased autophagy is a primary response to
cellular stress in an attempt to survive unfavorable conditions, such
as nutrient or growth factor depletion, heat or hypoxia. Thus,
autophagy is a major cytoprotective mechanism. Conversely, cell
death can be accompanied by the presence of autophagic vacuoles,
and this finding gave rise to the term “autophagic cell death.”5

Clearly, autophagy is interconnected with cell death pathways, such
as those of apoptosis and necrosis, but how these signaling pathways
interrelate (independently, cooperatively or in opposition) appears
to depend on the cell type and the stimulus.6-8
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Autophagy is controlled by the phosphatidylinositol 3-kinase
class III (PtdIns3KC3) complex, an autophagy-inducing complex
that regulates autophagosome formation. One of its key
components is Beclin 1, which acts as the platform for its
assembly and stimulates its activity.9 When PtdIns3KC3 is
activated, phosphatidylinositol 3-phosphate [PtdIns(3)P] is

generated, enabling the recruitment of other Atg proteins
involved in autophagosome biogenesis.10,11 Although the
Beclin 1-PtdIns3KC3 axis is in charge of most autophagy
responses, certain triggers (e.g., resveratrol, methyl-4-
phenylpyridinium, GX15-070/obatoclax) induce an
autophagy pathway that is independent of Beclin 1.12-15

However, Beclin 1 is not only a key player in autophagy
but also serves non-autophagy functions, such as in
endocytic trafficking, phagocytosis, control of cytokinesis,
and pollen germination. In this review we give an overview
of the current state of knowledge about Beclin 1, with
special attention to the diversity of its functions and
regulation.

Beclin 1 Complexes

Shortly after its discovery as a Bcl-2 interactor, Beclin 1
was shown to play a central role in autophagy. Beclin 1
can restore starvation-induced autophagy in ATG6-
disrupted yeast strains and human breast carcinoma cells
lacking detectable Beclin 1 levels, whereas Beclin 1
overexpression activates autophagy.16 In line with these
observations, autophagy is defective in Beclin 1-deficient
embryonic stem cells.17 Remarkably, Beclin 1 knockout
mice die early during embryogenesis, and this clearly
demonstrates its importance during development.17,18

Beclin 1 is a 60-kDa protein containing a Bcl-2
homology domain (BH3), a coiled-coil domain (CCD)
and an evolutionarily conserved domain (ECD); these
domains enable multiple protein interactions
(Fig. 1A).19-23 Through its ECD, Beclin 1 binds
PtdIns3KC3, which is required for PtdIns3KC3-depend-
ent generation of PtdIns(3)P and the subsequent
recruitment of additional Atg proteins that orchestrate
autophagosome formation.10 Interestingly, Beclin 1 forms
large homo-oligomers due to interaction of the CCD and
BH3 domains.24,25 Beclin 1 multimerization is needed for
the recruitment and consequent concerted action of other

autophagy-inducing factors.20,24 Two stable Atg6/Beclin 1 com-
plexes have been described in both yeast and mammals. Atg6/
Beclin 1, Vps34/PtdIns3KC3 and Vps15/p150 (regulatory
protein kinase of Vps34/PtdIns3KC3) constitute the central
platform that binds different proteins during different stages of
autophagic signaling (Fig. 1B and C). On the one hand, this

Figure 1. Schematic representation of the Beclin 1 protein and
the PtdIns3KC3 complexes I and II in yeast and mammals.
(A) Schematic representation of the Beclin 1 protein and its
domains. (B) Complex I, composed of Beclin 1 (Atg6), PtdIns3KC3
(Vps34), p150 (Vps15) and Atg14 (Barkor) is implicated in
autophagosome formation both in mammals and yeast.
Functions of complex II, containing Beclin 1 (Atg6), PtdIns3KC3
(Vps34), p150 (Vps15) and UVRAG (Vps38) are still largely unclear
or debated. Complex II functions in autophagosome formation,
ligand/receptor degradation and cytokinesis, and potentially is
implicated in phagocytosis and protein sorting. In yeast,
complex II is required for vacuolar protein sorting.
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platform binds Atg14 or its mammalian homolog Atg14L (also
called Beclin 1-associated autophagy-related key regulator,
Barkor). This so-called complex I initiates autophagosome
formation. To this end, Atg14/Atg14L directs complex I to the
phagophore assembly site (PAS) or endoplasmic reticulum from
which autophagosomes emerge.26 On the other hand, complex II
is generated by recruitment of Vps38 or its homolog UVRAG
(UV-radiation resistance associated gene). In yeast, complex II is
involved in vacuolar protein sorting, suggesting a similar function
of this complex in mammals. Originally, in mammals, complex II
had been implicated in autophagosome formation.27 However,
this theorem has been debated and recent studies rather indicate
the existence of autophagy-independent roles of complex II.28-31

Current research has implicated complex II in ligand/receptor
degradation and cytokinesis.29 Also, data in murine macrophages
and C. elegans demonstrate a role for Beclin 1 in endocytosis and
protein sorting (see below).29-31 However, whether this function
depends on the interaction with UVRAG (or a potential ortholog)
needs further investigation. It is of note that UVRAG can also
function independently of Beclin 1 (and hence complex II), for
instance in autophagosome and endosome maturation.27,28,32

Interestingly, additional Beclin 1 interacting proteins, including
Ambra1, Bif-1 (endophilin B1), Rubicon (RUN domain and
cysteine-rich domain containing Beclin 1-interacting protein) and
Bcl-2 have been identified that stimulate or inhibit either of the
two stable complexes (Table 1) (extensively reviewed in ref. 65).
These interactions are mainly transient and rather occur under
specific conditions, which is of major interest for studying the
mechanisms that regulate complex I and II activities under diverse
patho(physiological) conditions.

Beclin 1 and the Regulation of its Platform Function
in Autophagy

Sufficient levels of Beclin 1 are necessary for its autophagic
function. Indeed, human breast MCF7 carcinoma cells in which
Beclin 1 is undetectable, and Beclin 1+/− mice have impaired
autophagy.16,66 However, little is known about Beclin 1’s
transcriptional regulation. Some reports demonstrate increased
Beclin 1 expression under certain conditions, for example during
starvation of chondrocytes, in atrophying muscle cells, and during
ischemia/reperfusion of the heart.67-69 In line with these
observations, several transcription factors, for example, FoxO3,
NFkB, HIF1α, c-Jun and E2F1, drive Beclin 1 expression, and
detailed studies of the BECN1 promoter unveiled the presence of
binding sites for E2F1, c-Jun and NFkB (Fig. 2A).67,69-74

Interestingly, miRNA30a binding sequences were found in the
3′ UTR of BECN1 (Fig. 2B).75 MicroRNAs regulate protein
expression by hampering protein synthesis or triggering mRNA
degradation. Treatment of tumor cells with a miRNA30a
mimetic decreases BECN1 mRNA and the corresponding protein
levels. Additionally, a dense cluster of CpG islands is found
between the 5′ end and intron 2 of the BECN1 gene.76

Hypermethylation of this cluster in some sporadic breast tumors
results in decreased expression of Beclin 1 (Fig. 2A).76 Beclin 1
protein levels are also controlled by calpain-mediated degradation

and caspase-dependent cleavage (Fig. 2C).77-82 The Beclin 1
fragments generated by caspases are unable to induce autophagy,
demonstrating that a proteolysis-dependent mechanism controls
Beclin 1 function.79,80

Beclin 1 is also kept in check at the post-translational level.
Protein-protein interactions, for example, are very important for
regulating Beclin 1’s function in autophagy. Bcl-2 and Bcl-xL
directly bind the BH3 domain of Beclin 1 and effectively
counteract Beclin 1-dependent autophagy (Fig. 3A).20,23 This
finding demonstrates that, in addition to their well-characterized
anti-apoptotic role, Bcl-2 and Bcl-xL are able to suppress
autophagy. Furthermore, this finding was the first clue of the
existence of a crosstalk between the apoptotic and the autophagic
pathways. Although the Beclin-1–Bcl-2 interaction inhibits the
pro-autophagic function of the former, it seems not to affect the
anti-apoptotic role of Bcl-2.83 The importance of the Bcl-2/Bcl-
xL-Beclin 1 interaction in autophagy is emphasized by the fact
that formation or persistence of this complex is influenced by
several autophagy-regulatory mechanisms, such as post-trans-
lational modifications (Fig. 3A). Phosphorylation and ubiquitina-
tion of Beclin 1 and Bcl-2 can either stabilize or dissociate the
Beclin-1–Bcl-2 complex, which leads to inhibition or initiation of
autophagy, respectively. When DAPK (Death-Associated Protein
Kinase), a serine/threonine kinase important in apoptosis
regulation, phosphorylates Thr119 in the BH3 domain of
Beclin 1, Beclin 1-Bcl-xL dissociates and formation of autophago-
somes increases.52 Similarly, binding of Bcl-2 to Beclin 1 is
abrogated when JNK1 (Jun N-terminal kinase 1) phosphorylates
Bcl-2 (Thr69, Ser70, Ser87).37 Interestingly, JNK1 preferentially
targets ER-localized Bcl-2, which, in contrast to mitochondrial
Bcl-2, affects Beclin 1’s function in autophagy.20,37 Whether Bcl-2
can also influence other functions of Beclin 1 is not known.
However, this could be of huge interest since Beclin 1 has now
been implicated in non-autophagy processes (see below). Beclin 1
and Bcl-2 are both also targeted for ubiquitination. TNF receptor
associated factor 6 (TRAF6)-dependent ubiquitination of Beclin 1
occurs in response to Toll-like receptor (TLR) signaling and to
treatment of macrophages with interferon-γ (IFNγ) or inter-
leukin-1 (IL-1).51 In addition, K63-linked ubiquitination of
Beclin 1 at Lys117 promotes Beclin 1 oligomerization and
consequent induction of autophagy, probably by stimulating
PtdIns3KC3 activity.51 In line with this observation, TLR4-
induced autophagy is counteracted when TRAF6 and Beclin 1 are
deubiquitinated by A20.51 Similar to the effect of phosphorylation
of Bcl-2, ubiquitination of Bcl-2 was suggested to influence the
Bcl-2-Beclin 1 interaction and consequent initiation of autop-
hagy. Bcl-2 was identified as a new substrate for Parkin, an E3-
ligase that is mutated in familial and sporadic Parkinson disease.84

Parkin-dependent mono-ubiquitination of Bcl-2 stabilizes the
Bcl-2 protein and enhances its binding to Beclin 1, thereby
inhibiting both basal and starvation-induced autophagy.
However, it has also been suggested that Parkin is involved in
the positive regulation of mitophagy. To this end, Parkin is
recruited to damaged mitochondria in a PINK1-dependent
manner and poly-ubiquitinates VDAC1 (Voltage-dependent
anion channel 1) among other proteins.85,86
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Table 1. Beclin 1 interacting proteins and their autophagy-related functions

ID Interactor Function Ref.

BH3 Bcl-2 Inhibition of Beclin 1-dependent autophagy
Suppresses Beclin 1-PtdIns3KC3 interaction

Suppresses Beclin 1-UVRAG binding
Increases Beclin 1-Ins(1,4,5)P3R binding

20, 33, 34

Bcl-xL Inhibition of vesicle nucleation 1, 23, 35, 36

Mcl-1 Inhibition of vesicle nucleation 23

KSHV v-Bcl-2 Inhibition of Beclin 1-dependent autophagy 20, 37

γHV68 M11 Inhibition of Beclin 1-dependent autophagy 38, 39

CCD Atg14/Barkor Vesicle nucleation
Vesicle expansion

Autophagosomal targeting of Beclin 1

27, 40, 41

Bif-1* Vesicle nucleation (membrane bending)
PtdIns3KC3 activation
Tumor suppression

42

nPIST Induction of autophagy after GluRδ2Lc activation 43

Rubicon* Inhibition of vesicle maturation 28, 40

UVRAG/Vps38 Vesicle nucleation?
Vesicle maturation
Tumor suppression

27, 29, 44, 45

Beclin1/Atg6 Vesicle nucleation
PtdIns3KC3 activation
Tumor suppression

17, 18, 24, 25,
29, 46, 33

ECD PtdIns3KC3/Vps34 Vesicle nucleation
Lipid kinase: generation of phosphatidylinositol 3-phosphate (PtdIns(3)P)

Tumor suppression

10, 29, 32

NLRP4 Inhibition of autophagy 47

aa 141–150 Ambra1 Vesicle nucleation
PtdIns3KC3 activation
Neurodevelopment
Cell proliferation

Mediates Beclin 1-cytoskeleton interaction
Competes with Bcl-2 for binding Beclin 1

48, 49, 50

aa 54–58 and aa
297–301

TRAF6 Induction of autophagy after TLR4 triggering
K63-linked ubiquitination of Beclin 1

51

Unknown DAPK Induction of autophagy
Phosphorylation of Beclin 1

Disruption of Beclin 1-Bcl-2 interaction

52

HMGB1 Induction of autophagy in response to ROS
Competition with Bcl-2 for Beclin 1 binding

53

Ins(1,4,5)P3R Inhibition of autophagy through Bcl-2-Beclin 1 binding 34

MYD88 Induction of autophagy after TLR (4 and 7) triggering
Competition with Bcl-2 for Beclin 1 binding

54, 55

Pink1 Induction of mitophagy 56

Rab5 Vesicle nucleation
PtdIns3KC3 activation

Positive regulation of Atg12–Atg5 conjugation

57

Survivin Induction of autophagy 58

TRIF Induction of autophagy after TLR (3 and 4) triggering
Competition with Bcl-2 for Beclin 1 binding

54

A20 Inhibition of autophagy
Deubiquitination of Beclin 1

Inhibition of TRAF6-mediated ubiquitination of Beclin 1

51

VMP1 Vesicle nucleation
Recruitment of Beclin 1 to autophagic membrane

59

Nef Inhibition of autophagosome maturation 60

SLAM Triggers phagosome maturation 61

ICP34.5 Inhibition of autophagosome formation
Represses activation of CD4+ T cells

62, 63

M2 Inhibition of autophagosome maturation 64

Interactors marked with an asterisk (*) were shown to interact with Beclin 1 through UVRAG. ID, interacting domain; BH3, Bcl-2 homology domain; CCD,
coiled-coil domain; ECD, evolutionarily conserved domain
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The Bcl-2-Beclin 1 complex can also be disrupted by
competitive binding of pro-apoptotic proteins, such as tBid,
Bad and BNIP3, which have higher affinity than Beclin 1 for the

BH3 domain of Bcl-2.21,87 Likewise, ARF (alternative
reading frame) binds Bcl-xL and abrogates Bcl-xL-Beclin 1
binding.88 In addition, HMGB1 was recently shown to
bind Beclin 1 and to dissociate the Bcl-2-Beclin 1
complex.53

Finally, recent data demonstrate regulation of Beclin 1-
dependent autophagy at the level of subcellular localization
(Fig. 3B). Under normal conditions, binding of Beclin 1 to
the cytoskeleton prevents it from promoting autophagy at
the ER.26,48 This microtubule-associated localization is
mediated by Ambra1 via its interaction with the dynein
complex. Upon induction of autophagy, ULK1 phosphor-
ylates Ambra1 and allows the release of the PtdIns3KC3
complex, which translocates to the ER to activate
autophagy.48 In this way, Beclin 1 is held in check by
sequestration of the Beclin 1 interactome at the cytoskeleton.
Interestingly, Bcl-2 directly binds a pool of Ambra1 at the
mitochondria, which prevents Ambra1 from associating with
Beclin 1. Autophagy induction results in dissociation of Bcl-
2–Ambra1, allowing Beclin 1 to bind Ambra1 and
autophagosomes to form.49

Beclin 1 Functions Beyond Autophagy

For more than a decade it has been clear that Atg6 also
exerts non-autophagy functions in yeast. Atg6 is part of the
protein sorting machinery.89 Vacuolar protein sorting (Vps)
is a part of the secretory and endocytic pathways, which is
responsible for sorting and targeting of vacuolar hydrolases
(e.g., carboxypeptidase Y) from the late-Golgi network to
the yeast vacuole, where they can be processed into their
mature forms.10,90 In part, Atg6 is required for proper
recycling of the sorting receptor Vps10 and other late-Golgi
proteins from the pre-vacuolar endosome to the Golgi.89

To this end, Atg6, Vps34 and Vps15 bind Vps38 within
complex II and direct the synthesis of PtdIns(3)P on
endosomal membranes, which is required for retromer
recruitment (Fig. 1C). Interestingly, UVRAG, which was
identified as the mammalian ortholog of Vps38, also forms
an analogous complex II with Beclin 1, PtdIns3KC3 and
p150.44 Although this finding suggested a similar function
for Beclin 1 in protein sorting in mammals, human Beclin
1 cannot restore Vps defects in Atg6 disrupted yeast.16 The
relatively low amino acid sequence identity (24%) shared
by human and yeast Atg6 might account for this functional
difference between the two proteins. Whereas yeast Atg6
consists of 557 amino acids, mammalian Beclin 1 contains
only 450, which may explain a more restricted function-
ality of the latter. Nevertheless, similar to yeast, the
identification of two stable Beclin 1 complexes involving
mammalian orthologs of Atg14 and Vps38 suggests a
multifunctional role of Beclin 1 in cellular processes.26,27,32

Furthermore, Beclin 1 knockout in mice is embryonically
lethal, which is in contrast to most other Atg genes (Atg3, Atg4C,
Atg5, Atg7, Atg9, Atg16L1 and ULK1).17,18 This phenotypic
difference can be explained by a lack of redundant mechanisms,

Figure 2. Schematic overview of the mechanisms regulating Beclin 1 expression.
(A) Transcriptional regulation of BECN1. Several transcription factors (EF1, c-jun,
NFκB, FoxO3, HIF1α) increase Beclin 1 expression. Conversely, hypermethylation
of CpG islands in the BECN1 gene causes epigenetic silencing and reduced
Beclin 1 expression levels. (B) miRNA regulation of BECN1 mRNA and protein
levels through mRNA degradation and inhibition of protein translation.
(C) Regulation of Beclin 1 protein levels through proteolytic cleavage or
degradation. During apoptosis, caspases cleave Beclin 1 at specific sites,
abrogating its autophagic function, but also resulting in two defined
Beclin 1-derived fragments fulfilling new functions. Calpain-mediated cleavage
of Beclin 1 results in the formation of a 50-kDa fragment (Beclin-50) or complete
degradation of the protein.
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which could compensate for the loss of Beclin 1 activity, as is the
case for ULK1 and Atg4C.91,92 However, it could also indicate
distinct functions of Beclin 1 beyond autophagy. Indeed,
accumulating evidence supports a role for Beclin 1 in non-
autophagy processes.

For example, Beclin 1 functions in endocytosis. In complex
with p150, PtdIns3KC3, UVRAG and Bif-1, Beclin 1 is involved
in the downregulation of the epidermal growth factor receptor
(EGFR) in HeLa cells.29 Interestingly, although Atg14L knock-
down results in impaired autophagy, it does not affect EGFR

Figure 3. Schematic overview of the mechanisms regulating Beclin 1 activity. (A) Post-translational modification events triggering the dissociation of the
Bcl-2/Bcl-xL-Beclin 1 complex, resulting in Beclin 1 activity. Bcl-2 (Bcl-xL) can be dissociated from Beclin 1 through competitive binding of BH3-only
proteins or BH3-mimetics (or ARF), or JNK-mediated phosphorylation of Bcl-2 at Thr69, Ser70 and Thr87. In addition, Beclin 1 can be released from its
inhibitors through HMGB1-binding, DAPK-mediated phosphorylation at Lys119 or TRAF6-dependent K63-linked ubiquitination of Beclin 1 at Lys117.
Beclin 1 liberated from the Bcl-2/Bcl-xL-Beclin 1 interaction promotes autophagy. (B) Regulation of Beclin 1-dependent autophagy at the level of
subcellular localization. Ambra1-mediated binding to the microtubules targets the PtdIns3KC3-complex to the cytoskeleton in non-autophagy
conditions. Upon autophagy activation, Ambra1 is phosphorylated, which releases Ambra1 and the PtdIns3KC3-complex from the cytoskeleton and
enables translocation of the PtdIns3KC3-complex to the ER for autophagosome formation.
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internalization and degradation, indicating that Atg14L is
dispensable in this process, and that Beclin 1 functions in an
autophagy-independent way in this case. The role of Beclin 1 in
the endocytic pathway has also been demonstrated in macro-
phages. Upon TLR signaling, Beclin 1 rapidly translocates to the
phagosomes and mediates efficient phagosome-lysosome fusion to
ensure rapid acidification and efficient destruction of the
pathogen.31 Even though the plasma membrane has been reported
to contribute to autophagosome formation, translocation of
Beclin 1 to phagosomes during phagocytosis does not seem to
involve autophagosome formation, which again supports the
hypothesis that Beclin 1 has non-autophagy functions during
endocytosis.31,93 Also, Beclin 1 is involved in apoptotic cell
clearance during cavitation.94,95 Beclin-1-deficient embryoid
bodies fail to generate crucial engulfment signals (phosphatidyl-
serine and lysophosphatydylcholine), an energy-dependent pro-
cess that is suggested to require autophagic signaling.95 However,
it still has to be clarified whether impairment of the function of
the engulfing cells contributes to defective clearance of dead cells
in Beclin 1-deficient embryoid bodies, which also might involve
Beclin 1’s function in phagocytosis. In C. elegans, ATG-6, the
ortholog of Beclin 1, functions in endosome-to-Golgi retrograde
transport.30 Loss of bec-1 activity results in aberrant sorting of
MIG-14/Wntless, a retromer-dependent cargo protein. Instead of
being transported to the Golgi, MIG-14/Wntless is misrouted to
the lysosomal compartment in bec-1 mutants and subsequently
degraded. Similar observations were made using vps34 mutants,
suggesting that ATG-6 functions together with Vps34 in
retrograde transport.30 Further investigation is needed to
determine the precise role of ATG-6 in retrograde transport. It
is suggested that ATG-6 and VPS34 regulate endosomal
recruitment of RME-8 (receptor-mediated endocytosis-8), a
subunit of the retromer complex, through localized production
of PtdIns(3)P.30 Although it is tempting to speculate about the
involvement of a similar complex II in this process, no ortholog of
UVRAG has been identified in C. elegans so far. Collectively,
these results implicate Beclin 1 or ATG-6 in protein trafficking
(sorting of cell-surface receptors, retrograde transport and
phagosome maturation). However, in contrast to this, an earlier
publication reported results that argue against a role for Beclin 1
in endocytic trafficking.96 In that study, BECN1 knockdown did
not affect EGFR degradation, trafficking of procathepsin D to
the endosomal and lysosomal compartment or cell growth. The
reason for these opposite findings is unclear. It is conceivable that
Beclin 1’s function in endocytosis could be cell type-specific or
that residual, minute amounts of Beclin 1 due to incomplete
knockdown still allow these processes to occur. Furthermore,
the mechanism through which Beclin 1 contributes to endocytosis
remains unsolved. In an analogy to yeast, one could hypothesize
that Beclin 1 and Vps34 act cooperatively, perhaps through the
localized generation of PtdIns(3)P on endosomes and phago-
somes. PtdIns(3)P is crucial for proper endocytic membrane
trafficking and phagosome maturation, and probably functions by
recruiting effector proteins such as EEA1 (Early Endosomal Antigen
1) to the endosomal membrane. This idea is supported by data
showing altered localization of PtdIns(3)P in bec-1 mutant worms.30

Beclin 1 has also been implicated in cytokinesis control.29,97

Knockdown of Atg6 results in cytokinesis arrest and an
increased number of multinucleated cells.97 This cytokinesis is
attenuated upon depletion of PtdIns3KC3, UVRAG and Bif-1,
but not Atg14L, supporting the idea that also in this process
Atg6 functions in an autophagy-independent manner.29 As
PtdIns3KC3, UVRAG and Bif-1 could be detected at the
midbody, the PtdIns3KC3 complex is likely to exert its role in
cytokinesis regulation specifically at this site.29,97 In line with this,
PtdIns(3)P and its effector FYVE-CENT (ZFYVE26), both of
which are required for proper cytokinesis, localize at the midbody.

Finally, Beclin 1 also functions in non-autophagy pathways in
plants as well. In Arabidopsis thaliana, ATG6 disruption affects
pollen germination and male fertility.98,99 In support of an
autophagy-independent function of ATG6 is the finding that
none of the previously examined plant ATG mutants exhibit male
gametophytic defects.98,99 However, ATG6 deficiency apparently
alters the expression of numerous genes, including some that are
involved in autophagic signaling, suggesting the possible
involvement of ATG proteins other than ATG6 in the process
of pollen germination.

Together, these findings show that Beclin 1 participates in
different signaling pathways and performs important functions
in multiple cellular processes, such as autophagy, endocytosis,
phagocytosis, cytokinesis and pollen germination. Although these
processes look very different at first sight, each of them requires
accurate membrane rearrangements and fluxes. Autophagy, endo-
cytosis and phagocytosis depend on vesicle formation, trafficking
and fusion, but cytokinesis and pollen germination also involve
extensive vesicle transport for delivery of membrane and cell wall
material during furrow (cytokinesis) and pollen tube formation
(pollen germination).100,101 The role of Beclin 1 in all of these
processes can be probably brought back to a crucial function in
membrane dynamics. Although it is not entirely clear what this
particular function encompasses, it is very likely that it is a
common mechanism that involves the controlled production of
PtdIns(3)P via PtdIns3KC3 activation, which is a crucial event in
each of these pathways for the recruitment of the appropriate
effector proteins. Perhaps, as shown for Atg6 in yeast, the
autophagic and non-autophagic functions of Beclin 1 are
regulated by the binding of specific interactors that define its
specific subcellular localization and determine its specific function
in membrane trafficking. In addition, differential modification of
Beclin 1 or its interactors could determine the pathway in which
Beclin 1 engages. To clearly understand the pleiotropic function
of Beclin 1, one should further explore the composition of the
different Beclin 1 complexes in different settings, including the
consecutive steps in autophagy, endocytosis, phagocytosis,
cytokinesis and pollen germination.

Interestingly, recent reports reveal yet another role for Beclin 1.
Although cell death is mainly linked to the autophagy-related
function of Beclin 1, an increasing amount of data demonstrates
autophagy-independent functions for Beclin 1 in cell death
promotion.15,80,102 During apoptosis, Beclin 1 is cleaved by
caspases, resulting in cytotoxic fragments that initiate a positive
feedback loop toward cell death.79,80,102 While incapable of
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inducing autophagy, one of the Beclin 1-derived fragments
accumulates at the mitochondria and promotes the release of pro-
apoptotic factors from mitochondria.80,103 Notably, similar
observations were made for Atg4D and Atg5 cleavage by caspases
and calpains, respectively.104,105 It is likely that more Atg proteins
may have a similar fate. In this respect, a considerable part of the
autophagy machinery might be targeted for specific proteolysis
and subsequently converted into cytotoxic effector molecules that
aid in the execution of cell death. These two faces of autophagic
molecules depending on specific proteolysis could explain their
pro-survival and pro-cell death functions. A detailed structure–
function analysis of the autophagic molecules may further unravel
their Jekyll and Hyde function in life and death.

Beclin 1 and its Role in Pathophysiology

Although we need to broaden our autophagy-centric view, the
role of Beclin 1 in pathophysiology has been so far correlated only
to its function in autophagy, for example, the removal of
misfolded proteins and protein aggregates, and the elimination of
invading pathogens. Beclin 1 is linked to several disorders,
including cancer, cystic fibrosis, neurodegenerative diseases, and
infectious diseases. Table 2 gives an overview of disorders that
might be linked to Beclin 1 malfunction (for a more extended
review we refer to ref. 118). Most of these diseases are
associated with altered Beclin 1 levels. In addition, Beclin 1
can be sequestered in protein aggregates or held in check by
inhibitory interactions. Beclin 1-dependent autophagy has been
implicated in the elimination of pathogens, including bacteria and
viruses. Group A Streptococcus (GAS) infections, for example,
result in the dissociation of NLRP4 from Beclin 1, allowing
Beclin 1 to initiate a bactericidal autophagic response.47 Whether

these bacteria possess particular virulence factors to counteract
their autophagic destruction is currently unknown. However,
several viruses target Beclin 1 as a strategy to accomplish their
infective life cycle. Herpes simplex virus (HSV-I), which causes
lethal encephalitis in mice, has developed a strategy to increase
its virulence by the binding of its neurovirulence factor, ICP34.5,
to host Beclin 1, thereby inhibiting Beclin 1-dependent auto-
phagy.62,63 Similarly, the interaction of HIV Nef with Beclin 1
enhances the yield of infectious HIV.60 These data support a role
for Beclin 1 in the prevention of infectious diseases.

In cystic fibrosis, sustained transglutaminase activity causes
Beclin 1 crosslinking and its subsequent sequestration in inclusion
bodies. This prevents Beclin 1 from fulfilling its autophagic
function.106,112 Beclin 1 levels are modified also in neurodegen-
erative diseases, which are extensively linked to autophagy. In the
brain of patients with Alzheimer disease, for example, Beclin 1 is
depleted due to caspase-mediated proteolysis.107 However, the
most striking link to human pathology is Beclin 1’s function in
tumorigenesis. The BECN1 gene maps, on chromosome 17q21,
to a tumor susceptibility locus commonly deleted in breast,
ovarian and prostate cancer.46 Allelic deletion of BECN1 is
frequently found in carcinoma cell lines, and Beclin 1 expression
is reduced in breast, ovarian and brain tumors.44,76,78,114 In
addition, Beclin 1 expression in the human breast carcinoma cell
line MCF-7 inhibits in vitro clonigenicity and tumorigenesis in
nude mice.16 Moreover, Beclin 1+/− mice have a high incidence of
spontaneous tumors, including lymphoma and liver and lung
cancer. These data classify Beclin 1 as a haplo-insufficient tumor
suppressor.17,18,46 Rarely, somatic mutations in the BECN1 coding
region are discovered in human cancers.119 But the functional
effects of these mutations are negligible and they probably do not
contribute to the pathogenesis of the cancers. Recently, epigenetic

Table 2. List of disorders linked with altered Beclin 1 expression levels and putative role of Beclin 1-mediated autophagy

Disorder Beclin 1 modifications and putative role Ref.

Huntington disease
Alzheimer disease
Parkinson disease

• Decreased Beclin 1 protein levels
• Sequestration in aggresomes (Huntington)
• Caspase-mediated cleavage (Alzheimer)

• Role in removal of aggregate-prone mutant proteins (Huntingtin, β-amyloid, α-synuclein)

106, 107, 108–110

Sandhoff disease
Niemann-Pick C disease

• Increased Beclin 1 levels
• Protective role

111

Cystic fibrosis • Beclin 1 crosslinking
• Role in removal of misfolded and aggregate-prone mutant

CFTR protein

112

Heart ischemia/reperfusion • Ischemia: protective role
• Reperfusion: increased Beclin 1 levels, destructive role of Beclin 1 (promotes myocardial

injury)

68

Heart pressure overload • Deterioration of contractile function 113

Cancer: breast, ovarian,
prostate, brain, colon, liver

• Decreased Beclin 1 protein levels (age-related)
• Mono-allelic deletions in BECN1

• Loss of heterozygosity
• Tumor-suppressor role, prevention of genome instability, inhibition of malignant

transformation

16–18, 76, 78, 46,
114, 115, 116

Cancer: colorectal, gastric • Increased Beclin 1 protein levels 117

Fatal encephalitis in mice • Binding of HSV-1 ICP34.5 to host Beclin 1
• Role in restricting virus replication and neurovirulence

1, 62
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silencing of BECN1 was found to result in reduced Beclin 1
protein levels in sporadic breast tumors, and one group reported
loss of heterozygosity of BECN1 in 45% of the breast carcinoma
tissues they examined.76,119 Because of the central role of Beclin 1
in autophagy regulation, tumorigenesis in Beclin 1+/− mice was
initially fully ascribed to the lack of autophagic activity. But one
must keep in mind the dual role of autophagy in cancer.120 On the
one hand, autophagy, as a cleanup mechanism, limits accumula-
tion of harmful proteins, damaged organelles and genome
damage, and consequently prevents malignant transformation
and cancer progression. On the other hand, its pro-survival role
under non-optimal growth conditions can provide the established
tumor with a mechanism that promotes its survival in a nutrient
poor and hypoxic microenvironment. In line with this, some
reports demonstrate an increase rather than decrease in Beclin 1
expression in human gastric and colorectal tumors.117 However,
Beclin 1 fulfills other, non-autophagy-related functions that could
also contribute to its tumor-modulating properties. For example,
Beclin 1 is implicated in receptor degradation and cytokinesis.29

Downregulation of receptor degradation could result in excessive
mitogenic signaling, and incomplete cell division could cause
aneuploidy.121,122 In addition, the apparent role of Beclin 1 in
multiple membrane trafficking processes could link its dysfunc-
tion to many human diseases.

Concluding Remarks

Beclin 1 is a multifaceted protein. Because it acts as a key scaffold
for the assembly of distinct signaling complexes, it is crucial in
several pathways in all eukaryotic species. Beclin 1 governs most
autophagy processes and is implicated in endocytic trafficking,
phagocytosis, cytokinesis control and pollen germination. All of
these are non-autophagy functions, but they all involve membrane
flux and the corresponding controls. Consequently, Beclin 1 is
involved in many biological processes, including development,
differentiation, stress adaptation, inflammation, tumorigenesis,
aging, and cell death. Indeed, the central role of Beclin 1 in
cellular and organism function is emphasized by the wealth of
diseases associated with Beclin 1 malfunction or deficiency, and,
therefore, Beclin 1 is considered a valuable target for treatment of

distinct pathologies and cancer. Beclin 1 expression levels can
determine the autophagy response, which ameliorates disease
symptoms, extends mean life span, and improves the efficacy of
several anti-cancer drugs. Much insight has been gained over the
last few years into how the Beclin 1 scaffolding function is
regulated, and this information is crucial for the ability to
manipulate Beclin 1-dependent autophagy or its non-autophagy
functions. It is clear that the expression levels of Beclin 1 are
tightly controlled, and in addition, the research field has advanced
a lot in understanding the regulation of Beclin 1 by its interaction
with Bcl-2. In turn, this interaction is fine-tuned by post-
translational modifications, and more precisely, by phosphoryla-
tion and ubiquitination. Also, some of the enzymes participating
in these modifications have been identified, and future findings
can generate a more detailed picture. In addition, ongoing
research is focusing on how Beclin 1 is directly implicated in the
modulation of cell death, and this can lead to the understanding
of the physiological significance of this role. Eventually, these new
insights will lead to the design of novel, promising therapeutic
interventions.
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