
University of Dayton University of Dayton 

eCommons eCommons 

Honors Theses University Honors Program 

4-1-2023 

Methods for Exploiting High-Resolution Imagery for Deep Methods for Exploiting High-Resolution Imagery for Deep 

Learning-Based Diabetic Retinopathy Detection and Grading Learning-Based Diabetic Retinopathy Detection and Grading 

Adam M. Saunders 
University of Dayton 

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses 

eCommons Citation eCommons Citation 
Saunders, Adam M., "Methods for Exploiting High-Resolution Imagery for Deep Learning-Based Diabetic 
Retinopathy Detection and Grading" (2023). Honors Theses. 423. 
https://ecommons.udayton.edu/uhp_theses/423 

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It 
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more 
information, please contact mschlangen1@udayton.edu, ecommons@udayton.edu. 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/423?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu


Methods for Exploiting High-Resolution 

Imagery for Deep Learning-Based 

Diabetic Retinopathy Detection and 

Grading 

 

 
 

Honors Thesis 

Adam Saunders 

Department:  Electrical and Computer Engineering 

Advisor:  Russell Hardie, Ph.D. 

April 2023 



Methods for Exploiting High-

Resolution Imagery for Deep 

Learning-Based Diabetic 

Retinopathy Detection and Grading 
 

Honors Thesis 

Adam Saunders 

Department:  Electrical and Computer Engineering 

Advisor:  Russell Hardie, Ph.D. 

April 2023 

 

 

Abstract 
Diabetic retinopathy is a disease that affects the eyes of people with diabetes, and it can cause blindness. To 
diagnose diabetic retinopathy, ophthalmologists image the back surface of the inside of the eye, a process 
referred to as fundus photography. Ophthalmologists must then diagnose and grade the severity of diabetic 
retinopathy by analyzing details in the image, which can be difficult and time-consuming. Alternatively, 
due to the availability of labeled datasets containing fundus images with diabetic retinopathy, AI methods 
like deep learning can provide automated detection and grading algorithms. We show that the resolution of 
an image has a large effect on the accuracy of grading algorithms. So, we study several techniques to 
increase the accuracy of the algorithm by taking advantage of higher-resolution data, including using a 
region of interest as the input and applying an image transformation to make the circular fundus image 
square. While none of our proposed methods result in an increase in performance for grading diabetic 
retinopathy, the circle to square transformation results in an increase in accuracy and AUC for detection of 
diabetic retinopathy. This work provides a useful starting point for future research aimed at increasing the 
resolution content in a fundus image. 
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1. Introduction 

Diabetic retinopathy (DR) is a disease that can cause blindness in people with diabetes. It 

is the leading cause of vision loss among the elderly. High blood sugar and high blood 

pressure among people with diabetes can lead to damage of the blood vessels in the back 

of the eye. This damage impacts vision negatively. DR is progressive, meaning vision 

gets worse as time goes on. People with severe DR can experience growth of new blood 

vessels and retinal detachment. It is important that healthcare workers screen people with 

diabetes for DR early and often, as there are little to no symptoms until the late stages of 

DR [1]. 

 

The process for diagnosis and monitoring DR can be tedious for doctors. Doctors have to 

look at fine details on the back of a patient’s eye, called the fundus. Due to a lack of 

medical resources, there are often delays in the diagnosis and treatment of DR [1]. 

Unfortunately, developing nations like India suffer from severe shortages of 

ophthalmologists, especially in rural areas [2]. As a result, there is a demand for imaging 

techniques to monitor DR remotely in a telehealth setting. For these remote screening 

programs, patients can use retinal cameras designed for use with a smartphone [1,2].  

 

There are two imaging modalities commonly used to monitor DR: optical coherence 

tomography (OCT) and color fundus photography (CFP) [2]. OCT involves constructing 

an image from reflected light, while CFP is a much simpler process that takes a color 

image of the fundus. The retina can be enhanced in CFP images using fluorescein 

angiography to dye the blood vessels [3]. Image processing algorithms are well-suited to 

studying DR, as OCT and CFP images of the eye can help diagnose and grade the 

severity of DR.  

 

Due to the availability of datasets with labeled and graded fundus images, deep learning 

algorithms are a popular technique used to detect and classify DR severity [2-5]. In fact, 

the United States Food and Drug Association approved the first AI method for DR 

detection in 2018 [1]. While DR detection is a simple binary classification, DR grading 

uses multiple classes to describe the staging of DR. Many clinicians grade DR on a 
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discrete scale from 0 to 4, where 0 indicates no DR and 4 indicates proliferative DR. 

However, some datasets use a scale from 0 to 5, and others simply partition the classes 

into non-proliferative DR and proliferative DR, where non-proliferative DR can include 

mild DR cases alongside cases without DR [3,6]. 

 

The datasets we use for DR detection and grading are often filled with images that have 

many different sizes and resolutions. The images contain varying levels of light, and the 

optic nerve may be in different areas. Often, deep learning methods trained on these 

datasets use data augmentation techniques like rotation, scaling, and translation in order 

to increase the limited data found in fundus image datasets [2,7]. Additionally, image 

preprocessing techniques like cropping, padding, and histogram modification methods 

can help make fundus image datasets more uniform [8]. One preprocessing method used 

by several researchers is to apply some sort of color normalization or histogram 

equalization like contrast-limited adaptive histogram equalization followed by some sort 

of denoising filter like a Gaussian blur or a median filter [6-10].  

 

Due to the limited amount of data in some DR datasets, many researchers have taken 

advantage of pretrained networks and used transfer learning to detect and grade DR [3,6-

10,11,12]. Transfer learning is particularly useful due to the limited data in many DR 

datasets. Researchers have shown that transfer learning for DR detection requires many 

fewer images than training a new model with only a slight decrease in performance [6].  

 

One popular convolutional neural network used is Inception-v3, which uses inception 

modules that perform several levels of convolution and concatenate the results. Inception-

v3 has outperformed other deep learning models for DR detection and grading [7,11,12]. 

This method results in deep learning models that are able to learn several levels of detail 

within a local set of layers. Inception-v3 replaces the large 5×5 convolutional layers in 

inception modules with multiple smaller 3×3 convolutional layers, resulting in a network 

that can achieve high performance using fewer parameters and less computational 

complexity [13]. Figure 1 shows an example of an inception module used in Inception-

v3. 
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Figure 1: Example of an inception module in Inception-v3 (based on Ref. 13) 

 

Several researchers have used deep learning models to extract features and then classified 

these features using a support vector machine [7,8,12]. We can use a single model like 

Inception-v3 to extract features, or we can extract features from several different deep 

learning models to create a large set of features. We can reduce this set of features by 

using statistical methods to select statistically significant features [7]. Alternatively, we 

can perform dimensionality reduction on the set of features using principal component 

analysis. Researchers have achieved a high accuracy using this method, especially for DR 

grading, which can be difficult with limited data for each of the classes [8]. 

 

The image preprocessing methods for DR detection and grading often resize the image to 

the input size of the model used for transfer learning. The input size can be a fraction of 

the size of the original image, meaning deep learning algorithms for DR detection and 

grading are not taking advantage of the available resolution content. Notably, one study 

tested their DR detection network using high-resolution fundus images alongside low-

resolution fundus images and found a large increase in performance compared to using 

the low-resolution images alone [14].  The downsizing process may remove valuable 
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information from the image. Additionally, since the images are not usually square and the 

input size of deep learning models is typically square, the resizing process can corrupt the 

spatial relationships present in the image. 

 

There are two goals for this thesis. First, we wish to study how image resolution affects 

the accuracy of DR grading techniques. Next, we wish to study the effect of techniques 

that take advantage of the available high resolution of fundus images to see if they can 

increase the accuracy of DR detection and grading algorithms. In particular, we attempt 

to use a region of interest (ROI) as the input to a deep learning model. We also try using a 

spatial transformation to convert the circular fundus image to a square. Section 2 

describes the methods used for preprocessing the images and the experiments performed, 

as well as details on the training and testing process for the deep learning models. Section 

3 presents results from the experiments. Finally, Section 4 provides some conclusions 

about what we learned from this study and recommendations for further research. 

 

2. Methods 

2.1 Image Preprocessing 

We use the APTOS 2019 dataset. The dataset consists of 2,930 CFP images graded on a 

scale from 0 to 4, with 0 indicating no DR and 4 indicating proliferative DR. The images 

are taken from a variety of locations using different cameras [4]. The classes are 

extremely unbalanced, as demonstrated in Table 1. The images are also extremely varied, 

as shown in Figure 2. The images feature different resolutions, aspect ratios, and lighting 

conditions. Even the size of the fundus is different in the images, with some containing 

the entire circular fundus and others containing only a portion of the fundus. 

 

Since the images in the dataset have varying sizes and colors, it is important to preprocess 

the images to create a more uniform dataset. We compare several different preprocessing 

techniques for DR grading to show ours provides a higher accuracy at the standard input 

resolution of Inception-v3, the deep learning model used here for classification. The 

results of this comparison can be found in Sec. 3.1. Here, we describe the full 

preprocessing used for all other experiments.  
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Table 1: Distribution of images across classes in the APTOS 2019 dataset 

Class Number of Images 

0 1434 

1 300 

2 808 

3 154 

4 234 

 

 

Figure 2: Examples from the APTOS 2019 dataset: 0 is no DR, 1 is mild DR, 2 is 

moderate DR, 3 is severe DR, and 4 is proliferative DR 

 

First, we shift the image by its mean RGB value so that the mean value is zero. Then, by 

thresholding with a value of 10, we create a mask to cover the background of the image. 

We fill in any holes in the mask so that only the eye is showing. We normalize each RGB 

color channel so that they each have 2.5 standard deviations within 0 and 1. We calculate 

the mean and standard deviation using only the fundus portion of the image, not the 

background. We set the background of the image to 0.  
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Next, to find the optic disc, we select the point in the image with the maximum value 

after applying a Gaussian low-pass filter. The filter helps to find the brightest region of 

the image instead of simply selecting a bright pixel from noise or other artifacts. If the 

optic nerve is on the left half of the image, we flip it to be on the right half. Finally, we 

crop out the rows and columns that contain only zero-valued pixels. We pad the image 

with rows and columns of zeros so that the image is square. This way, we do not change 

the aspect ratio of the image when we resize it. Finally, we resize the image to the 

appropriate input size for our given network. Figure 3 shows the steps of the 

preprocessing algorithm for an example fundus image. 

 

 

Figure 3: Fundus image preprocessing 
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2.2 Transfer Learning Architecture and Performance Metrics 

For all of the experiments presented here, we adopt a transfer learning approach. For DR 

detection, we use all of the images from the APTOS 2019 dataset, with label 0 indicating 

no DR and labels 1-4 indicating DR. For DR grading, we only use the images that contain 

DR. That is, we use images with labels 1 through 4. Next, we split the data into training 

and testing data using 𝑘-fold cross-validation, where 𝑘 = 10. We set aside 10% of the 

training data to use as validation data. We use the preprocessing described in Sec. 2.1. 

The selected deep learning algorithm for transfer learning is Inception-v3, as it 

outperformed other deep learning models in several DR detection and grading studies 

[7,11,12]. Since our preprocessing already involves color normalization, we use no 

normalization in the input layer. We replace the final fully connected layer with a fully 

connected layer containing two output nodes for DR detection and four output nodes for 

DR grading. Figure 4 summarizes the transfer learning architecture. 

 

We train the networks using the Adam optimizer with the default parameters of 𝛽1 = 0.9, 

𝛽2 = 0.999, and 𝜖 = 1 × 10−8. We use an initial learning rate of 𝜂 = 0.001 and a mini-

batch size of 32. We train for a maximum of 10 epochs, with early stopping enabled if the 

validation accuracy has not increased for three consecutive epochs. We report results 

from the epoch that had the best validation loss during training. We train the models in 

Matlab using two NVIDIA GeForce RTX 3090 GPUs.  

 

We record two performance metrics to compare the performance of the models. First, we 

calculate the accuracy. We define accuracy as the number of correct classifications 

divided by the number of test samples. We also measure the area under curve (AUC) of 

the receiver operating characteristic (ROC) curve. The ROC curve is a plot of true 

positive rate versus false positive rate for many different thresholds values for the 

classification scores. Since DR grading is a multi-class problem, we select class 2 

(moderate DR) as the positive class and treat all others as a negative class. We use class 2 

since it has the most samples in the APTOS 2019 dataset out of the classes with DR. 

Figure 5 shows an example ROC curve for DR grading. 
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Figure 4: Transfer learning architecture for DR detection and grading 

 

2.3 Resolution Study 

We aim to study the effect of resolution on the success of grading the severity of images 

that have DR. That is, we wish to find if using a different resolution for the images 

affects the performance of the grading algorithm. After preprocessing the images using 

the methods described in Sec. 2.1, we train and test the network using the process 

described in Sec. 2.2. We train and test several models using different values of square 

resolutions, at the original input size of Inception-v3 (299 by 299 pixels), as well as 

several different larger and smaller scales. Figure 6 shows a comparison of an example 

fundus image at several scales, though note that the images are too large to be drawn to 

scale. Section 3.2 provides the results of this experiment. 
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Figure 5: Example ROC curve for DR grading (AUC = 0.7551) 

 

 

Figure 6: Example fundus image at several resolution scales (1/4, 1/3, 1/2, 1, 2, 3 and 

4, not drawn to scale) 
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2.4 ROI Input 

To make use of the high available resolution, we next introduce an ROI to input a 

clinically useful region to the network. We compare this method for both DR detection 

and grading. To select this region, we first input a downsized image at 224 by 224 pixels 

into ResNet50 as a preliminary classifier. We again use the preprocessing described in 

Sec. 2.1.  

 

After ResNet50 classifies the image, we use gradient class-activation mapping (grad-

CAM) to generate a heatmap that shows the areas most relevant to the classification of 

the image. We use CAM to find these areas since researchers have previously used CAM 

heatmaps as an interpretability measure for deep learning models [9]. We then select the 

pixel with the highest value from the heatmap. We select the corresponding pixel on the 

original high-resolution image as the center of our ROI. We crop an ROI of size 500 by 

500 pixels from around the center pixel on the high-resolution image. If the ROI includes 

pixels beyond the boundary of the image, we shift the center of the ROI to make sure the 

ROI does not sample from outside of the image. After using bicubic interpolation to 

downsize this ROI to the input size of Inception-v3 at 299 by 299 pixels, we use this ROI 

as the input to our network as before. Again, we measure the accuracy and AUC using 

10-fold cross-validation for this method. We train both networks using the process 

described in Sec. 2.2. Figure 7 shows the ROI selection process applied to an example 

fundus image, and Sec. 3.3 describes the results of this experiment. 

 

2.5 Circle to Square Spatial Transformation 

Fundamentally, fundus images are circular. However, deep learning models and image 

processing algorithms work mostly on square images. So, a portion of our fundus images 

consist of black background that is not useful for classification. Aiming to reduce the 

amount of background in the image, we next use a spatial transformation to convert the 

circular fundus image into a square image.  
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Figure 7: ROI used as input to the network: original image (top left), grad-CAM 

heatmap from ResNet50 (top right), cropped ROI from highest point on heatmap 

(bottom) 

      

There are many transformations to convert a circle into a square. Among the 

transformations that preserve the location of the center as well as the points on the 𝑥-axis 

and 𝑦-axis, none of them preserve both angles and area [15]. However, one simple 

transformation is the elliptical grid mapping. The inverse transformation of the elliptical 

grid mapping for a circle of radius 1 centered at the origin is given by 

𝑢 = 𝑥√1 −
𝑦2

2
 (1) 

and 
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𝑣 = 𝑦√1 −
𝑥2

2
, (2) 

where (𝑢, 𝑣) are the coordinates of the circle and (𝑥, 𝑦) are the coordinates of the square 

[15]. 

 

We apply this circle to square spatial transformation to our fundus image dataset. We 

compare this method for both DR detection and grading. We scale this transformation by 

the radius of the fundus, measured along the 𝑥-axis. We apply the transformation after 

preprocessing the images as described in Sec. 2.1 but before resizing to the input size of 

Inception-v3.  

 

Note that many of the images in the fundus image dataset are not truly circular as the tops 

and bottoms of the image are cut off. So, in addition to measuring the accuracy and AUC 

after using this transformation, we also measure the accuracy and AUC after using the 

transformation and cropping out the rows that contain black pixels along the vertical line 

of the center of the image. This results in an image that may not be square, so the 

downsizing process may slightly change the spatial relationships present in the image. 

For both experiments, we again use 10-fold cross-validation and the training process 

described in Sec. 2.2. Figure 8 shows the image transformation performed on an example 

fundus image, as well as the image transformation after cropping. Section 3.3 discusses 

the results for this experiment.  

 

3. Results 

3.1 Image Preprocessing 

To demonstrate that our preprocessing technique results in an increased accuracy, we 

compare the results of our transfer learning process using different preprocessing 

techniques. We refer to resizing the image alone as “resize.” We call resizing and 

normalizing the image by the average intensity of all RGB channels together “norm.” 

Next, we call resizing and normalizing each color channel separately “color norm.” 
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Figure 8: Circle to square image transformation: original image (top left), 

transformed image (top right), and transformed image after cropping (bottom) 

 

We try zero-padding the image before resizing, and we also include flipping the image so 

that the optic nerve lies on the same side for each image, referred to as “norm. + pad +  

flip.” Finally, we try this method with normalizing each color channel separately, referred 

to as “color norm. + pad + flip.” Figure 9 shows a visual comparison of the preprocessing 

techniques for an example fundus image. 

 

Figure 10 shows the results of using the preprocessing techniques with 10-fold cross-

validation. We compare the results for DR grading alone. We notice that the “color norm.  
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Figure 9: Preprocessing techniques before resizing: "Norm." (top left), "color 

norm." (top right), "norm. + pad + flip" (bottom left), and "color norm. + pad + 

flip" (bottom right) 

 

+ pad + flip” preprocessing technique results in the highest average accuracy, albeit with 

a slightly lower average AUC. “Color norm. + pad + flip” is the preprocessing technique 

we used for all other experiments, described earlier in Sec. 2.1. 

 

3.2 Resolution Study 

Next, we present the results from the resolution study described in Sec. 2.3. Figure 11 

shows the accuracy and AUC of the Inception-v3 network used for DR grading after 

changing the input size to several different scales. 
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Figure 10: Accuracy and AUC of DR grading algorithm using different 

preprocessing methods 
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Figure 11: Accuracy and AUC of DR grading algorithm at different input 

resolutions 
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As we expect, the accuracy and AUC drop off at very low resolutions. However, we 

notice that the accuracy and AUC both peak at a scale higher than 1. That is, we achieve 

a higher accuracy and AUC by using a higher resolution than the default input size for 

Inception-v3, 299 by 299 pixels. This result indicates that we may want to take advantage 

of the higher resolution available from fundus photography. We also notice that the 

accuracy and AUC begin to drop off at very high scale factors. This decrease may be due 

to the fact that Inception-v3 cannot handle such large inputs with the current number of 

parameters. 

 

3.3 ROI Input and Circle to Square Spatial Transformation 

Next, we present the results when using the ROI as the input to the network as well as the 

results of the circle to square spatial transformation. Figure 12 shows the accuracy and 

AUC of the different image transformation methods for DR detection, while Figure 13 

shows the results for DR grading. The image transformations do not achieve a higher 

accuracy or AUC than the unmodified images for DR grading. However, the circle to 

square transformations provides a slight boost in accuracy and AUC for DR detection.  

 

The ROI input achieves a much lower accuracy and AUC than the other methods for both 

DR grading and detection. This decrease in accuracy and AUC might be due to a poor 

selection of the ROI. Additionally, the ROI may be too focused on one area of the image. 

Instead of inputting the ROI directly into the network, perhaps we could try inputting the 

ROI as a channel alongside the entire image. So, the network would have two channels: 

one containing a low-resolution fundus image and one containing a high-resolution ROI. 

Alternatively, we could concatenate the low-resolution fundus image and ROI to create a 

single input for the network. 

 

The circle to square transformations performed slightly worse than the unmodified 

images for DR grading, though not as poorly as the ROI input. It might be that the spatial 

relationships in a fundus image are very important for the grading of DR. The 

transformation may have resulted in too much corruption of the spatial relationships 

present in the image. On the other hand, the circle to square transformations provided a 
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slight increase in performance for DR detection. Cropping the rows that contain only 

black pixels along the 𝑦-axis results in an increase in the average accuracy and AUC 

compared to the transformation without the cropping for both DR grading and detection. 

This result seems to indicate that the DR detection and grading algorithms may perform 

better when we remove as much of the black background area as possible. Although all 

circle to square transformations will result in some level of deformation, we could also 

try other transformations than the elliptical grid mapping.    

 

4. Conclusion 

In this thesis, we presented and discussed several methods for increasing the performance 

of DR detection grading algorithms. First, we showed that preprocessing techniques like 

padding and color normalization can help standardize highly varied fundus image 

datasets. We also showed that DR grading algorithms perform better using higher 

resolutions than the default input size of many common deep learning algorithms used for 

transfer learning. Inspired by this result, we focused on ways to increase the resolution 

content of images for DR detection and grading. We tried using a smaller ROI selected 

from a high-resolution image. Additionally, we attempted to use a mathematical 

transformation to convert the circular fundus images to square images.  

 

While none of our transformations outperformed the unmodified preprocessed images for 

DR grading, the circle to square transformation provided a slight increase in performance 

for DR detection. The transformations presented here provide a useful basis for future 

research. Future studies could focus on more robust methods for selecting the ROI, as 

well as inputting the high-resolution ROI alongside the entire low-resolution image. 

There are also many other circle to square image transformations that may result in less 

spatial deformation. We also are interested in studying nonlinear downsampling methods 

that sample the areas relevant for diagnosis using a higher sampling frequency. Overall, 

this thesis characterizes the importance of the relationship between deep learning-based 

DR detection and grading algorithm performance and the resolution of fundus images. 
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Figure 12: Accuracy and AUC of DR detection algorithms using different image 

transformation methods 
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Figure 13: Accuracy and AUC of DR grading algorithms using different image 

transformation methods 
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