
University of Dayton University of Dayton

eCommons eCommons

Honors Theses University Honors Program

4-1-2023

Mitigation of JavaScript-Based Fingerprinting Attacks Reliant on Mitigation of JavaScript-Based Fingerprinting Attacks Reliant on

Client Data Generation Client Data Generation

Nathan Joslin
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

eCommons Citation eCommons Citation
Joslin, Nathan, "Mitigation of JavaScript-Based Fingerprinting Attacks Reliant on Client Data Generation"
(2023). Honors Theses. 403.
https://ecommons.udayton.edu/uhp_theses/403

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more
information, please contact mschlangen1@udayton.edu, ecommons@udayton.edu.

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/403?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu

Mitigation of JavaScript-Based

Fingerprinting Attacks Reliant on

Client Data Generation

Honors Thesis

Nathan Joslin

Department: Computer Science

Primary Advisor: Phu H. Phung, Ph.D.

Secondary Advisor: Ahmed El Ouadrhiri, Ph.D.

April 2023

Mitigation of JavaScript-Based

Fingerprinting Attacks Reliant on Client

Data Generation

Honors Thesis

Nathan Joslin

Department: Computer Science

Primary Advisor: Phu H. Phung, Ph.D.

Secondary Advisor: Ahmed El Ouadrhiri, Ph.D.

April 2023

Abstract

While fraud detection companies use fingerprinting methods as a secondary form of identification,

attackers can exploit these fingerprinting methods due to the revealing nature of the software and

hardware information collected. Attackers can use this sensitive information to target users with

known vulnerabilities, monitor a user’s activity, and even reveal their identity without their

knowledge or consent. Unfortunately, average users have limited options to opt out of or block

fingerprinting attacks.

In this thesis, we propose a solution that enforces dynamic policies on web pages to prevent

potential malicious device fingerprinting methods. We employed the Inline Reference Monitor

(IRM) approach to supervising JavaScript operations on web pages, including method calls,

object creation and access, and property access. When executed, the IRM will intercept these

operations, providing runtime policy enforcement to mitigate JavaScript-based dynamic

fingerprinting methods that generate unique data at runtime instead of collecting static attributes.

In particular, our policy enforces a randomization method rather than normalization or domain-

based blocking to constantly change a given device’s fingerprint over time, making it increasingly

difficult for malicious actors to track a device across the web. Our approach can protect user

privacy while limiting major site breakage, a common issue with current anti-fingerprinting

technologies.

We have performed intensive experiments to demonstrate the effectiveness of our approach. In

particular, we replicated and revised an existing fingerprinting attack that collects network link-

state information to construct unique fingerprints. We deployed this fingerprinting attack on the

cloud and collected data from web users nationwide, which are used by a machine learning

model to reveal users’ locations with high accuracy. We have implemented our mitigation method

by extending a browser extension prototype. The prototype demonstrated that our proposed

method could effectively prevent data collection from the fingerprinting attack.

Acknowledgements

I’d like to thank Dr. Phung, Dr. Ahmed, and Ms. Paola for advising me throughout the project, my family

for their support, and any participants in the data collection for this project.

 Table of Contents

Abstract Title Page

1 Introduction 1

2 Background 3

2.1 Overview of Fingerprinting Methods ... 3

2.2 Entropy and Stability of Fingerprint Features 6

2.3 Challenge/Response-based Authentication................................... 8

2.4 Mitigation Approaches ... 10

3 Problem Description 12

3.1 The PingLoc Prototype ... 13

3.2 Proposed Solution ... 14

4 Implementation 16

4.1 Reproducing the PingLoc Web Application 16

4.2 Data Collection and Processing .. 18

4.3 Feature Extraction ... 22

4.4 Machine Learning ... 24

5 Results 25

5.1 User Localization Through Machine-Learning Classification ... 25

5.2 Mitigation with Code-Origin Policy Enforcement 25

6 Limitations 28

7 Future Works 31

References 32

P a g e | 1

Chapter 1: Introduction

Digital fingerprinting is the technique of collecting attributes associated

with a browser or device. These attributes are combined to form a unique

identifier, a fingerprint, which may be used for stateless tracking or

identification/recognition purposes [4]. The fingerprint of one device or browser

will differ from another as a result of variations in software and hardware

configuration. Fingerprinting methods are used in industry and research as a layer

of fraud protection and as a means of additional authentication in a multi-factor

authentication scheme [12].

Although fingerprinting has increased security in the fraud detection

sector, it also poses many challenges to the everyday web user as a stateless

tracking mechanism [21]. Users cannot simply delete their fingerprints as they

can with cookies. As a result, a third-party can collect device fingerprints to track

user activity across the web without the user being aware of it or being able to

stop it [8]. However, the application of browser fingerprinting is not limited to

unique user identification and tracking. Eckersley et al. claim that even users who

are not uniquely identifiable are still vulnerable to more context-specific

fingerprinting attacks [4]. We consider this involuntary tracking and collection

of private data to violate user privacy, and thus malicious by nature. Other

concerns raised by fingerprinting include the revealing of sensitive information,

the ability to re-spawn cookies [5], and even linking fingerprints to social media

accounts to reveal user identities [8].

The first main contribution of this work includes a reproduction of the

PingLoc prototype developed by Wu et al. [20]. PingLoc is one of the first link-

based fingerprinting techniques, implementing a multilateration cross-site image

request scheme to generate them. The core idea behind this scheme is to reveal

the location of users by using ‘distances’ to known locations. Instead of using

direct distances, this scheme uses a sequence of request time-delay values to

multiple known servers to derive network links’ information. By collecting the

time-delays of a multitude of image requests to various geographically diverse

P a g e | 2

servers, PingLoc can extract statistical features that reflect the link-state

information of the network a device is connected to. These features are

subsequently used to train a machine learning model to localize users, which

achieves up to 98.5% accuracy according to Wu et al. [20].

The second main contribution of this work includes a proposal for a few

improvements to the implemented multilateration cross-site image resource

request scheme [20]. The most significant of these improvements is a proposal of

four additional statistical features extracted from the time delay data, namely

interquartile range, interquartile first quarter, interquartile third quarter, and the

number of lost packets. We theorize that these additional features will increase

the accuracy of the machine-learning model.

Finally, the third main contribution of this work is a security policy that

successfully blocks the multilateration cross-site image resource request scheme

proposed by [20]. Our security policy is enforced by the Inline Reference Monitor

(IRM) developed by Phung et al. [15]. Their policy enforcement mechanism

allows for code-origin policy enforcement, which provides a means for

developers to enforce more flexible security policies. Using this policy

enforcement mechanism, we develop a code-origin policy that prevents link-

based fingerprinting through image requests. Although our policy only blocks

link-based fingerprinting that uses image requests to gather link-state

information, it can easily be modified to handle other object requests.

P a g e | 3

Chapter 2: Background

It’s important to have a clear understanding of browser/device fingerprinting

before discussing the particular method reproduced in this work. Classification

as well as a brief overview of the types of fingerprints collected by fingerprinting

algorithms helps bring to light how these methods work, what information they

collect, and why certain countermeasure approaches are chosen. These

fingerprinting techniques are often split into two groups: passive and active.

Passive fingerprinting is the collection of device or browser attributes via HTTP

headers, such as the user-agent string or language. Active fingerprinting is the

collection of attributes via execution of client-side JavaScript, such as installed

fonts, screen resolution, or plugins [16]. The vast majority of browser/device

fingerprinting methods are classified as active, and thus heavily dependent on

JavaScript function and method calls.

2.1 Overview of Fingerprinting Methods

The root of browser fingerprinting research rests in the hands of Peter

Eckersley [4]. Eckersley was the first to propose the concept of browser

fingerprinting. Since then, numerous browser and device fingerprinting methods

have been researched. In an attempt to provide an understanding of the different

types of fingerprinting methods, we will briefly introduce a few of the most

prevalent in literature.

Browser Fingerprints

The majority of browser fingerprinters are JavaScript object-based. As

the name indicates, these techniques gather a variety of attributes from

JavaScript objects, exploiting differences in user browser configurations. The

most common objects used by these techniques are navigator objects, which

contain browser information, and screen objects, which contain display

configuration. Collecting a breadth of these attributes allows the building of a

unique fingerprint [21, 8]. Figure 2.1, from [10], is an example of a browser

fingerprint.

P a g e | 4

However, some browser fingerprinting techniques do not rely on

JavaScript APIs at all. A novel example is the CSS-based fingerprinting

technique StylisticFP developed by Xu Lin et al. [14] which relies exclusively on

CSS features. CSS-based fingerprinters rely on parsing CSS, often to identify the

presence of particular plugins or extensions [21, 11]. These fingerprinters are

particularly dangerous as the prevalence of certain extensions may reveal

sensitive information about the user whose browser is being fingerprinted [18,

7]. For example, detecting the presence of an accessibility extension or an

extension focused on a particular religion.

Figure 2.1: An example of a browser fingerprint[10].

Device Fingerprints

The distinction between browser and device fingerprinting in literature is

relatively vague. Both fingerprinting methods ultimately rely on the browser as an

‘attack vector’. Intuitively, a browser fingerprinter extracts browser-specific

P a g e | 5

information, while a device fingerprinter extracts device information. Where this

distinction becomes unclear is in the user-agent string, where some OS information

is extracted but as a JavaScript call to the browser. Largely, device fingerprinters

may be distinguished by their dynamic approach. Instead of making a few

JavaScript object property accesses and storing the aggregate information, they

generate a different form of data such as a processed audio signal or a rendered

image.

A few hardware and software-based fingerprinting methods are Canvas,

AudioContext, and WebGL. Contrary to browser fingerprinters, these

fingerprinters exploit the differences in the hardware and software running on a

device [21]. The scripts run by these types of fingerprinters generate unique data

by tasking a client to render images, process audio signals, or generate another

form of data. For example, a canvas fingerprinter creates an image using

JavaScript method calls. This is typically done by drawing a pangram on a

canvas element as well as introducing more complex curves, color gradients, or

shadows to yield a more detailed image [12]. Figure 2.2, created by [12], is an

example of a rendered canvas image by a canvas fingerprinter. The canvas

element’s data is then collected and condensed using the convenient method

toDataURL provided by the canvas API, which is the fingerprint itself. For canvas

and WebGL fingerprinters, the resulting data is unique enough to serve as the

fingerprint itself in some cases [12]. However, this is not the case for all data-

generating fingerprinting methods such as AudioContext [17].

Figure 2.2: An example of a rendered canvas image by a fingerprinter [12].

P a g e | 6

2.2 Entropy and Stability of Fingerprint Features

A fingerprinting feature is only as valuable as the information entropy it

yields. In [4], Eckersley provides a method of representing fingerprinting

features mathematically. Although a mathematical analysis is beyond the scope

of this work, a high-level overview of the information entropy and stability of

fingerprinting features helps to complete our understanding of the current

literature.

In [4], Eckersley provides a crucial insight concerning the relationship

among features. In some instances, fingerprinting features are independent of

one another. For example, there is no correlation between browser type and

language used. On the other hand, there is a correlation between OS and screen

resolution; a mobile OS cannot have a desktop screen resolution. As the majority

of fingerprinting algorithms rely on the aggregation of multiple features to

construct unique fingerprints, it is crucial to consider these types of relationships

among features.

A few works have studied the information entropy of fingerprinting features

through empirical analysis. Laperdrix et al. [10] provide an excellent table

demonstrating the uniqueness of individual attributes. This table, see Figure 2.3,

is a collection of data from three prior studies Panopticlick, AmIUnique, and

Hiding. All attributes listed on the left are static attributes, except for Canvas

which is dynamic. It is quite apparent that some static attributes provide more

uniqueness, or entropy, resulting from the attribute’s possible range of values.

P a g e | 7

Figure 2.3: A table of browser attributes and their respective entropy [10].

Furthermore, it is important to note the formal definitions used by

Pugliese et al. where a fingerprint is stable if, and only if, its stability period is

greater than zero; a notably loose definition as the authors do not specify a unit

of time [16]. Consequently, a fingerprint is trackable if, and only if, the

fingerprint is unique to one user and is stable [16]. However, the necessity for a

fingerprint to be unique to one particular user depends on the goal of the

fingerprinting algorithm. For instance, the goal of a fraud detection company

that aims to authorize a set of users is fundamentally different when compared to

that of a fingerprinter which aims to identify vulnerable software running on a

device. Differentiating between each user is necessary for the former to create a

secure authentication protocol, but not necessary for the latter as they only care

about identifying the presence of a particular unit of software. Nevertheless, the

goal of the majority of fingerprinting algorithms is to differentiate between users.

With rapid software development comes unavoidable, frequent, device

and browser re-configuration. It is imperative to consider the stability of a given

fingerprint over time as attributes evolve. The causes for a change in a device

P a g e | 8

fingerprint may be classified into three categories: Browser or OS Updates; User

Actions, such as changing time zone; and Environment Updates, e.g., updating

browser-related software such as emojis or installing a new plugin [13]. The

three causes mentioned result in changes of static attributes, e.g., an OS update

results in a change of the user-agent string provided by a browser.

As a result of the stability limits of fingerprinting features, it is important

to consider the research done to track an evolving fingerprint over long periods.

Many studies are not broad enough, focusing on one particular method of

fingerprinting which poses limits on the application of the proposed method. One

of the best studies done thus far was performed by Pugliese et al. [16] who

conducted a three-year study on browser fingerprinting. Their study provides vital

information concerning the formalization of fingerprinting concepts, the

uniqueness, and stability of fingerprints, as well as data on the relation between

user characteristics, e.g., age or education, and trackability. Ultimately, they

conclude that desktop fingerprints are stable for 11.6 weeks on average and

89.2% of desktop fingerprints are trackable, i.e. the new fingerprint is linkable to

the prior. However, it is important to note that in prior works, such as FP-Stalker

[19], the overall effectiveness decreases as the number of users within the

fingerprint database increases. This is also discussed by [13], who claim that

once a dataset of fingerprints reaches the millions the time consumption for

uniquely identifying a fingerprint begins to become a problem. However, smaller

studies show that it is possible to create an algorithm to track evolving

fingerprints [21].

2.3 Challenge/Response-based Authentication

Although one of the core goals of this work is to design and implement

mitigation policies for device fingerprinters, fingerprinting is used positively

where mitigation may not be desired. These fingerprinting applications are used

to verify the identity of a user rather than to exploit the user’s sensitive

information or track them. As mentioned previously, the best example of this non-

malicious use of fingerprinting is fraud detection as an additional means of

P a g e | 9

authentication. In [12], Laperdrix et al. proposes that a challenge/response-based

authentication mechanism may be created by utilizing active fingerprinting

techniques. In this work, they use canvas fingerprinting to create the

authentication protocol, however, they emphasize that other dynamic feature-

generating fingerprinting techniques may be used as well, such as WebGL and

AudioContext. The proposed protocol, see Figure 2.4, works after the user visits

the site once, i.e., the user can be authenticated from their second visit to the web

page and any time after [12]. When visiting the web page, the client is given a

canvas "challenge" to render. The newly rendered canvas image is then compared

to the same image generated during the prior visit. If these images match

exactly, then the client is authenticated. Following the verification process, the

client is given a second canvas challenge to render. This challenge will be used

to authenticate the user during their next visit to the web page.

It is important to note that protocols such as this one are effective until a

change in system hardware or software is made. For instance, an organic GPU

driver update may alter how the canvas image is rendered. As a result, this

mechanism by itself is not reliable enough and other means of multi-factor

authentication are necessary to fall back on. One solution to this lack of fingerprint

stability is SMS or another means of authentication. Following the fallback

mechanism, the previous canvas fingerprint for a client may be overwritten with

the new one. Other solutions involve algorithms and ML models that link an

unrecognized fingerprint to a previous fingerprint by keeping track of these

predictable organic changes in hardware and software, such as clustering

algorithms.

P a g e | 10

Figure 2.4: A challenge/response-based authentication protocol using canvas

fingerprinting [12].

2.4 Mitigation Approaches

Anti-Fingerprinting Privacy Enhancing Technologies (AFPETs) typically

follow a few approaches. First, the normalization technique takes a “hide in the

crowd” approach. Also known as ‘attribute standardizing’ [2], this method aims

to reduce the entropy of fingerprints by setting attributes to default values. A few

examples of normalized values are the user-agent string, time zone, and screen

resolution. However, this technique requires a sufficient user base to

successfully create a “crowd” to hide in. Furthermore, if a user of a normalized

fingerprint were to change a single attribute value they would deviate from the

crowd. Thus, according to Laperdrix et al., a user would be easily fingerprintable

and may be more easily done than without the use of the normalization

technique. Despite these limitations, this method is actively used by the Tor

browser.

A secondary technique used by AFPETs is randomization. Also known as

‘attribute varying’ [2], these methods are similar to normalization ones. Instead

of “hiding in the crowd”, randomization techniques aim to create a “moving

target”. Rather than spoofing similar values for a given user base to reduce

uniqueness, this technique will regularly change device attributes or introduce

P a g e | 11

noise to generated features to change the collected fingerprint. By doing so, a

browser fingerprint is constantly changing, making it increasingly difficult for a

fingerprinter to track a user over time or across the web. Fingerprinting browser

feature research has proven that randomization is an effective countermeasure to

canvas fingerprinters [12]. To demonstrate this, we built our own canvas

fingerprint poisoner which can be found in our GitHub repository:

https://github.com/isseclab-udayton/MyWebGuard-AntiFingerprinting.

The third technique used by AFPETs involves blocking mechanisms. Also

known as ‘interaction blocking’ by [2], these methods block the execution of a

particular API or interactions with particular domains (block-listing). While

some techniques involve complete API blocking, such as the Tor browser

blocking the rendering of all canvas elements by default as a countermeasure to

canvas fingerprinters. Other techniques involve partial or temporal API

blocking, such as those based on identifying patterns in a web page’s behavior

like Ad-Graph [6].

https://github.com/isseclab-udayton/MyWebGuard-AntiFingerprinting

P a g e | 12

 Chapter 3: Problem Description

In this work, we attempted to reproduce the fingerprinting prototype

PingLoc. Designed by Wu et al. in [20], this technique leverages the link-state

information of a device to use as fingerprinting features. Despite what one might

think, the authors find that the link-state information is distinct and stable. As a

result, they can extract statistical features from a device’s link-state information

to form a "physical location fingerprint" [20]. Using link-state information as a

fingerprinting feature is arguably more invasive to user privacy than other

features, despite yielding less entropy. While link-based fingerprinting may not

be able to uniquely identify users, it is able to reveal information more sensitive

than the majority of information collected by other methods, geolocation.

The proposed multilateration cross-site image resource request scheme is

not restricted by the Same-Origin-Policy (SOP), Cross-Origin Resource Sharing

(CORS), or the X-Frame-Options HTTP header. According to the MDN Web

Docs[3], CORS prevents images from third-party origins from being loaded into

canvas elements. As an HTTP-header-based mechanism, CORS is a setting that

lets servers indicate other origins that may load the requested resource. A closer

examination of the types of requests affected by the CORS header reveals that

only images drawn to canvas elements can be blocked with this header. By

loading the third-party images into iframes, the multilateration image request

scheme is able to bypass SOP and CORS. As a result, this bypassing of policies

can be viewed as a form of leakage of device link-state information.

Furthermore, the X-Frame-Options HTTP response header, which

prevents browsers from loading particular pages into iframes or other objects,

does not affect the prototype. Largely, the X-Frame-Options header is used by

developers to prevent their web pages from being embedded into malicious ones.

With this single header developers can add a layer of security to their web page,

further preventing it from being included in click-jacking attacks. Although the

proposed scheme requests images and not web pages, the X-Frame-Options

header does not affect it because the ping time can still be parsed from the file

P a g e | 13

path included in the error. Although the original authors do not mention the X-

Frame-Options header [20], we feel it is worth mentioning as it directly pertains

to iframes. Nevertheless, the implemented multilateration cross-site image

resource request scheme is robust against these existing security mechanisms,

and a new security approach is necessary for the everyday web user to maintain

control over their privacy.

3.1 The PingLoc Prototype

In [20], Wu et al. "propose a multilateration cross-site image resource

request scheme to obtain the physical location fingerprint of users according to

time delay." The scheme sends image requests, or pings, to a set of

geographically diverse servers, collecting the time delay as the images return. More

specifically, they add the current date and time, when the ping is being sent, to the

end of the image path. As a result of the path concatenation, the image request

will most certainly return an error. After parsing the returned error for the start

time inside the file path, they calculate the round-trip time for the image request

based on the received time. These pings are sent out to a set of servers every

800ms and collected over a window of time. Thus, the resulting raw data is a

series of windows of request time delays organized by the destination server.

The link-state information is then derived from each server window by

calculating its statistical features. Seven statistical features are extracted from each

server window of data collection: Maximum, Minimum, Mean, Variance, Root-

Mean-Square, Skew, and Kurtosis. The first four of these features are relatively

intuitive, however, the final three deserve more attention. The Root-Mean-Square

of a window reflects the noise of the data window [20]. The Skew reflects the

skew direction and degree of data distribution [20]. Finally, the Kurtosis of a

window reflects the steepness of the data distribution [20]. The result of feature

extraction is a two-dimensional array of the seven features, where again sub-

arrays represent different pinged servers. This two-dimensional array is then

combined to form a single array of features by concatenating the sub-arrays.

Finally, the authors process the features using a min-max standardization

P a g e | 14

method; a method commonly applied to data used in machine learning

applications. By fitting the extracted features into the interval of [0,1], the

differing magnitude of feature values has less effect on subsequent model

training. The resulting trained model is able to localize user browsers [20].

3.2 Proposed Solution

The conflicting uses of browser fingerprinting by benign and malicious actors

create a paradox. On one hand, many organizations and corporations are trusted

by users. For example, a banking institution utilizing browser fingerprinting as a

means of challenge-response based authentication may be accepted by users as it

provides them with another layer of security over their sensitive information

[12]. At the same time, a user may not want a third-party executing

fingerprinting scripts through ads and tracking them as they browse the web.

However, a mitigation approach that completely blocks fingerprinting methods

would disrupt both benign and malicious cases. The question we aim to answer

is: How can we allow organizations we trust to fingerprint our browsers, while at

the same time blocking it from those we don’t trust?

In this work, we leverage the MyWebGuard policy enforcement mechanism

developed by Phung et al. [15] to enforce security policies on webpages that

engage in dynamic browser fingerprinting, i.e., fingerprinting methods that

require the client to generate unique data. MyWebGuard is implemented as a

browser extension, and functions as an Inline Reference Monitor (IRM) that

intercepts the JavaScript operations executed on webpages. Three types of

JavaScript operations can be monitored: method calls, object creation, and

property access. The IRM intercepts the execution of these operations, allowing

for security policy enforcement prior to the intended action. As this policy

enforcement mechanism monitors JavaScript operations, it makes an excellent

method to mitigate JavaScript-based fingerprinting attacks.

The Same Origin Policy (SOP) prevents JavaScript code from external

origins from accessing internal origin data. However, if an origin includes third-

party code the said code is treated as if it belongs to the first-party origin. A core

P a g e | 15

mechanism of the MyWebGuard framework is its ability to distinguish the

origins of JavaScript code. This mechanism allows security policies enforced by

the MyWebGuard IRM to provide a more flexible, fine-grained configuration. In

this way, MyWebGuard provides an extension to the SOP which Phung et al. refer

to as Code Origin Policy [15]. By enforcing code-origin policies with

MyWebGuard based on block lists, we can permit fingerprinting to be used for

challenge/response-based authentication from trusted domains while still

maintaining privacy where it matters to the user [12].

P a g e | 16

Chapter 4: Implementation

4.1 Reproducing the PingLoc Web Application

We implement a Go HTTP server deployed on Heroku to serve the static JS,

HTML, and CSS files. The server also receives the collected data from users,

storing the information in a MongoDB collection. In our reproduction of the

PingLoc web application prototype, we made a few modifications to how the data

is collected. Figure 4.1 shows the web app architecture and may be accessed on

Heroku: https://mywebguard-antifingerprinting.herokuapp.com/. Additionally,

the web application can be found on our Github: https://github.com/isseclab-

udayton/MyWebGuard-AntiFingerprinting/tree/main/testing/web_app.

Figure 4.1: Architecture of the data collection web application.

For our first modification, we sent the image requests to a different set of

servers. In the original implementation, Wu et al. [20] set a threshold of 800ms,

at which point the request packet is assumed to have been lost, to improve

sampling efficiency. As we experienced a far larger packet loss at this threshold

than the 3% experienced by the original authors, we hypothesized that the

https://mywebguard-antifingerprinting.herokuapp.com/
https://github.com/isseclab-udayton/MyWebGuard-AntiFingerprinting/tree/main/testing/web_app
https://github.com/isseclab-udayton/MyWebGuard-AntiFingerprinting/tree/main/testing/web_app

P a g e | 17

distance to the original servers was too far and a more localized set of servers

was necessary for more reliable data. Even if we’re mistaken and the distance to

the servers was not the culprit, the large amount of packet loss would have made

data collection and feature extraction much more difficult. Thus, we chose a more

localized set of servers. More specifically, we chose to use eleven university

servers from across the United States. Table 4.1 provides more information

about the servers used in our reproduction of the PingLoc prototype.

Our second modification to the data collection process is in how the

requests are sent to the servers. Instead of requesting by domain name, e.g., stan-

ford.edu as done by Wu et al. [20], our image requests are sent directly using the

IP address of each server. The presence of replicated content delivery networks

(CDNs) is the motive behind this change. Wu et al. use domains such as

baidu.com, iqiyi.com, and douban.com in their prototype implementation. These

domains belong to sizeable companies somewhat comparable to those of

google.com or facebook.com as the majority of these domains are in the Alexa

top 100. Large companies like these are known for their use of CDNs. By sending

image requests to these domains, DNS servers may route different clients to

different servers based on geolocation. For instance, a client on the east coast of

the U.S. pinging an east-coast facebook.com server may yield similar time delays

to a west-coast client pinging a west-coast server. Events such as these may have

a significant impact on the accuracy of the machine-learning model.

For our server selection process, we first chose eleven geographically

diverse universities. Each university website homepage was visited and the

domains were used in nslookup commands to obtain the IP addresses. We put

each IP address into various IP geolocation websites for additional verification

that the server is in the intended geographic area. If the consensus of the IP

geolocation websites suggested that the server may not be on or near the

university campus, we assume some sort of hosting service was being used and a

new university was chosen. Thus, by sending the image requests to universities,

as opposed to industry, and by using an IP address rather than the domain we are

P a g e | 18

confident that a particular server will be reached by all clients. A summary of the

servers used in our reproduction can be found in Table 4.1.

Finally, the minor modifications we made include the following: a cloud-

based deployment; the use of HTTPS, rather than HTTP; and data visualization

tools used during and after the collection process.

Servers Used in Reproduction

University State Domain IP Address

Stanford California stanford.edu 171.67.215.200

Oregon State Oregon oregonstate.edu 52.27.33.250

Auburn Alabama auburn.edu 131.204.138.170

Alaska Fairbanks Alaska uaf.edu 137.229.114.150

Texas A&M Texas tamu.edu 165.91.22.70

Penn State Pennsylvania psu.edu 128.118.142.114

North Dakota U. North Dakota und.edu 134.129.183.70

Colorado College Colorado coloradocollege.edu 198.59.3.123

Maine Maine umain.edu 130.111.46.127

Wisconsin Wisconsin wisc.edu 144.92.9.70

Florida State Florida fsu.edu 146.201.111.62

Table 4.1: The servers used in our reproduction of the PingLoc prototype.

4.2 Data Collection and Processing

Collecting data for a multilateration cross-site image resource request scheme is

a challenging problem. A geographically diverse set of user devices is necessary

for reliable data. Outsourcing the data collection process to businesses such as

Amazon’s AWS Device Farm may have been possible if a budget was available.

Another option was to create the data ourselves using a set of Virtual Machines

and a Virtual Private Network to make it appear to the network as if the devices

were in other locations. However, this second option was not chosen as the use of

VMs or VPNs may have had a significant impact on the reliability of the data

collected. Thus, we attempted to contact real users by sending out emails

P a g e | 19

requesting help with the process. Emails were sent to students, coworkers,

friends, or family; strongly encouraging them to forward it to others.

Furthermore, posts were made on LinkedIn to encourage those in related

academia or industry to participate.

As mentioned by Wu et al. [20], the collected time delays must go through

data processing and feature extraction before the data can be used in the testing

and training of a machine learning model. A complex network environment is

bound to experience congestion, packet loss, and other phenomena that may

introduce noise to the collected data. As a result, the raw time delay data itself

does not provide the information necessary for training a classification model.

Thus, in preprocessing the data by extracting statistical features we can reduce the

noise experienced by the model.

We first removed entire instances of data collection in quite a few cases. In

15 of these cases, the value of the city field, given by the user, was either null or

"City". These instances of data are unusable as the location of the user was

unknown, amounting to 21% of the dataset. In other cases, a few select instances

were excluded as the user experienced too much packet loss and thus statistical

features could not be extracted following their removal. The cause of these large

amounts of packet loss is largely attributed to the user browsing other tabs during

the data collection process. Furthermore, we excluded one instance where nearly

every time delay value was over 800ms, which should be impossible in theory as

the timeout threshold was set to 800ms; see Figure 4.2. Finally, we exclude the

cities with only one instance of data collection, as it is difficult to draw a

conclusion on the network of a city based on one user. Table 4.2 provides an

overview of the dataset, where only cities with more than one instance are

included. The remaining cities with only one instance are combined into the

‘Other’ category.

P a g e | 20

Table 4.2: An overview of our collected data. The Other category is every city with only

a single instance of data collected.

Figure 4.2: A removed instance containing invalid data. A trace of time delay values from

a client to a single server.

Database Overview

City Field Value Instances

"null" 12

"City" 3

"Dayton" 6

"Columbus" 6

"Liberty Township" 4

"Los Angeles" 2

"Framingham" 2

"Wildwood" 2

"Menomonie" 2

"Minneapolis" 2

Other 29

P a g e | 21

Following the exclusion of the invalid instances, the remaining dataset

was insufficient to train a machine-learning model. To obtain a sufficiently large

dataset we duplicated the valid raw data, introducing a small amount of noise.

Our process for creating synthetic data is as follows. For each server window in

an instance of valid data, we build a synthetic instance by first generating an

array of random values between zero and one. This array is then multiplied by

the noise value n and added to the original window, effectively introducing

anywhere between zero and n milliseconds of noise per time delay value.

Generating synthetic data in this way most definitely has its faults, which are

discussed later in the Limitations section. Although this is not ideal for training a

machine learning model, the generation of synthetic data was necessary to

complete this work.

After creating synthetic data based on the real dataset, we then selected

windows from each server trace in an instance. Wu et al. [20] discuss the

importance of selecting an appropriate window size, which is subsequently used

in feature extraction. Intuitively, they claim if the selected window is too small,

then the statistical features of the data are not properly reflected. Furthermore, if

the selected window is too large, then the large amount of similar neutral data

frames generated will also affect the training result. From experimentation, they

suggested a window size between 20 and 30 to obtain the greatest model

accuracy. Figure 4.4 demonstrates the synthetic traces derived from the real data

in Figure 4.3.

Although using a more local set of servers should cause significantly less

packet loss and reduced propagation delays, some packet loss still occurs. In our

implementation, we use the same time delay threshold of 800ms. As a result,

packets lost or packets with longer than 800ms propagation delay have their time

delays set to the threshold. As suggested by [20], we remove all time delays

greater than or equal to 800ms prior to feature extraction.

P a g e | 22

4.3 Feature Extraction

Wu et al. [20] select several statistical features to extract from each window.

As such, in each instance of data collected we extracted features for each server

trace, i.e., each of the eleven traces of pings included in an instance is reduced

in size to a 20–30-point subset. The features concerning each window are

Maximum, Minimum, Mean, Variance, Root-Mean-Square, Skew, and Kurtosis.

As the values of each statistical feature vary, a min-max standardization is

performed before model training. Each respective feature for each server is

standardized, i.e., for all data instances used to train a model the means of server

n’s pings are standardized together as opposed to all means among all servers

being standardized together.

We implement the same methods of feature extraction and min-max

standardization. However, we also include our own set of statistical features in an

attempt to improve model accuracy. We propose adding four new features to the

original set, increasing the total number of features extracted per server from

seven to eleven. These additional features include the number of lost packets,

interquartile range, interquartile first quarter (Q1), and interquartile third quarter

(Q3) and were inspired by [1].

Figure 4.3: A graph of the real traces of three Columbus users’ pings to one server.

P a g e | 23

Figure 4.4: A graph of the synthetic traces created from the real traces in Figure 4.3.

The first of these proposed features is a count of the number of packets

lost. Although it is important to remove these time delays before feature

extraction, disregarding them completely does not accurately reflect the network

link state information as these dropped packets may indicate network congestion.

Although the number of lost packets is low overall, i.e., the majority of values for

this feature remains at zero, if a particular infrastructure link experiences frequent

packet loss, then the cities utilizing this link would be more easily distinguishable

in theory.

The other three of the proposed features were inspired by [1] who use

electrocardiogram signals to identify healthcare patients by extracting statistical

features and training a Random Forest model, achieving greater than 99%

accuracy. Throughout the data collection process, we noticed that many traces of

pings followed an interesting pattern, see Figure 4.5. In some cases, the network

would be stable with the time delay from one ping to the next fluctuating within

a tight range, e.g., the time delays remain between 60ms and 80ms consistently.

However, during what appeared to be times of network congestion, the time

delays would reach similar maximums, e.g., the congested pings have a typical

range of 150ms and 200ms. Similar behavior can be seen in an ECG trace where

the high voltage points sensed by leads remain consistent. Although the rhythm of

the human heart is far more consistent and stable than that of a network, we find

P a g e | 24

that similarities may still be found in both traces. If this network behavior occurs,

it can be captured by the interquartile range, Q1, and Q3 features.

Figure 4.5: A trace of pings of a client to one server. The interquartile range, Q1,
and Q3 features are intended to capture the behavior of traces such as this one.

4.4 Machine Learning

For user classification/identification, we chose to implement a K-Nearest-

Neighbors (KNN) algorithm as this was the most accurate for Wu et al. [20].

The KNN algorithm assumes that similar data points appear near each other

when graphed. The algorithm classifies a new data point based on the existing K

data points nearby. The resulting prediction is then determined by a majority

vote. In our case, we assume that the link-state information is similar for users

geographically close to one another, e.g. users within the same city. The

resulting features extracted from the synthetic data were split into testing and

training data. We used 25% of the feature vectors for testing and the remaining

for training. We trained two machine learning models both with a K value of 45;

one for the original feature extraction method (Figure 5.1) and another including

our suggested features (Figure 5.2).

P a g e | 25

Chapter 5: Results

5.1 User Localization Through Machine-Learning Classification

By using the feature extraction method proposed by Wu et al. [20], a K

value of 45, and introducing a noise between 0 and 25ms to the real data when

creating synthetic data we were able to obtain an accuracy of around 91.2%; see

figure 5.1. This is notably less than the 98.5% achieved by [20] which is

discussed in the limitations section.

By using our feature extraction method, a K value of 45, and introducing

a noise between 0 and 25ms to the real data when creating synthetic data we

were able to obtain an accuracy of around 84.8%; see Figure 5.2. Thus, it

appears our feature extraction method was not as accurate as the original

proposed by Wu et al. in [20]. Although our model is less accurate than the one

produced by Wu et al., the resulting sets of training data look quite similar when

projected into two-dimensional space, see Figures 5.1 and 5.2. This suggests that

the errors seen in the model are likely due to the noise introduced to the data.

Indeed, the noise we introduced interrupts the trends intended to be captured by

our proposed statistical features. As a result, we are inclined to believe that our

data set, in its limited size, does not accurately reflect real-world data.

5.2 Mitigation with Code-Origin Policy Enforcement

The code-origin-based policies proposed in this work are enforced by

blocking the loading of images. The time delay information cannot be collected if

the image response is never fully received. As a result of the blocking policy, every

ping reaches the timeout threshold. The collected data is then not usable to

localize the client. Figure 5.3 shows the link-based fingerprinting attack in

action, and Figure 5.4 shows the result of activating the MyWebGuard extension.

As seen by the figures, the mitigation method successfully blocks any link-state

information from being collected.

P a g e | 26

Figure 5.1: This graph represents the training data obtained by using the original
feature extraction method. The features include the window: maximum,

minimum, mean, variance, root-mean-square, skew, and kurtosis. Different
colors represent different cities, see legend bottom left.

Figure 5.2: This graph represents the training data obtained by using our feature
extraction method. The features include the window: maximum, minimum,

mean, variance, root-mean-square, skew, kurtosis, interquartile range, Q1, Q3,
and packets lost. Different colors represent different cities, see legend bottom

left.

P a g e | 27

Figure 5.3: The traces of time delays for every server used in the data collection
process. The MyWebGuard extension is not active. Screenshot from

https://mywebguard-antifingerprinting.herokuapp.com/.

Figure 5.4: The traces of time delays for every server used in the data collection
process. The MyWebGuard extension is active. As seen, the fingerprinting

method is ineffective. Screenshot from https://mywebguard-
antifingerprinting.herokuapp.com/.

https://mywebguard-antifingerprinting.herokuapp.com/
https://mywebguard-antifingerprinting.herokuapp.com/
https://mywebguard-antifingerprinting.herokuapp.com/

P a g e | 28

Chapter 6: Limitations

First, the classification done by the PingLoc prototype [20] only reveals

the geolocation of a user. As such it cannot distinguish different users at the

same location, let alone users within the same city. Said differently, using link-

state information as a fingerprinting feature does not yield enough entropy to

uniquely identify devices. Despite these limitations, link-based device

fingerprinting remains a novel technique as it provides a new vector for

gathering client geolocation data.

The second limitation of the PingLoc prototype is its reliance on bursts of

HTTP requests. The large number of requests generated is bound to create

network congestion at larger scales. Consequently, the networks would begin

behaving differently as they handle the increased demand. The resulting changes

in the links of the network would also change the fingerprints, rendering all prior

fingerprints invalid.

As for our reproduction of the PingLoc prototype, one possible limitation

could be the use of university servers rather than large businesses with CDNs.

These businesses use CDNs to provide fast and reliable content to clients. Using

large business servers rather than university servers could result in more stable

network connections. Consequently, the link-state information extracted from

the time delay data may be more effective model training data. Furthermore, we

had trouble collecting a sufficient amount of data to properly train a machine

learning algorithm. We duplicated the valid data we had and introduced noise to

form synthetic traces. However, the randomization method we used to create the

noise significantly impacts the statistical features extracted from them. As a

result, the synthetic traces used for model training do not accurately reflect real-

world data, see Figures 6.1 and 6.2.

As mentioned previously and according to Laperdrix et al. [12], dynamic

feature-generating fingerprinting techniques may be used in challenge/response-

P a g e | 29

based authentication protocols. As an active fingerprinting feature reliant on

client-generated data, the link-based technique shares similarities with the

methods discussed by [12]. Thus, the PingLoc prototype may arguably be used

as a challenge/response-based authentication protocol. However, one major

aspect of link-based device fingerprinting that is not shared by the other active

fingerprinting techniques is the time it takes to generate a sufficient amount of

information to construct the fingerprint. In [12], canvas fingerprinting is an

excellent example of an active technique capable of challenge/response-based

authentication because of the entropy of the fingerprints it yields as well as the

speed at which they are formed. While canvas fingerprints are generated in less

than a few seconds, the link-based method proposed by [20] requires at least

twenty or more seconds of data collection to be able to extract the appropriate

statistical features and subsequently make an accurate classification. As a result,

link-based fingerprinting may not be suitable to be used in a challenge/response-

based authentication protocol despite it too being an actively generated

device feature. However, it may be sufficient as a form of continuous

identification following a more secure multi-factor authentication protocol. As

such, link-based fingerprinting may have better applications, such as recognizing

session hijacking attacks.

Figure 6.1: A graph of real ping traces of a few clients to one server. These are traces with

high variance and are less stable than most.

P a g e | 30

Figure 6.2: A graph of synthetic traces derived from the real traces in Figure 6.1. The

synthetic traces do not appear to reflect the statistical features of the real traces.

P a g e | 31

Chapter 7: Future Works

In this work, we propose four additional features that we theorize may

improve the accuracy of the PingLoc prototype. However, we were unable to

reliably test the impact these features have on model training. Future works

should include experiments to consider the effectiveness of these features.

Another interesting application for link-based fingerprinting could be in

VPN detection. A VPN tunnel may increase the collected time delays depending

on geographical distance. In theory, a user in New York connected to servers in

Los Angeles would likely experience higher pings than the local Los Angeles

users. Thus, it may be possible to train a machine-learning model to recognize

this overhead with link-based fingerprinting.

Finally, to our knowledge, only two works discuss the formalization of

browser fingerprinting [9, 16]. In [9], Lanze et al. propose a formal model

capable of representing any type of fingerprinting technique from biometrics to

various digital applications. Their formal model provided defined terminology

allowing different fingerprinting methods to be compared more easily. The

flexibility of their formal model is vital to comparing fingerprinting methods that

operate in fundamentally different ways. Although the formal definitions by

Pugliese et al. [16] are less extensive and less flexible, they provide a crucial

insight; the evolution of fingerprints over time. As the latter does not reference the

former, we believe a synthesis of the two formal models may be beneficial.

P a g e | 32

REFERENCES

[1] Turky N Alotaiby et al. “ECG-based subject identification using

statistical features and random forest”. In: Journal of Sensors 2019

(2019), pp. 1–13.

[2] Amit Datta, Jianan Lu, and Michael Carl Tschantz. “Evaluating anti-

fingerprinting privacy enhancing technologies”. In: The World Wide

Web Conference. 2019, pp. 351–362.

[3] MDN Web Docs. Cross-Origin Resource Sharing (CORS). URL: https:

//developer.mozilla.org/en-US/docs/Web/HTTP/CORS (vis- ited on

03/02/2023).

[4] Peter Eckersley. “How unique is your web browser?” In: International

Symposium on Privacy Enhancing Technologies Symposium.

Springer. 2010, pp. 1–18.

[5] Imane Fouad et al. “Did I delete my cookies? Cookies respawn- ing

with browser fingerprinting”. In: CoRR abs/2105.04381 (2021).

arXiv: 2105.04381. URL: https://arxiv.org/abs/2105.04381.

[6] Umar Iqbal et al. “Adgraph: A graph-based approach to ad and tracker

blocking”. In: 2020 IEEE Symposium on Security and Privacy (SP).

IEEE. 2020, pp. 763–776.

[7] Soroush Karami et al. “Carnus: Exploring the Privacy Threats of

Browser Extension Fingerprinting.” In: In Proceedings of the 27th

Network and Distributed System Security Symposium (NDSS). 2020.

[8] Amin Faiz Khademi, Mohammad Zulkernine, and Komminist Welde-

mariam. “An empirical evaluation of web-based fingerprinting”. In:

Ieee Software 32.4 (2015), pp. 46–52.

[9] Fabian Lanze, Andriy Panchenko, and Thomas Engel. “A Formaliza-

tion of Fingerprinting Techniques”. In: 2015 IEEE Trustcom/BigDataSE/ISPA.

Vol. 1. IEEE. 2015, pp. 818–825.

[10] Pierre Laperdrix et al. “Browser Fingerprinting: A Survey”. In: ACM

Trans. Web 14.2 (Apr. 2020). ISSN: 1559-1131. DOI: 10 . 1145 /

3386040. URL: https://doi.org/10.1145/3386040.

[11] Pierre Laperdrix et al. “Fingerprinting in Style: Detecting Browser

Extensions via Injected Style Sheets.” In: USENIX Security Sympo-

sium. 2021, pp. 2507–2524.

[12] Pierre Laperdrix et al. “Morellian analysis for browsers: Making web

authentication stronger with canvas fingerprinting”. In: International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer. 2019, pp. 43–66.

P a g e | 33

[13] Song Li and Yinzhi Cao. “Who touched my browser fingerprint? A

large-scale measurement study and classification of fingerprint

dynamics”. In: Proceedings of the ACM Internet Measurement

Conference. 2020, pp. 370–385.

[14]X. Lin et al. “Fashion Faux Pas: Implicit Stylistic Fingerprints for

Bypassing Browsers’ Anti-Fingerprinting Defenses”. In: 2023 2023

IEEE Symposium on Security and Privacy (SP) (SP). Los Alami-

tos, CA, USA: IEEE Computer Society, May 2023, pp. 1640–1657.

DOI: 10 . 1109 / SP46215 . 2023 . 00094. URL: https : / / doi .

ieeecomputersociety.org/10.1109/SP46215.2023.00094.

[15] Phu H. Phung et al. “A User-Oriented Approach and Tool for Security

and Privacy Protection on the Web”. In: (June 2020). DOI: 10.1007/

s42979-020-00237-5.

[16] Gaston Pugliese et al. “Long-Term Observation on Browser Finger-

printing: Users’ Trackability and Perspective.” In: Proc. Priv. En-

hancing Technol. 2020.2 (2020), pp. 558–577.

[17] Jordan S Queiroz and Eduardo L Feitosa. “A web browser fingerprint-

ing method based on the web audio API”. In: The Computer Journal

62.8 (2019), pp. 1106–1120.

[18] Konstantinos Solomos et al. “The dangers of human touch: finger-

printing browser extensions through user actions”. In: 31st USENIX

Security Symposium (USENIX Security 22). 2022, pp. 717–733.

[19] Antoine Vastel et al. “Fp-stalker: Tracking browser fingerprint evo-

lutions”. In: 2018 IEEE Symposium on Security and Privacy (SP).

IEEE. 2018, pp. 728–741.

[20] Tianqi Wu et al. “My site knows where you are: a novel browser

fingerprint to track user position”. In: ICC 2021-IEEE International

Conference on Communications. IEEE. 2021, pp. 1–6.

[21] Desheng Zhang et al. “A Survey of Browser Fingerprint Research and

Application”. In: Wireless Communications and Mobile Computing

2022 (2022).

	Mitigation of JavaScript-Based Fingerprinting Attacks Reliant on Client Data Generation
	eCommons Citation

	TH_Joslin_cover
	Honors Thesis

	TH_Joslin_title
	TH_Joslin_toc
	TH_Joslin_pages
	2.1 Overview of Fingerprinting Methods
	Browser Fingerprints
	Device Fingerprints
	2.2 Entropy and Stability of Fingerprint Features
	2.3 Challenge/Response-based Authentication
	2.4 Mitigation Approaches
	3.1 The PingLoc Prototype
	3.2 Proposed Solution
	4.1 Reproducing the PingLoc Web Application
	4.2 Data Collection and Processing
	4.3 Feature Extraction
	4.4 Machine Learning
	5.1 User Localization Through Machine-Learning Classification
	5.2 Mitigation with Code-Origin Policy Enforcement

