
University of Dayton Law Review University of Dayton Law Review

Volume 19 Number 3 Article 3

4-1-1994

Software Reverse Engineering in the Real World Software Reverse Engineering in the Real World

Andrew Johnson-Laird

Follow this and additional works at: https://ecommons.udayton.edu/udlr

 Part of the Law Commons

Recommended Citation Recommended Citation
Johnson-Laird, Andrew (1994) "Software Reverse Engineering in the Real World," University of Dayton Law
Review: Vol. 19: No. 3, Article 3.
Available at: https://ecommons.udayton.edu/udlr/vol19/iss3/3

This Symposium is brought to you for free and open access by the School of Law at eCommons. It has been
accepted for inclusion in University of Dayton Law Review by an authorized editor of eCommons. For more
information, please contact mschlangen1@udayton.edu, ecommons@udayton.edu.

https://ecommons.udayton.edu/udlr
https://ecommons.udayton.edu/udlr/vol19
https://ecommons.udayton.edu/udlr/vol19/iss3
https://ecommons.udayton.edu/udlr/vol19/iss3/3
https://ecommons.udayton.edu/udlr?utm_source=ecommons.udayton.edu%2Fudlr%2Fvol19%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/578?utm_source=ecommons.udayton.edu%2Fudlr%2Fvol19%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/udlr/vol19/iss3/3?utm_source=ecommons.udayton.edu%2Fudlr%2Fvol19%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mschlangen1@udayton.edu,%20ecommons@udayton.edu

SOFfW ARE REVERSE ENGINEERING IN THE
REAL WORLD

Andrew Johnson-Laird

I. INTRODUCTION

One legal definition of reverse engineering is "a fair and honest
means of starting with the known product and working backwards to
divine the process which aided in its development or manufacture."l In
Secure Services Technology, Inc. v. Time & Space Processing," a
United States District Court defined reverse engineering as "the pro
cess of starting with a finished product and working backwards to ana
lyze how the product operates or it was made."s Both definitions focus
on the process and not the product of reverse engineering. This point is
overlooked by those who seek to ban software reverse engineering be
cause it has the capability of being used (with difficulty) to produce
infringing copies of original programs. In the mechanical world, reverse
engineering taking something apart to see what makes it tick, is a well
established principle. In fact, it is considered prudent to reverse engi
neer a competitive product specifically to avoid infringing any patented
technology the product may contain.

Software reverse engineering, also called "decompilation,"4 differs
from mechanical reverse engineering. First, intermediary copies of the
original software must be made and second, to a much larger degree, it
is an additive process. The programmer starts with the lowest possible
level of abstraction devoid of any higher level information, and then
adds personal knowledge and experience. Software reverse engineering
is difficult and time consuming. It represents a remedy of last resort for
obtaining information not otherwise available. It is not the preferred

• President, Johnson-Laird, Inc., Portland, Oregon. Johnson-Laird, Inc. specializes in the
preservation and analysis of computer-based evidence, including digitized audiovisual data, for
such purposes as plagiarism assessment, misappropriation of trade secrets and patent infringment.

I. Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 476 (1974). Although this case ad
dressed the conflict between state and federal laws regarding trade secrecy, this definition is valid
when applied to software reverse engineering.

2. 122 F. Supp. 1354, 1361 n.16 (E.D. Va. 1989). This was a computer software copyright
infringement case, hence, perhaps, the definition is more appropriate to the process of software
reverse engineering.

3. [d.
4. Decompilation is, in fact, a mythical process. It appears to have sprung into use as an

antonym for "compilation" - the process of transforming the human readable form of computer
software into the form that can actually be run on a computer. While the creation of the word to
describe the reverse process is easy, the process of decompilation is impossible.

843

Published by eCommons, 1993

844 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

method for "fast buck" software thieves. Thieves have no need of re
verse engineering; their objective can more easily be accomplished by
outright copying of the original diskettes and manuals.

Opponents of software reverse engineering, perhaps playing on the
fact that many in the legal profession and the judiciary think that they
may not understand software reverse engineering, have been indulging
in technological fear-mongering. They have presented arguments
against reverse engineering that, on closer technical examination, can
be seen to be sophistry superimposed on technical ignorance of software
development. Recent developments in Japan, where new copyright law
is being considered which explicitly permits reverse engineering, have
prompted the appearance of disinformation, even in respected
newspapers:

Reverse engineering essentially allows a company to take a software pro
gram, break it down into the ones and zeroes of computer language and
then essentially duplicate it."

United States companies, like IBM, say they are particularly concerned
about a form of reverse engineering known as "decompilation." In that
procedure, software engineers "translate" a computer program's ones
and zeroes of binary code into a more readable language. That trans
lated version can be easily modified and "recompiled" into a new pro
gram that is only slightly different from the original, a prospect that
unnerves many U.S. software companies.'

American officials say decompilation involves copying software, which is
illegal. There are legal ways, they say, to find out how a program works.
In addition, they say, once a program has been decompiled it can be
changed somewhat and recompiled into a new program in a way that
makes it hard to tell whether the original had been copied.'

These quotations reflect a jaw-dropping degree of ignorance of the pro
cess of reverse engineering and ascribe magical and mythical qualities
to "decompilation." As the old adage goes, one cannot believe what one
reads in the newspapers; this should be extended to journalists who no
longer should believe what they read in press releases.

This Article will attempt to show that, although the process of
software reverse engineering is difficult, it is not difficult to understand
what software reverse engineering is. Additionally, this article will ex-

S. David P. Hamilton, U.S . Criticizes Japan On Panel Software, WALL ST. J ., Nov. 10,
1993. at BS.

6. [d.
7. Andrew Pollack, U.S. Protesting Japan's Plan to Revise Software Protection, N.Y.

TIMES, Nov. 22, 1993, at D2.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 845

plain why every computer programmer uses this process at one time or
another. Finally, this article will explain what information can and can
not be obtained by software reverse engineering. It is beyond the remit
of this article to address the issue of whether or not software reverse
engineering is legal under current law and what level of similarity may
exist without infringement. This paper will explain software reverse en
gineering by using common everyday paradigms. Additionally, this pa
per will provide a detailed example of software reverse engineering,
with sufficient intellectual life support to permit non-programmers, in
cluding journalists, to involve themselves in the experience. Finally, this
paper addresses some of the technically erroneous beliefs propagated by
those who oppose the technologically necessary process of reverse
engineering.

II. THE ISSUES

A. The Right To Create Competitive Or Compatible Products

For a software developer, the crux of the software reverse engi
neering issue is expressible in two questions. First, is it appropriate
and/or legal for a developer to create software that competes directly
in the marketplace with an existing successful program? Second, is it
appropriate and/or legal for a developer to create software that works
with the data used by another existing successful program, effectively
augmenting the capabilities of the existing program but with the self
serving effect of being attractive to an existing body of users of the
existing program?

If the answers to these questions are yes, then software reverse
engineering is a necessary process. Accordingly, reverse engineering
and the production of intermediary copies under the "fair use" provi
sions of Copyright Law should be embraced by the courts.8

If the answers to these questions are no, and the courts take the
position that software reverse engineering should become a proscribed
act,' then it will introduce the intellectual equivalent of prohibition to
the software industry. The problem is that in the real world, computer
programmers have no choice but to reverse engineer software, their
own and that of others, in order to understand what that software is
really doing.

8. This specifically and explicitly does not mean using software reverse engineering to pr<r
duce infringing copies of the original software. Surely an infringing computer program would be
viewed as infringing by a court without regard to the process by which it was produced. The
product is easily separable from the process that produced it to all but those opposed to software
reverse engineering.

9. This position was nearly taken when the European Commission was drafting the recent
software directive to harmonize copyright law within the European Community.

Published by eCommons, 1993

846 UNIVERSITY OF DAYTON LA W REVIEW [VOL. 19:3

B. Understanding Software Reverse Engineering

There are two reasons why one needs to perform software reverse
engineering. First, one needs to reverse engineer to understand how a
computer program really works. Second, it is done to understand why a
computer program really does not work. Superimposed on these two
reasons are several higher level motivations such as: the desire to pro
duce a new program that is functionally equivalent to, or better than
the program under study; the desire to produce a new program that
either interacts directly with the program under study or exchanges in
formation with it; and the desire to understand why a new program
fails to work in its intended environment. Thus, the motives are compe
tition, compatibility and diagnosis.

There are only four ways to perform software reverse engineering:
(1) read about the program; (2) observe the program in operation by
using it on a computer; (3) perform a static examination of the individ
ual computer instructions contained within the program; or (4) perform
a dynamic examination of the individual computer instructions as the
program is being run on a computer. From a technical point of view,
reading the manuals, running the program, and watching what the pro
gram does, are viewed as nothing more than using the program. The
programmers view static and dynamic examinations of a computer pro
gram as the only two activities which constitute reverse engineering. If
one's motivation is to understand how a program works, and documen
tation is available, reading the documentation may provide some useful
information. Documentation, by its very nature and the manner of its
production, is always incomplete, inaccurate, and out-of-date when
compared to the actual software itself. After all, the documentation is a
statement of intent and it is merely a word picture of the program, not
the program itself.

If one is motivated to reverse engineer a program because of an
unexpected failure, and the intent is to understand why the program
does not work, then documentation will only rarely provide the requi
site information. Not surprisingly, very few software vendors describe
the ways in which their programs might malfunction. Listing the
problems in the manual would be regarded as bad marketing strategy.
Besides, vendors do not know how their program will fail since if they
did, it would be more cost-effective to correct the problem than to write
about it.

C. Opponents Claim Reverse Engineering Is Unnecessary

Reverse engineering opponents argue that it is an unnecessary pro
cess. They claim that "any successful software product can be copied
and decompiled with a flick of a console key, without significant invest-

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 847

ment or risk. Thus the decompiler can erase the lead time of the pro
gram developer and significantly reduce the originator's market for the
authored work."lo While these lines of "reason" sound true, in practice
they are false. They ignore that computer programmers have routinely
used reverse engineering to make up for inadequate documentation for
the past 30 years.ll Further, software thieves have yet to be seen to
steal by reverse engineering. Additionally, the American software in
dustry, even with rampant reverse engineering, leads all nations in that
industry.l2

The documentation either fails to provide sufficient details of the
ideas embodied within· the program, or it is completely absent. iS Thus,
if documentation is available, it will not tell why a program is failing .
unexpectedly. Andrew Schulman, co-author of Undocumented DOS
and Undocumented Windows,l. observes:

[T]he problem isn' t that they [Microsoft] have some Machiavellian con
spiracy against the rest of the software industry, but instead that they
have extremely informal approach to documentation, and to Windows
itself, that is out of touch with their near-monopoly position in the indus
try . .. their absolutely wretched documentation is getting intolerable
given their importance in the industry. 11

A quick inspection of any worthwhile technical bookstore will reveal
numerous books that augment well respected software products whose
documentation is similarly wretched. All such books, to varying de
grees, are borne of reverse engineering.

Observing a program in operation gives clues to what a program
can do. To some degree a skilled observer can infer some general de
tails of how the program might be working, assuming that the program
is working rather than failing mysteriously. As the following examples
will show, the only option guaranteed to provide accurate, complete in
formation is to examine the software itself.

10. Irving Rappaport, EC Threatens Software Protect 1011, SAN FRANCISCO RECORDER, Feb.
22, 1990, at 6 (Mr. Rappaport was writing as Apple's Intellectual Property Counsel).

11. This observation is based on the author's personal experience in the computer industry,
which commenced in 1963.

12. Brief of Amici Curiae Computer and Business Equip. Mfrs. Assoc. at 30, Sega Enters.
Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) (No. 92-15655) (footnotes omitted).

13. For example, documentation is absent in the case of Nintendo and Sega home entertain
ment systems.

14. In this context, "DOS" refers to the Microsoft Disk Operating System, the software
that allows an IBM personal computer (PC) or compatible computer to run application programs
such as WordPerfect, Lotus 1-2-3 and so on. "Windows" refers to Microsoft Windows, a so-called
Graphical User Interface that makes the PC's user interface appear more like that of the Apple
Macintosh. Both of these very successful books are published by Addison Wesley.

15. Andrew Schulman, Illtroductioll to WOODY LEONARD &; VINCENT CHEN. HACKER'S
GUIDE TO WORD FOR WINDOWS vii (1993).

Published by eCommons, 1993

848 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

D. Examples Of Reverse Engineering

1. An Everyday Illustration Of Competitive Reverse Engineering

With one assumption, there is a good, complete and accurate non
technical example for software reverse engineering. The assumption re
quired, merely to make the paradigm complete, is that the recipe for a
commercial food product is protectable under copyright law in addition
to its protection under trade secrecy and patent law.

Hypothetical facts: Newco manufactures food products. As part of
its expansion, Newco has decided to create a sauce that will compete in
the same market as Al Steak Sauce. Ie It has further decided that the
way to do this is to create its own sauce that will have characteristics
matching those of Al Steak Sauce: the same color, the same viscosity,
the same spicy taste, and other similar traits.

Presuming that there is no law barring the production of a "fully
compatible" steak sauce, the challenge facing Newco is to learn the
recipe describing the ingredients and the manufacturing process by
which Al Steak Sauce is manufactured.

What information exists in the world about Al Steak Sauce?
First, there are vast quantities of the sauce itself. Second, there doubt
less is a closely guarded written recipe. Third, there are advertisements
for Al Steak Sauce, including images of the Sauce. Finally, there are
probably food critics' reviews of the sauce.

The food critics' reviews, along with human taste testers and the
ingredients listed on the side of the bottle, will provide Newco with
subjective information about taste, texture, and general statements
about possible ingredients. Professionals in the field are remarkably
good at identifying individual ingredients when barraged by complex
compound tastes. In all probability, Newco's own laboratories would
perform sophisticated chemical analyses, perhaps using a gas chro
matograph, to isolate each of the organic compounds in the sauce. This
research will yield a large amount of data on the chemical composition
of the Al Steak Sauce. But when all the research data is gathered, will
it provide Newco with the specific information on: (a) the precise in
gredients in Al Steak Sauce; or (b) a cost-effective manufacturing pro
cess to make the sauce? Clearly it will not. Merely knowing the chemi
cal ingredients does not permit the cost-effective manufacture of steak
sauce any more than one can create fine wine in the laboratory alone.
Neither does it assure Newco of approval by the Food and Drug Ad
ministration (FDA).

16. Al Steak Sauce is a rich brown sauce, manufactured by Brand & Co. in England and
distributed in the United States by Nabisco.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 849

For Newco to produce a commercially viable competitive steak
sauce, it must employ skilled food chemists, culinary experts, and food
manufacturing engineers who, by the addition of their skill and experi
ence, can examine the research data and produce experimental versions
of recipes and manufacturing processes. Only with these specialized
skills, and the expenditure of a considerable amount of time, money,
and effort can Newco produce a close likeness of At Steak Sauce.

Could Newco have reconstructed a verbatim copy of Brand &
Co.'s exact recipe? Almost certainly not. There will, of course, be simi
larities. Both will be recipes for steak sauce. But would the same major
ingredients be present in identical proportions? Would they be cooked
and combined in exactly the same sequence? Would Newco's text be
substantially similar to that of Brand & Co.'s text? It is very unlikely
that these results would occur.

2. An Everyday Illustration Of Reverse Engineering For
Compatibility

To illustrate a second important characteristic of reverse engineer
ing in the real world, assume that the FDA received reports that some
people were becoming ill after eating Newco's steak sauce in combina
tion with Grey Poupon mustard. The FDA, based on a 100% correla
tion of the reports they have received, suspects that there is some ad
verse relationship between Newco's sauce and the mustard. The FDA,
in all likelihood, would not only request access to the recipe and manu
facturing process of both the steak sauce and the mustard, but would
also want to test the products themselves.

It would not make sense for the FDA to examine the recipes and
the manufacturing processes for the steak sauce and the mustard and
then make its determination as to what the problem was based only on
these materials. If the FDA found what it suspected to be the problem
in the recipes, would the general public's best interest be served if they
took the investigation no further? If the FDA found no apparent prob
lem in the recipes, could it sensibly assert that the problem simply does
not exist? Common sense tells us that it would make no sense at all to
examine only the paperwork. The recipes and manufacturing processes
are, after all, nothing more than representations of the sauce and the
mustard; they are a statement of intent as to what the sauce and the
mustard ought to be rather than what they actually are. They are not
the sauce and the mustard themselves.

The French surrealist painter, Rene Magritte, made this point
very eloquently in his image, "The use of a word," L'usage de la
parole:

Published by eCommons, 1993

850 UNIVERSITY OF DAYTON LAW REVIEW (VOL. 19:3

Figure 1

The literal translation of Magritte's caption is: "This is not a
pipe." Indeed his painting is not a pipe. It is a painting of a pipe, a
representation of an object as distinct from the object itself. It is this
same distinction that must be remembered in reverse engineering:
Problems only exist in the objects (or object code) themselves, not in
representations of the objects. In this hypothetical situation, common
sense indicates that the problem really only exists in the sauce and in
the mustard. While the paperwork might give a hint as to the problem,
it cannot be used as a substitute for what it represents.

To understand the precise details of the problem, the sauce and
mustard manufacturers must examine their respective products. Hav
ing identified the rogue chemicals involved, the recipes might only serve
to corroborate or explain the phenomena observed in the products
themselves.

3. Shifting The Paradigm To Software Reverse Engineering

The preceding examples of Newco's steak sauce are an accurate
model of the characteristics of software reverse engineering. To see
this, imagine that Newco was a software company that wishes to pro
duce a competitive version of Lotus 1-2-3. As before, Newco must start
by considering what information might be available for study. Lotus
Development Corporation will have a design or a blueprint of the over
all design of 1-2-3. That corporation will also keep the human readable

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 851

source codel7 as a closely guarded trade secret. Newco should also look
to the actual product as distributed into the market place. This will
include user documentation that explains how the program can be used,
and the object codelB that controls the computer when 1-2-3 is loaded
into the computer.

This software paradigm is a replica of the steak sauce paradigm.
The steak sauce recipe is the textual representation of the sauce and
corresponds directly with the computer software source code. In a very
real sense, the steak sauce recipe is the "sauce code." It contains a
textual description of the finished product, complete with information
at a high level of abstraction, describing the ingredients, the propor
tions, and the process by which the steak sauce is manufactured. All of
this high level of abstraction information is absent from the finished
product. The actual steak sauce is the product which corresponds di
rectly with the object code.

4. Software Reverse Engineering for Competitive Reasons

As before, Newco will not have access to Lotus 1-2-3's design doc
umentation, nor will it have access to the software source code. The
only information available to Newco is the user documentation and the
actual object code that makes up the 1-2-3 program itself. To produce
a competitive product, Newco must understand certain attributes of
Lotus 1-2-3.1B These attributes include: the functionality embodied in
1-2-3/~o the user interface,u and the data file formats/~2

Much of the information that Newco needs to create a design for
a competitive product can be gleaned from the hundreds of pages of
documentation provided when one "purchases" (technically, licenses) a
retail copy of Lotus 1-2-3. The user guide describes how to make Lotus

17. Source code is the textual form of a computer program. It contains two ingredients, a
stilted quasi-mathematical form of the instructions that will control the computer, and co-mingled
with this, annotations ("comments") written by the programmer that provide high levels of ab
straction information to enhance the understanding of other programmers who read the source
code.

18. Object code is the computer program in a form that can actually be run on the com
puter. It contains the Os and Is in so-called "binary" notation that control the computer's opera
tion. Object code, sometimes called "executable binary," is very difficult to comprehend even for
skilled computer programmers. It contains too much information of the wrong kind to permit easy
understanding. All of the high level abstraction information is removed during the process of
transforming source code into object code.

19. It is a moot point from the technical perspective as to whether these attributes can be
used by Newco without infringement.

20. Functionality means what the user can do with program.
21. The user interface is the external appearance and way in which the user controls what

1-2-3 does.
22. The data file formats are computer representations by which previously stored informa

tion can be input into Lotus 1-2-3, and the representations output by \-2-3.

Published by eCommons, 1993

852 UNIVERSITY OF DAYTON LA W REVIEW [VOL. 19:3

1-2-3 perform various calculations. The program itself also provides an
experimental test-bed that can be used to verify that the program
works as the documentation describes. A Newco programmer can glean
significant information about the user interface by merely using Lotus
1-2-3, often deriving clues of the inner workings just by observing the
program's external behavior.

External observation of the program and the documentation will
provide Newco with much of the information it needs about the func
tionality contained within the program, with the exception of those ar
eas where the program malfunctions (commonly called a "bug"), or
where the documentation is erroneous or incomplete. The general rule,
as stated before, is that all documentation for all computer software is
incomplete and inaccurate. Any seasoned computer user can recount
experiences where an error message appearing on the computer's dis
play is not described in the manual, or where the manual and the com
puter program's behavior are at odds with each other. The program's
documentation is not the program, but is a representation of the pro
gram, and of what the program should be (or what the technical writer
who wrote the manual thought it would be).

Consider a hypothetical problem with the Net Present Value
mathematical function in Lotus 1-2-3. Newco's programmer observes
that under certain specific circumstances, it computes a result that is a
few cents different from that same calculation done using Borland's
Quattro Pro. Although Newco is developing a competitive product, it
must now make a judgment call as to whether it should be "compati
ble" with this possibly erroneous calculation. Should Newco's product
produce the same results as Lotus 1-2-3 even though those results are
slightly in error? Experience with producing competitive computer
products thus far provides a clear answer: If one wishes to compete
with an existing product, there should be no measurable difference, at
least insofar as such things as standard calculations, between one's own
product and the existing product.

Absent any explanation in the user documentation of why 1-2-3's
Net ·Present Value function does what it does (and not many software
vendors' manuals describe how their products fail), Newco's only re
course is to examine the object code for the 1-2-3 program itself. This
object code is the only entity in which the problem exists. It is the only
entity available to Newco, short of industrial espionage or licensing the
source code for Lotus 1-2-3. It is this examination of the object code
that is the first phase of software reverse engineering.

5. Software Reverse Engineering for Compatibility

For an example of software reverse engineering for compatibility,
imagine that Newco, forewarned by Atari's demise, wishes to create a

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 853

video game to run on the Super Nintendo Entertainment System
(SNES) base unit. Unless the game cartridges that plug into the base
unit are produced under license and manufactured by Nintendo, the
games they contain will not run in the SNES base unit.

This "lockout" mechanism uses two special purpose computer
chips, one in the game cartridge and one in the SNES base unit. These
purpose-built central processing chips are dedicated to the specific task
of interrogating each other in the manner of two jugglers tossing
pseudo-random (and predictable) sequences of Os and Is back and
forth to each other. If one electronic juggler fails to send a correct
digit, fails to send it at the right instant in time, or fails to pause for
the correct length of time, the other juggler, detecting the impostor,
can stop the SNES base unit from running the game program in the
cartridge.

Note that Newco is not motivated by the desire to produce a com
petitive SNES base unit, nor (necessarily) to produce game cartridges
with the same types of games as Nintendo. Newco's intentions are
merely to take advantage of the existing marketplace for new games.
The more games that exist for a particular base unit, the more that
base unit will be attractive to new buyers, so it could well be argued
that Nintendo reaps some benefit from each new game available.

Given that Newco chooses to produce games for the SNES, should
it be forced to sign a license agreement with Nintendo and have
Nintendo manufacture the game cartridges with the special chip con
tained in them? Or is it legitimate that Newco could elect to divine the
inner workings of the special computers and produce a computer chip
capable of generating the correct mating calls? This is not the same as
asking whether Newco should be able to copy the computer code within
the special computer chip. All Newco's engineers need to do is under
stand the rules governing the pseudo-random stream of Os and 1 s, and
the rules for governing the pauses that occur every so often in this data
stream.

For the purposes of this hypothetical situation, let us assume that
Newco elects not to become a Nintendo licensee either because it can
not afford to, or perhaps because it objects to being held to ransom.IIS

In this case, what information is publicly available to tell Newco how
to write a game for the Nintendo base unit (how to control the various
chips in the base unit that control the display, or control the sound
generator)? What publicly available information will tell them how to
"unlock" the base unit by appearing to be a licensed game cartridge?

23. Would Newco have to sign a license to write a game to run on the IBM personal com
puter, for example?

Published by eCommons, 1993

854 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

The answer to both questions is none. There are no published manuals,
books, or magazine articles describing any of the internal details of the
SNES base unit. Neither is there any publicly available information on
how the two special computers in the base unit and the game cartridge
respectively perform their mating calls.

Newco's only recourse, absent a license with Nintendo, is to ana
lyze the following components of the SNES system: the base unit's
hardware and software; a game cartridge's software; and the special
computer chips used to lock out game cartridges not manufactured by
Nintendo. By this hardware reverse engineering, Newco can divine the
following: how to write games that will run on the SNES base unit,
and how to emulate the behavior of the lockout chip on the game car
tridge so that the base unit will permit the game program to run.

Opponents of reverse engineering have, in the past, asserted that
there was no need to reverse engineer because all the information
needed for compatibility could be obtained by observing a program in
operation and by studying the available documentation.24 These oppo
nents tend to fall silent when confronted by the previous hypothetical
situation since there is no documentation whatsoever, and the lockout
chips operate invisibly, producing no output to be observed. Even when
an electronic device is attached to the communication lines between the
two lockout chips, it would only reveal the intermittent bursts of
pseudo-random Os and Is of pseudo-random length being transmitted
at pseudo-random intervals.

Ignoring how Newco should react, in the real world Newco would
be left confronting two problems: (1) how to write games for the base
unit; and (2) how to make a lockout chip that will be accepted by the
lockout chip in the base unit. Newco's engineers, observing the data
stream between the lockout chips, would probably conclude that some
quite sophisticated process was being used by the chips both to gener
ate the data bursts, and to control the lengths of these bursts and the
lengths of the silences between data bursts. It would not take many
hours to realize that the only sure method to understand the underlying
ideas behind the lockout chip's algorithms would be to reverse engineer
the actual code. Merely observing the data stream itself is nearly use
less and very time-consuming. How long should one observe it? 100
hours? 200 hours? What if after 201 hours or on some specific date the
lockout chips are designed to switch to a different algorithm? Clearly,
Newco's engineers would not be able to divine the correct length of
time during which the observations must be sustained. Merely using
the data stream to divine the underlying algorithm is also error prone.

24. Rappaport, supra note 10, at 6.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 855

Can one really discern with certainty an underlying process merely by
observing the output? Accuracy increases the longer one continues to
observe, and the question then reverts to: How long is enough? An ex
amination of the code in the lockout chips, although it might be time
consuming and laborious, is unequivocal. The examination will define
completely and precisely the rules being used to generate the data
stream, whether for 100 milliseconds or 100 years.

Learning from the error of Atari's ways, or more specifically, the
error of Atari's then current outside attorneys' ways, Newco would
know better than to attempt to get the deposit copy of Nintendo's lock
out chip source code from the Copyright Office under the guise that it
was required for litigation. 211 Instead, Newco would again be forced to
take the more costly and laborious route of physically reverse engineer
ing the lockout chips, removing the protective plastic that encapsulates
the chip, and creating photomicrographs of the read-only memory con
taining the mating call data-generating code. In many sp~cial-purpose
microcomputers, the Os and Is that make up the program are not laid
out in neatly serried ranks waiting for the reverse engineer to happen
by. Usually, they are stored in a "scrambled" form, either for reasons
of engineering or manufacturing simplicity, or in some cases, to dis
courage reverse engineering.

As the lockout chips are probably special purpose computers,
Newco engineers would not be able to make any sense of the Os and Is
that make up the mating call program until they had also reverse engi
neered the computer chip itself. Is an ADD instruction 0011 or 101O?
It all depends on how the central processing unit that forms the heart
of the computer chip has been designed. Only then would Newco's en
gineers be able to examine the object code for the mating call data
generation program and truly understand how they could create their
own computer and code to generate appropriate mating call data. Of
course, Newco would have to be particularly careful to ensure that the
resulting computer chip and computer code was not substantially simi
lar to the Nintendo lockout chip and computer code. Infringement is
still infringement regardless of the process used to produce the final
product.

Newco's engineers must also reverse engineer the Nintendo base
unit. Observation of the silk-screened notations visible on some of the
integrated circuits might give the engineers some clue as to their func
tions. Careful observation of the printed circuit board's wiring will add
more clues. But many of the more complex special-purpose chips will

25. As was the case in Atari Games Corp. v. Nintendo of America. Inc., 975 F.2d 832 (Fed.
eir. 1992).

Published by eCommons, 1993

856 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

either have no markings, or will bear only proprietary markings that
mean nothing to the outside world.

Again, Newco's engineers will realize fairly quickly that the only
certain method of divining how to write a game is to examine the ob
ject code contained within existing games. By examining other games,
they will be able to see how the games initialize the various bits and
pieces of hardware in the SNES, and how they make graphic images
dance across the screen and play the corresponding music.

This hypothetical situation is not an extreme case. In other con
texts, there might be some documentation available. Whatever docu
mentation is available, however, can be guaranteed to be inaccurate,
incomplete and out-of-date. Therefore, the situation quickly reverts to
match the "no documentation at all" scenario described above. The
only entity that will provide certain and accurate knowledge of the re
quirements for compatibility is the software and/or the hardware itself.

E. Software Forward Engineering

To truly appreciate both the difficulty of software reverse engi
neering and the flaws in reasoning exhibited by some of those who op
pose it, it is necessary to have some understanding of the process of
software development ("forward" engineering) as a foundation for re
versing the process. Software development consists of several phases,
although not usually as well defined in the real world as the following
paragraphs might imply.

1. The Specification

A software designer creates a specification embodying all of the
ideas that constitute the program to be developed. Embedded in the
specification are all of the higher levels of abstraction information. This
information includes the reasons for creating the program, the require
ments of time and space, and the general algorithms that must be per
formed by the program.

2. The Source Code

This specification is handed to a programmer who creates "source
code" for the program. This source code is a human readable form of
the program, written in a procedural artificial language invented specif
ically for stating what a computer must do to solve a problem. By care
ful choice of symbolic names for various objects within the program, a
programmer can give vitally important clues of his or her intentions to
anyone who reads the source code. For example, the statement in the
"C" language:

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994J ENGINEERING IN THE REAL WORLD

if ((flagl == 1) && (flag2 -- 1))
(
just_do_it () ;
}

857

snaps into chilling reality when one is told that: (a) this code example
may be found in a giant program running in a giant computer buried
under a mountain in Wyoming (at Norad's HQ); (b) this program tests
two conditions and if both are true, decides to do something; and (c)
with only minor changes that add in higher-level of abstraction infor
mation the code appears:

if «incoming missiles == 1) && (presidential_approval 1))
(-
launch retaliatory strike();
} - -

Programmers also embed many lines of so-called "comments."
This commentary, which plays no part in the guidance of the computer,
is merely text interleaved between language that guides the computer.
It is the equivalent of marginal annotations and is intended to assist the
original programmer or those that follow in understanding why the pro
gram was crafted in a particular way, or to explain a particularly com
plex flow of logic. There are no restrictions on what must or must not
be written in comments, but inevitably they are the repository of all the
knowledge that the programmer has in his or her head as the code is
being created. One also frequently sees a certain irreverence in the
commentary which is a by-product of the exuberance of programmers
and is best not taken too seriously, as illustrated by the following
example:

/* The following code tests whether or not to start World War IV
(World War III was in the Persian Gulf). If this code "ever gets
executed, put your head between your knees and kiss yourself goodbye.
By the way, the incoming missiles variable should have been set to
something meaningful before the CPU gets to this point.
At least I think it is let me see oooohhhh maybe not ...

if ((incoming missiles == TRUE) && (presidential_approval == TRUE))
(-
launch retaliatory strike();
} - -

The essence of these comments is that they contain higher level infor
mation included specifically to help understand what was going through
the programmer's mind as he or she wrote the code. Bearing in mind
that it costs approximately ten times more to maintain a program dur
ing its useful life than it cost to develop in the first place, it is easy to

Published by eCommons, 1993

858 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

understand why a maintenance programmer needs all the help he or
she can get.

In contrast to the "high level" programming language example
above, programmers can also write programs with very detailed, low
level instructions to the computer. This can be illustrated by pondering
how to tell someone, via a telephone line, how to tie a bow in a shoe
lace. Each instruction in this so-called "assembly language" must be
very detailed; each line of source code, if it is not a comment line, cor
responds to one instruction to the central processing unit (CPU) that
actually manipulates data within the computer.

An example of assembly language programming quickly reveals
the detailed level at which the programmer must operate:

RETALIATE:
MOV AX,INCOMING ;Get incoming missiles flag into AX register
MOV BX,PRESAPP ;Get preSidential appro into BX register
AND AX,BX ;Boolean AND of two conditions
JNZ LAUNCHEM ; Let's go do some damage

The word "RETALIATE:" is a symbol label used elsewhere by the
programmer to reference this code. It is equivalent to a paragraph
heading in a document.

The strange abbreviations like "MOY," "AND," and "JNZ" are
mnemonic names given to each of the instructions that the computer is
capable of executing. A desktop calculator has mnemonic names with
"+" meaning add, "-" meaning subtract and so on. In this example,
"MOY" means "move data from the second thing to the first thing,"
(i.e., "MOY AX, INCOMING" means "move the contents of the data
storage area called INCOMING into the AX registerll8 of the CPU so
that it can be manipulated"). "AND" performs a logical "anding" of
the current contents of registers AX and BX, leaving the results in AX,
and "JNZ" means "Jump out of sequence to a symbol label named
LAUNCHEM if the result of the AND was non-zero," (i.e., if there
are incoming missiles AND the president has approved a counter
strike).

3. The Object Code

A computer cannot run a program in source code form. The source
code must be translated from text into a form that contains instructions

26. A register is a temporary storage area inside the computer's central processing unit. The
actual display or the "memory" of a desktop calculator are examples of a register. A number must
be visible in the display or stored into the calculator's memory before it can be used as a part of
the calculation. The design of each central processing unit determines how many registers it will
have and by what abbreviated names they are known: "AX," "8X," and so on.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 859

to the computer known as object code. Object code consists of numeric
codes specifying each of the computer instructions that must be exe
cuted, as well as the locations in memory of the data on which the
instructions are to operate. A special program is used to translate the
human-readable source code into computer-readable object code. If the
program has been written in a high-level language like C, the program
is called a compiler. If the program has been written in a low-level
language, then it is called an assembler.

Compilers are very sophisticated programs. Not only do they
translate the source code into object code, they also optimize it by re
arranging the low-level instructions to make the program run faster.
An analogy of optimization would be re-arranging a shopping list into
the order in which one would go to the various stores, rather than the
order in which one first thought of the items. The list is easier to read
that way and it takes a lot less time to purchase all of the items if one
does not have to go backwards and forwards between different stores.

The object code output by compilers and assemblers has several
characteristics in common. First, all of the comments have been
stripped out of the program as they are irrelevant to the computer. The
computer could make no sense of these strings of characters anyway.
Second, all of the symbolic names have been stripped out of the pro
gram. They, too, have absolutely no meaning to the computer. Finally,
additional chunks of object code have been appended to the object code
resulting from the source code. This additional object code, stored in
previously prepared libraries of object code, is "helper" code designed
to make the program's (and the programmer's) task easier by obviating
the need to write source code for the repetitive tasks that all programs
have to do (such as preparing data files for processing, sending
messages to the screen, reading data from the keyboard, and so forth).

All that remains in the object code file are the numeric codes that
represent the instructions to be executed, and the numeric codes that
represent the data locations in memory on which the instructions must
operate when the program is run. The object code file, as mentioned
above, is a composite of the instructions written by the programmer
plus the object code brought in from libraries of prefabricated object.
code.

4. Running a Program on a Computer

Once a program has been translated into object code it can be run
on the computer. Running the program means that a copy of the object
code file on the computer's disk must be made in the computer's main
memory. Once this copy has been made, the central processing unit is
told at what location in memory it must start executing instructions.
From that point on, the central processor executes one instruction after

Published by eCommons, 1993

860 UNIVERSITY OF DAYTON LAW REVIEW (VOL. 19:3

another from the program until it reaches a point in the program where
it encounters an instruction that tells it that the program has
completed.27

F. Reverse Engineering a Program: A Worked Example

To illustrate the process of reverse engineering consider a hypo
thetical example of a program written by a programmer at Sensatemp
Incorporated. Sensatemp makes temperature sensors using microcom
puters to compensate for any errors caused by the physics of the sen
sors themselves.

Newco is a competitor of Sensatemp and wishes to study the part
of Sensatemp's device that is responsible for reading temperatures in
Fahrenheit and converting them over to Celsius, compensating for in
strument errors according to the actual Celsius temperature measured.
For these purposes, Newco's engineers have isolated the portion of the
firmware (that is, software embodied into a Read Only Memory
(ROM) chip) that performs this function. They now wish to reverse
engineer it to find out exactly how Sensa temp's instrument works.
Newco's engineers want to develop a functionally equivalent version for
compensation so that their instruments offer similar capabilities.

1. Possible Reverse Engineering Strategies

There are three strategies available to Newco's engineers: (1)
Read the Manuals: Read all of the available documentation to find out
what the company's technical writers say about the program and how it
ought to work; (2) "Black Box" Observation: Use the Sensa temp in
strument and observe what it does and attempt to infer what must be
going on inside the program; and (3) Reverse Engineer: Study the ob
ject code statically, and run the program in an experimental environ
ment that permits observation of the inner workings of the program as
it executes.

a. Read the Manuals

Although stated previously, it bears repeating that documentation
is always incomplete, inaccurate, and out-of-date. It cannot help but be
this way as the documentation is merely a statement of how the actual
computer program should be, rather than how it is. Therefore, when
ever some unexplained behavior occurs in a program being reverse en
gineered, the odds are that the manuals will not be much help.

27. This is an oversimplification. There are many other things that may occur to stop a
program's execution, but for clarity they have been ignored.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 861

In this hypothetical example, Newco's engineers discover that the
documentation for the Sensatemp product states (not unreasonably)
that: "The Sensatemp XRI774-IOQ probe has been compensated to
correct for any errors caused by the non-linearity of the sensing ele
ment. This compensation takes the form of an appropriate percentage
correction (in the range 1 % -4 %) on the final temperature in Celsius
displayed by the unit."

Armed with this additional information, Newco's engineers
surmise that the differences between the theoretical calculations and
the actual results are a result of this compensation. But that still does
not explain everything. If the sensing unit is reading a temperature of
100 ° F, that still cannot explain why the conversion is "inaccurate."
Could it be that when the sensor unit is reading some number just
above 100 ° F that it erroneously indicates the temperature is 100 ° F?
The "inaccuracy" could therefore be the compensation being applied.
Comparing theoretical calculations with the printout again: 0 ° F is
-17.7777"C not the -17.9556 shown (a difference of -0.1778); 100°F is
37.7777"C not the 38.1556 shown (a difference of 0.3778). The differ
ences are almost exactly 1 % of the observed temperature. Newco's en
gineers might therefore reasonably assume that a correction factor has
been applied. For completeness, Newco's engineers check the theoreti
cal conversion for 200" F, obtaining a value of 93.3333 ° C. This is pre
cisely the value shown by the Sensatemp instrument, which begs the
question why should this be so? Is any correction being applied? It does
not appear to have been applied to the 200°F temperature. Checking
all the other values, Newco's engineers discover that any temperature
less than 48.8888 ° C appears to be wrong by 1 % of the temperature
expressed in Celsius degrees. What can this mean? Are they seeing
temperature compensation? Or is it something else?

The printout from observing the program does not tell Newco's
engineers what they need to know. The documentation told them what
should be happening, and if their observations and calculations are
valid, even they do not contain the whole truth. At this point, Newco's
engineers' only recourse is to reverse engineer Sensatemp's program. It
is only the actual Sensatemp program that can and will tell them what
is going on. There is just not enough information available to them
from their observations of the program or reading the documentation.

b. "Black Box" Observation

When Newco's engineers use the instrument to measure caref~lly
preset temperatures in Fahrenheit, the Sensatemp box displays:

Published by eCommons, 1993

862 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

Temp. F = 0.0000, C -17.9556
Temp. F 20.0000, C -6.7333
Temp. F 40.0000, C = 4.4889
Temp. F 60.0000, C 15.7111
Temp. F = 80.0000, C 26.9333
Temp. F 100.0000, C = 38.1556
Temp. F = 120.0000, C = 48.8889
Temp. F 140.0000, C 60.0000
Temp. F 160.0000, C = 71.1111
Temp. F = 180.0000, C = 82.2222
Temp. F 200.0000, C 93.3333

This is essentially a conversion table, with what appears to be tempera
tures in degrees Fahrenheit and Celsius. To the untrained eye, this out
put may not reveal much, but Newco's engineers can infer several
things from it: (1) Based on the number of decimal places shown in the
printout, the program is apparently using an internal representation of
numbers known in the scientific community as "floating point;"28 and
(2) the temperature probe appears capable of sensing temperatures be
tween o· F and 200· F.

Do Newco's engineers know this information for a fact? Abso
lutely not. They are making reasonable guesses based on their observa
tions. In fact, reverse engineers spend most of their time guessing, and
using words like "What?," "Why?," and "Where?". After some min
utes staring at this printout, a small voice in the back of one of the
Newco's engineer's heads might say "Check the conversion!" This
done, the Newco engineers will discover that the numbers displayed do
not appear correct. For example: O·F is -17.7777"C not the -17.9556
shown, and 100· F is 37.7777·C not the 38.1556 shown.

What is going on here? Why are the conversions mathematically
inaccurate? One really cannot say. Could it be that Sensatemp's pro
grammers used a slightly different formula for conversion, or is there
some other possible explanation? Without further information, inspira
tion, or blind luck, Newco's engineers cannot establish the precise
cause for the apparent errors.

c. Reverse Engineering: Static Examination

As a prelude to reverse engineering Sensa temp's program,
Newco's engineers open up the Sensatemp instrument. Inside they find
a printed circuit board with about a dozen integrated circuit chips

28. It is called the "floating point" because the decimal point can float either left or right to
permit the computer to represent either very large or very small numbers.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 863

mounted on it. Some of these chips are marked with manufacturers'
code numbers, but several are unmarked.

Where is the actual program to be reverse engineered? What type
of central processor unit will run the Sensatemp program? Newco's en
gineers start from a position of ignorance. They must first examine the
physical details of the printed circuit board, look up data sheets for
those chips that are marked, and attempt to infer additional informa
tion about the unmarked chips.29

By visual examination, augmented by some simple electrical con
tinuity testing, Newco's engineers can determine, at least at a superfi
cial level, the electrical connections on the Sensatemp board. From this
they can divine what each chip's function might be and can tentatively
determine which chips might contain read only memory, and are there
fore candidates for further examination. -

There are only two methods for examining the contents of a ROM
chip: electronically or physically. The electronic technique can be im
plemented in two ways depending on whether or not the ROM chip can
be removed from the printed circuit board. If the chip can be removed,
it can be placed into a test rig and its contents read out directly as a set
of Os and Is. If, however, the ROM chip cannot be removed from the
board without damaging it and preventing its contents from being read
out, Newco's engineers will need to devise a mechanism for "looking
inside" the Sensatemp unit while it is actually switched on and operat
ing. Depending on the central processing unit chip used by Sensatemp,
Newco's engineers might be able to use a commercially available piece
of electronic test equipment called an "in-circuit emulator" (ICE). An
ICE replaces the central processor chip with electronic equipment that
"emulates" the exact electronic behavior of the CPU. The printed cir
cuit board works exactly as before, with the exception that now, by
means of the ICE, an outside observer can monitor exactly what is hap
pening inside the computer system. The ICE can also be used to read
out an image of the ROM, reading out the Os and Is as though the
ROM chip had itself been removed.

The physical technique involves "deprocessing" the ROM chip by
removing the outer layer of protective plastic and exposing the small
silicon chip itself. Acid is used to etch away some of the outermost
layers of the chemicals deposited on the silicon chip and photomicro
graphs can be taken of the circuitry that makes up the ROM itself. At
suitable magnification, a trained engineer can discern the actual Os and
Is stored in the ROM chip. It is not unusual, however, for engineers to

29. Being unmarked is one indication that Sensatemp might want to make it harder for
engineers such as Newco's to divine each chip's purpose.

Published by eCommons, 1993

864 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

rearrange the individual binary digits within a ROM chip to make it
easier to manufacture the chip, thereby "scrambling" the physical ar
rangement that will be seen in the photomicrograph. Newco's engineers
will also have to decode some of the chip's surrounding electronics in
order to relate the physical layout of the binary digits to their correct
electronic layout. Only then can they read the ROM chip in the same
way that the central processor chip will.

At this point, both the electronic and physical methods converge.
Both have now yielded an image of the ROM's contents, the actual Os
and 1s presented to the central processor unit. The task facing Newco's
engineers is now to decode these Os and 1 s and divine what instructions
and what data will be presented to the CPU.

2. Examining a Program in the Computer's Memory

Internally, the computer uses a numeric representation that is even
simpler than decimal, the "binary" system. In binary, all numbers are
represented by one of two digits, 0 or 1. Unlike the familiar column
headings of units, tens, hundreds, thousands, and so on, the binary sys
tem uses 1, 2, 4, 8, 16, 32, and so on. All of the same rules for doing
decimal arithmetic still apply, the only difference is that binary is
based on 2 rather than 10. For example, the decimal number 123
(which represents 1 hundred, 2 tens and 3 ones), will appear as
1111011 in binary. This represents 1 "64", 1 "32", 1 "16", 1 "8", 1
"2" and 1 "1", which totals to 123 in decimal. Seeing binary with col
umn headers helps:

64 32 16 8 4 2 1
1 1 0 1

Computer memory is most accurately thought of as a giant pig
eonhole storage area. Visualize the front desk of a large hotel behind
which there is a pigeonhole for each room. Each pigeonhole has a
unique number corresponding to the room number, and a small storage
area. So, in a large Las Vegas hotel with a thousand rooms, one might
see a thousand pigeonholes, numbered from 1 to 1000.

In a computer system two things are different. First, the "pige
onholes" start numbering from 0, thereby making the electronics eas
ier. Second, each pigeonhole can store a very limited amount of infor
mation. Basically, the number must range between 0 and 255 decimal
formed by grouping toge~her eight binary digits. One value in the range
o to 255 is all each memory location (pigeonhole) can ever store at any
one moment in time. By technical sleight of hand, computer designers
can make it appear as though the computer can store a character of the
alphabet or can group adjacent pigeonholes together to make the com
puter deal with numbers larger than 255, or store a negative number.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 865

Memory locations appear to store characters of the alphabet using
a simple encoding system (school children sometimes use such a
scheme at school to pass encrypted messages in the class room). A sim
ple example of this encoding is to say that the number 1 represents
"A," the number 2 represents "B", and so on. A computer system is
designed to convert incoming keystrokes into their appropriate number,
and convert the numbers back into their appropriate letters when it
displays them on the screen, thereby creating the illusion that it is op
erating on alphabetic characters.

In practice, "A" does not equal 1, but 65. In binary, this would
appear as 1000001. Other characters were assigned to the first 65 num
bers, 0 to 64. These include "non-graphic" characters that are not visi
ble on the computer screen, such as Carriage Return, Tab, and so on.
The entire upper case alphabet, the lower case alphabet, and the spe
cial "mark" characters such as parenthesis, and percent sign then take
up the remaining numbers up to 255 (0 to 255 represents a total of 256
numbers). This encoding system is recognized around the world by the
acronym given it by the American National Standards Institute, AS
CII, standing for "American Standard Code for Information
Interchange. "

In the computer's memory, these binary digits are stored in groups
of eight. Binary digits are abbreviated to "bits," and these groups of
eight are known as "bytes." On occasion, programmers will group these
bits into groups of four, known as "nybbles."30 To identify each byte in
memory, each is assigned an "address." This address is just a number.
It starts at zero and increases by one, rather like the numbers on the
mail pigeonholes behind the hotel registration desk (except that in the
hotel there is no room number 0).

a. Looking at Binary

Opponents of reverse engineering (almost always either lawyers or
representatives of large software companies or lawyers who represent
large software companies), claim that to avoid making an allegedly in
fringing intermediary copy of a program, those who wish to reverse
engineer software must only look at the binary data as it is stored in
the computer's memory. Their argument is that loading into memory
does not constitute a permanent fixation of the data, therefore the copy
made in the computer's memory is not an infringing copy. This argu
ment was advanced by Sega in Sega Enterprises Ltd. v. Accolade,

30. There is controversy in the computer industry as to whether the correct spelling is "nib
bles" or "nybbles."

Published by eCommons, 1993

866 UNIVERSITY OF DAYTON LAW REVIEW (VOL. 19:3

Inc.,31 and accepted initially by the lower court. Here, therefore, are
the first few lines of Sensatemp's program as they are stored inside the
computer:

0000000000000010000000010000101100000000000000000100000000000000
0000000000000000001000000000000000000000000000000000111011111100
0000000000000000000001101000010000000000000000000010000000100000
00000000000000000000000000000 0000
0010010000010111010001111110111100000000000001000010001000000010
1110010 11 000000 10 1 00 1 00 1111100 11 000 l'l 00000000 1 0000 1 000 1111001100
0000000000000010000000000000000001001000010101000100100001010011
0010111100000010010011011111100000000000000000000110000100100110
0100111010111001000000000000000000100000100110000100111010111001
~000Ioooo01010000011011110111111~011oo
0010111100111100000000000000000000000000000000000100111010111001
0000000000000000001111011001000001011000100011110010111100000000
0100111010111001000000000000000000111101110111000110000000101110
0100000000101000001000110010100101100011011100100111010000110000
0010111001110011000010010011000100101110001100100000100100111000
0011011000101111001100010011000000101111001100000011011100001001
0100001101101111011100000111100101110010001000000011000100111001
001110oooo11010100100000010100110111010101101110001000000l001101
01101001011000110111001001101111000000000000000100111001110101
0Ioo11101111100100000000000000001010111oo1~00000

0100111001010110000000000000000011011111111111001111111111111111
1111111111110000010010001101011100000000000000000010110101111100
0000000000000000000000000000000011111111111111000010000000101110
1111111111111100010011101011100100000000000000010101011111100
0010110101111010000000010011111011111111111100000010110101111010
0000000100100100001000000010111011111111111111000100111010111001
0000000000000000001010101111110001000001111110100000000100100010
0100111010111001000000000000000100110110001000100111010111001

... and so on. There are a total of four thousand lines of output in this
printout, fifty pages of unrelenting Os and 1 s.

Not even programmers who have been programming since the
days of vacuum tube computers look at computer programs in this
form, and for good reason. It is completely impractical to look at more
than just a few lines of binary.

31. 977 F.2d 1 S 1 0 (9th CiT. 1992).

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 867

As a sneak preview, Sensatemp's program for this hypothetical ex
ample consists of just eight source code lines. Not eight hundred, nor
eight thousand, but just eight active lines of source code. The entire
source code, including blank lines and commentary, totals 917 charac
ters. The object code produced by the compiler, when combined with
the necessary modules from object code libraries, totals 32,768 bytes,
all for just eight active lines of code.

Clearly, this form of the data is impractical. If an eight line "toy"
program creates a fifty page document of raw binary data, a real-world
program might be 500,000 bytes long. If displayed in raw binary this
would require 62,500 lines of printout on a total of 1,250 pages - a
stack of paper about six inches thick. It is argued that such a printout
would be an infringing copy and that any handwritten annotations that
Newco's programmers might write on the printout were embellish
ments in what would finally be a derivative copy of the original binary
forIIi of the Sensatemp program. Newco's programmers may well have
to commit the remainder of their born days trying to understand the
binary patterns in raw binary. Those who propose that programmers
merely display the raw binary of a computer program have absolutely
no understanding of the real world. Such a proposal is equivalent to
suggesting that, as nail scissors can cut a blade of grass, all lawn
mowers should be abolished and scissors used instead.

To understand a binary image, Newco's programmers must con
vert it into a human comprehensible form. Note that this is merely a
conversion, no new information is added to the underlying binary im
age. Certainly no high level information from Sensatemp's original
source code can be added, as it is absent from the binary image. The
first of several conversions will be to group the binary digits into 8-bit
bytes like this:

00000000 00000010 00000001 00001011 00000000 00000000 01000000 00000000
00000000 00000000 00100000 00000000 00000000 00000000 00001110 11111100
00000000 00000000 00000110 10000100 00000000 00000000 00100000 00100000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00100100 00010111 01000111 11101111 00000000 00000100 00100010 00000010
11100101 10000001 01001001 11110011 00011000 00000100 00100011 11001100
00000000 00000010 00000000 00000000 01001000 01010100 01001000 01010011
00101111 00000010 01001101 11111000 00000000 00000000 01100001 00100110
01001110 10111001 00000000 00000000 00100000 10011000 01001110 10111001
00000000 00000000 00100000 10100000 11011110 11111100 00000000 00001100

This step improves Newco's engineer's ability to perceive the contents
of the computer's memory. It is, however, still almost impossible to
know where on the screen the byte at, for example, location 25 might
be. The example below starts at location 7193:

Published by eCommons, 1993

868 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

01100000 11000100 00001100 10000000 00110110 10010000 00000000 00000000
01101100 00000100 01000010 10000000 01100000 10111000 11100011 10001001
11100011 10010000 11100011 10001001 11100011 10010000 11100011 10001001
11100011 10010000 01001010 10000001 01100111 00001000 00000000 10000001
10000000 00000000 00000000 00000000 01100000 00000010 01000010 10000001
01001000 01000000 00110010 00000000 01001000 01000000 11101110 01001001
00000010 10000000 00000000 01111111 11111111 11111111 00000000 10000000
00000000 10000000 00000000 00000000 00000100 01000001 00000001 10000000
01101100 00010000 11100010 10001000 01100100 00000000 00000000 00001000
00000000 10000001 10000000 00000000 00000000 00000000 01010010 01000001
01101101 11110000 01010010 10000000 00001000 00000000 00000000 00000000
01100110 00001100 00001000 00000001 00000000 00011111 01100110 00000110
00000010 10000000 00000001 11111111 11111111 11111100 11100010 10001000
01100000 00000000 11111111 01011100 01001000 11100111 00111111 00000000

To be practical, Newco's engineers must be able to display memory in
such a way that they can see both the instructions to the computer and
the memory locations contained in those instructions, plus any embed
ded ASCII characters.

Rather than displaying the contents of memory in binary, where
there is far too much information in the wrong format, Newco's engi
neers could use a compressed form of binary called hexadecimal. Hex
adecimal is base 16 arithmetic (from the Greek and Latin, hex and
decim). To convert to hexadecimal, binary digits are grouped together
in groups of four and placed under the normal binary headings like
this:

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1011
1110
1111

Hexadecimal
o
1
2
3
4
5
6
7
8
9
A (Since '9' is the last digit, letters are used instead)
B
C
D
E
F

Hexadecimal notation demands "numbers" to represent the values that
correspond to the decimal values 10, 11, 12, 13, 14, and 15 and so the
first few letters of the alphabet are pressed into service. This can lead

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 869

to some ambiguity. For example, is "AB" the first two letters of the
alphabet or the binary pattern 10101011? One cannot tell unless there
is some indication of whether the value is stated as two ASCII charac
ters (occupying two adjacent bytes), or two hexadecimal numbers (one
for each nybble in a byte) . Programmers are always careful to indicate
when numbers are stated in hexadecimal (abbreviated to "hex" for
short). Numbers may be written either as IFH, IfH or even OxlF, all
of which denote that the 1 F is to be taken in hexadecimal. Hex repre
sentation has the advantage that it effectively compresses the amount
of space one needs to display binary values, as each hex digit represents
four binary digits.

b. Looking at Hexadecimal and ASCII

Armed with this new hexadecimal notation and the knowledge
that the computer can also represent letters of the alphabet using the
ASCII coding system, Newco's engineers can now look at the binary
image of Sensatemp's program in a new light:

0000:
0010 :
0020 :
0030 :
0040:
0050:
0060:
0070:
OOBO:
0090:
OOaO:
OObO :
OOcO :
DOdO :
ODeD:
OOfO:
0100:
0110 :
0120:
0130:

00 02 01 Db 00 00 40 00
00 00 06 84 00 00 20 20
24 17 47 ef 00 04 22 02
00 02 0 0 00 48 54 48 53
4e b9 00 00 20 98 4e b9
2f 3c 00 00 00 00 4e b9
4e b9 00 00 3d dc 60 2e
2e 73 09 31 2e 32 09 38
43 6f 70 79 72 20 31 39
69 63 72 6f 00 00 4e 75
4e 56 00 00 df fc ff ff
00 00 00 00 ff fc 20 2e
2d 7a 01 3e ff fa 2d 7a
4e b 9 00 00 26 44 62 00
00 00 2a fc 41 fa 01 22
00 00 22 38 2d 40 ff fB
2a fc 41 fa 01 Dc 4e b9
22 38 2d 40 ff f8 20 2e
2d 7a 00 f6 ff fa 2d 7a
4e b9 00 00 26 44 62 3c

00 00 20 00 00 00 De fc
00 00 00 00 00 00 00 00
e5 81 49 f3 18 04 23 cc
2f 02 4d f8 00 00 61 26
00 00 20 aO de fc 00 Oc
00 00 3d 90 58 8f 2f 00
40 28 23 29 63 72 74 30
36 2f 31 30 2f 30 37 09
38 35 20 53 75 6e 20 4d
4e f9 00 00 2b 90 00 00
ff fO 48 d7 00 00 2d 7c
ff fc 4e b9 00 00 2a fc
01 3c ff f4 41 ee ff fO
01 24 20 2e ff fc 4e b9
4e b9 00 00 26 c4 4e b9
20 2e ff f8 4e b9 00 00
00 00 24 80 4e b9 00 00
ff f8 4e b9 00 00 2a fc
00 f4 ff f4 41 ee ff fO
20 2e ff f8 4e b9 00 00

• ••••• @.

$.Go . • ft

..•• HTHS
1'019 •• • 1'019
/< 1'019
1'019 •• z\·.
. JI.1.2 . 8
copyr :l9
i.c:.ro •• Nu
tN .. I ..
...• -:-1
-%. >.p-z
1'019 •• ' Db.
• • " IAZ.»
• ."8-13.11
· IAz •• 1'019
"S - I!.x
-z.v.p-z
1'019 •• &Ob<

•••• • • 1

e . Is .. fL
/ .MI< .• a&

· . ·1 ..
· .=.X.I.
@(t)c rtO
6/10/07.
BS sun N
Ny .• + .••
• pHW • . -1
.1 1'19 •• " 1
.<.tAn.p
.$.. [N9
N9 .. '-DN9

.• xN9 . •
•• $.1'019 .•
.xN9 •• • [
· t. tAn. P
•. xN 9 ••

In the example of a so-called "hex dump" above, the memory ad
dress of the first byte on the line is shown first. This address is also
shown in hexadecimal. Then come two groups of eight bytes, with each
byte's value being shown in hexadecimal (the grouping is just to make
it easier to count off across the line) . On the far right, again grouped in
two groups of 8, comes the same data, but this time displayed as AS
CII characters. Those bytes that have values that do not correspond to
"visible" characters like letters and numbers (such as Carriage Return
and Tab) are shown as a period.

Notice the lines that start 0070, 0080 and 0090. On the right hand
side the bytes are shown as characters in the ASCII character set and

Published by eCommons, 1993

870 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

spell out the message "crtO.s 1.2.8 6/10/07 Copyr 1985 Sun Micro."
With one or two exceptions, all of the other strange characters on the
right are artifacts of viewing non-ASCII characters as though they
were ASCII.

This fragment of the Sensatemp program appears to be some ob
ject code that has an embedded copyright message in it. This is Sen
satemp's program, yet there is a copyright message in it for Sun
Microsystems. This would tell Newco's engineers that they are looking
at the output of Sun's C compiler, and that Sensatemp's code has been
glued together with some helper code written by Sun. Although not too
terribly helpful to Newco's engineers in their quest for understanding
the Sensatemp code, it does illustrate the peril of blindly sending the
first and last twenty-five pages of a hex dump to the Copyright Office
as a deposit copy. One may be faithfully sending the Register of Copy
rights fifty pages of some other company's object code!

Although this hexadecimal dump changes the appearance of the
information Newco's engineers saw in their original binary dump of the
program, it has not added any new information. Only the representa
tion has been changed. Nothing has been added to or subtracted from
the information in the original binary dump.

c. Need We Go Beyond A Hexadecimal Dump?

The so-called "hex dump" described above is the first representa
tion of the computer program's object code that approaches something
that can be understood by programmers, which, of course, is why pro
grammers create them. Because of this, opponents of reverse engineer
ing argue that a reverse engineer has no need to proceed any further.
Opponents assert that programmers can read object code directly.s2 As
any experienced programmer can report, back in the mid-to-Iate-1960s,
programmers would debug their programs by looking at hex dumps be
cause there was no other way.

Newco's programmers, not being of the generation when program
mers had to memorize the CPU's binary instruction codes, would be
aghast at the complete impracticality of working from hexadecimal
dumps. While it would be possible for them to read the hexadecimal
dumps and decode them, it is impossible (consistent with industry
deadlines and their lifetime) for them to read and understand the pro
gram in sufficient detail.

32. Anthony L. Clapes, Confessions of an Amicus Curiae: Technophobia. Law and Creativ
ity in the Digital Arts, 19 U. DAYTON L. REV. 903 (1994).

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 871

d. Looking at CPU Instructions

For Newco's engineers to be able to understand what the Sen
satemp program is doing, they must be able to examine how the pro
gram is functioning. But where are the computer instructions? How
can they separate instructions from embedded text messages or other
data values used by the program? The answer is, only with great diffi
culty. Instructions to the CPU are nothing more than particular binary
values. The only way that the CPU "knows" that a given set of bytes is
an instruction is when the CPU is directed to execute it! Until that
moment, it is difficult to know whether the bytes contain an instruction
or data.

While this might seem confusing, there are other instances of this
in ordinary life. For example, if one sees the words "Long may she
reign over us," can one tell whether this is prose to be read, or the
words of a song to be sung? One cannot tell. There is no contextual
information to indicate the correct choice. On the other hand, if one
were asked to sing these words one could surmise they were part of a
song. The same logic is true for the computer. The contents of memory
can be either instructions or data. If the CPU is directed to operate on
a particular location as though it were data, then it is data. Alterna
tively, if the CPU is directed to operate on a particular location as
though it were an instruction then it had better be an instruction, oth
erwise the computer will behave in an unpredictable way. It is the
programmer's responsibility to ensure that the CPU is always presented
with valid instructions.

As Newco's engineers look at a hex dump, they have two
problems: (1) finding the first instruction in the program; and (2) using
that as the starting point for a journey through the instructions in the
program. They know that the computer, unless directed otherwise by
"branch" or "jump" instructions, will always execute adjacent instruc
tions one after the other. Therefore, Newco's engineers must be vigilant
and make a note of each branch in the maze of instructions, unwinding
a mental ball of thread so they can retrace their steps to the previous
branch and thereby explore both the "left" and "right" turns at each
branch in the maze.

To make a long example shorter, assume that Newco's engineers
know that, for this CPU, the first instruction of the program occurs at
location OOaO in the hexadecimal listing. Here is the relevant fragment
of the hex dump again with the first few bytes of Sensatemp's program
shown in bold italics:

Published by eCommons, 1993

872

0080
0090
OOaO
OObO
OOeO
OOdO
OOeO
OOtO

UNIVERSITY OF DAYTON LAW REVIEW

43 6f 70 79 72 20 31 39
69 63 72 6f 00 00 4e 75
4. 56 00 00 ~ ~e ~~ ~~
00 00 00 00 ff fe 20 2e
2d 7a 01 3e ff fO 2d 7a
4e b9 00 00 26 44 62 00
00 00 2a fe 41 fa 01 22
00 00 22 38 2d 40 ff f8

38 35 20 53 75 6e 20 4d
4e f9 00 00 2b 90 00 00
~~ 1:0 41 d7 00 00 2d 70
ff fe 4e b9 00 00 2a fe
01 3e ff f4 41 ee ff fO
01 24 20 2e ff fe 4e b9
4e b9 00 00 26 e4 4e b9
20 2e ff f8 4e b9 00 00

[VOL. 19:3

copyr 19
ieeo •. Nu
NY •• I . •
... . -:-1
-z.>.p-z
N9 . • 4Db .
.. ' tAz . "
.... 8-ILl<

85 Sun K
Ny .. + ...
. pHW •• -1
. IN9 .• • I
.< . tAn.p
. S .. I N9
N9 . . &DN9

• . xN9 • •

Now Newco's engineers must take these first few bytes and manually
"disassemble" them, converting back from their hexadecimal notation
into something more meaningful that will tell them what each instruc
tion is telling the CPU to do. Disassembly is so called because it takes
a small step backwards towards assembly language.

Life would be easy if all instructions on this particular CPU (a
Motorola 68000 as Newco's engineers determined by visual examina
tion of the chips) took the same number of bytes. The engineers could
skip ahead and see what hex values caught their eye. However, the
more complex instructions for the Motorola 68000 take more bytes.
The only way to proceed is to disassemble each instruction from the
first. As they disassemble the instructions, Newco's engineers not only
decode what each instruction is, but how many bytes it occupies. This
in turn tells them where the next instruction should start.

In order to disassemble the first instruction, Newco's engineers ex
amine the bytes "4e 56 00 00 df." A Newco engineer can thumb
through Motorola's 68000 Reference Manual to find a quick reference
chart showing each of the instructions in numerical order. The engineer
will find an entry for instructions that have the hex digit 4 in their first
nybble. There are quite a few of these, so the engineer must narrow the
search down by looking only for instructions that have 4e as their first
byte.

The only such instruction is the LINK instruction, and the manual
also indicates that the next nybble must be a 5 (which it is) and that
the remaining nybble specifies the register to be used by the LINK
instruction. In this case it is a 6. The manual also indicates that the
two bytes of hex 00 and 00 are part of the instruction. The Newco
engineers now know that the first instruction is a LINK with register 6
and an operand of 0000. This also tells them that the next instruction
must start after the second byte of 00. The bytes following are "df fc ff
ff ff," so the "dr' must be the first byte of the next instruction.

Looking up "dr' in their Motorola Reference Manual, the Newco
engineers race toward decoding their second instruction. It is an ADD

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 873

instruction, and the subsequent bytes direct the CPU to add a negative
value of 10 hex to the contents of register 7. as

Manual disassembly is extremely tedious. It takes about a minute
to decode each instruction and to double check the results. What
Newco's engineers are retrieving from the object code are the individ
ual instructions generated by a C compiler running on a Sun worksta
tion. All that Newco's engineers have established is that the first two
instructions, if they were to write them in assembler, would be:

linkwa6,#0
#-Oxl0,a7

Note that there are no comments and no symbolic variable names
to guide Newco's engineers. All they have are the raw, low-level in
structions that will be executed by the CPU. After five minutes work,
they have only decoded two instructions. A modern program may con
sist of at least 300,000 such instructions. Assuming the engineers would
take only 30 seconds to decode an instruction, this means that Newco's
engineers would take 2,500 hours to complete the disassembly, and that
would only tell them what the raw instructions were. They would still
have no high level understanding of the code itself. Nevertheless, ten
months (2,500 hours) later they would have a disassembled listing.

Why indulge in this mental self-flagellation? Newco's engineers
could write another program to automatically disassemble the binary
code and translate it back into assembly language instructions. This
"disassembler" could translate the entire program back into assembly
language in just a few moments. As it happens, every computer manu
facturer since the early 1950s, including Sun Microsystems has pro
vided such a program with the basic software that accompanies the
computer.

When Newco's engineers run the disassembler program on the ob
ject code the first few lines of assembly language code would appear as:

33. For reasons that are, as yet, a complete mystery to Newco's engineers, disassembly
reveals what a program docs, not why it docs it.

Published by eCommons, 1993

874 UNIVERSITY OF DAYTON LAW REVIEW

0000: orb
0004: orb
0008: orb
OOOc: orb

IIOxlOb,d2
IIOx4000,dO
IIOOOO,dO
IIOxefc,dO

[Lines deleted for brevity

0080: word Ox436f invalid instruction
0082 : moveq IIOx79,dO
0084: moveq IIOO,dl
0086: movw Ox38350053:l,aO@-
008c : moveq IIOx6e,d2
008e: movl a5,aO
0090: bvss OOt5
0092: moveq IIOx6f,dl
0094: orb 'Ox4e75,dO
0098: jrnp Ox2b90:1
00ge: orb 'Ox4e56,dO
OOa2: orb 'Oxtfffdffc,dO

[VOL. 19:3

00a6 : word Oxffff invalid coprocessor instruction
00a8: word OxfffO invalid coprocessor instruction
OOaa: moveml IIO,sp@

Newco's engineers would quickly realize they have a problem. They
started the disassembler at memory location OOOOH and it tried to
make sense of every instruction that it saw, but it clearly got "out of
step," and started reporting invalid instructions. Even the two instruc
tions the engineers know are at location OOaO and OOa4 are not shown.
The disassembler thinks that an instruction starts at OOa2, right in the
middle of the first instruction that they manually disassembled. Clearly
they need to repeat this process, this time telling the disassembler
where the first instruction is.

This illustrates a severe weakness in using disassembler programs:
they can only disassemble instructions if they are told where the in
structions start. On many computers, code and data can be intermixed;
a small block of code will be followed by data, then more code and
more data and so on. Newco's engineers have a major problem before
they can even run the disassembler: they have to know where all the
instructions are. The problem is, as they have seen, that without disas
sembling the instructions, they do not know where the instructions are!
Using a disassembler is a very time consuming and repetitive process.
Newco's engineers must try disassembling some part of the program,
inspect their results, and, using instinct as much as logic, adjust where
the disassembler starts disassembling instructions and where it skips
over data.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 875

Nevertheless, with some coaxing, Newco's engineers can ulti
mately persuade the disassembler to produce the following listing (only
the first few instructions are shown):

OOaO: linkw a6,IO
OOa4: addl I-OxlO,a7
OOaa: moveml #o,sp@
OOae: movl #O,a6@(-4)
OOb6: movl a6@(-4),dO
OOba: jsr OxOate:l
OOeO: movl Ox0200,a6@(-OxlO)
OOe6: movl Ox0204,a6@(-Oxe)
OOee: lea a6@(-OxlO),aO
OOdO: jsr Ox0644:1
OOd6: bhi Olfe
OOda: movl a6@(-4),dO
OOde: jsr OxOafe:l
OOe4: lea Ox0208,aO
OOe8: jsr Ox06c4:1
OOee: jsr Ox0238:1
OOf4: movl dO,a6@(-8)

Again, it must be emphasized that no new information has been added.
Only the representation of the binary patterns as they are in memory
has been changed. There is an absolute, one-to-one relationship be
tween the instructions that the disassembler outputs and these bit pat
terns in memory.

Furthermore, the above example illustrates one of the biggest sin
gle obstacles to reverse engineering: there is absolutely no high level of
abstraction information present in the output from a disassembler. The
instructions and their operands appear in stark detail, but Newco's en
gineers have absolutely no clues as to: (a) what these instructions are
actually doing; (b) why they are doing what they are doing; and (c)
when, in the overall program's execution, these instructions might be
executed.

To the uninitiated eye, it appears that the instructions shown
above are executed sequentially, starting from the first and proceeding
down through each subsequent instruction. But this could be a com
pletely fallacious inference as a brief examination by Newco's pro
grammers could reveal. Here are the first few instructions again:

OOaO:
OOa4:
OOaa:
OOae:
OOb6:
OOba:
OOcO:

linkw
addl
moveml
movl
movl
jsr
movl

a6,IO
I-OxlO,a7
IO,sp@
IO,a6@(-4)
a6@(-4) ,dO
OxOafc:l «--This is a jump out of sequence to different code
Ox0200,a6@(-OxlO)

Published by eCommons, 1993

876 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

Note the "jsr" instruction at location OOba. This instruction tells the
computer not to execute the following instruction at OOcO, but to
"jump" out of sequence to a completely different part of the program.
In this case, the program would jump to a part that Newco's engineers
have not yet disassembled and therefore the purpose would be
unknown.s•

In the above example, Newco's engineers could discover that the
computer does not execute the instruction at OOcO until the program is
about to terminate. The entire functionality of the program may be
found at the destination of the "jsr" instruction, and the "movl" at
OOcO is part of the program's shut-down sequence. As Newco's engi
neers would be quick to tell us, this kind of convoluted, jumping back
wards and forwards is quite normal. This example shows six instruc
tions that will cause a discontinuity in the sequence of top-to-bottom
execution of the instructions. It is this struggle to follow and compre
hend the instructions that will challenge Newco's engineers every step
of the way as they start to "decompile" the code~

e. Starting the "Decompilation" Process

The non-technical definition of "decompilation" describes the pro
cess as disassembling object code and attempting to recreate the origi
nal source code from the object code. Newco's engineers must now try
to make sense of these instructions. As discussed above, they can see
what the computer is doing, but they have no idea of the higher-levels
of abstraction: Why is the code written the way it is? What is the
processing sequence?

The first step in making sense of these instructions is for Newco's
engineers to add their own comments to the disassembly listing. What
they are trying to do, in their own faltering way, is to guess at what the
program might be doing.

The example below shows, to the right of the instructions, some of
the comments that the engineers might add:

34. It is as though Newco's engineers are on a conceptual treasure hunt at the house of a
friend, following clues that lead them from the entrance hall, to the dining room, then the kitchen,
only to then discover a clue that says, "Board a jet to Kathmandu and look in the largest hotel's
lobby behind the third potted plant for your next clue." What is just one small clue in the treasure
hunt could well turn out to be a life's work to follow.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994]

OOaO : linkw
OOa4: addl
OOaa : moveml
OOae: movl
00b6 : movl
OOba: jsr
OOcO : movl
00c6: movl
OOce: lea
OOdO: jsr
OOd6 : bhl.
OOda: mavl
OOde: jsr
OOe4 : lea
ODeS : jsr
OOee : jsr
00f4 : mavl
OOfS : mavl
OOfe: .jsr

ENGINEERING IN THE REAL WORLD

a6,10 Set up link word (not sure why7)
'-OxlO,a? Add -10 hex to register A7 (why?)
'O,sp@ Initialize program ready to run
'0,a6@(-4) Initialize link word (why?)
a6@(-4),dO Set up reg. DO from A4 (what value?)
OxOafc:l Call a subroutine (to do what?)
Ox0200,a6@(-OxlO) More setup stuff?
Ox0204,a6@(-Oxc)
a6@(-OxlO),aO Point AD to A6-l0H
Ox0644:l Call subroutine (to do what?)

877

Olfc Branch if Khi" condition on return (signifying what?)
a6@(-4),dO Point DO to A6-4 (why?)
OxOafc:l Call subroutine (see address OObaH)
Ox020S,aO Load address 0209 into register AO
Ox06c4 : l Call subroutine (to do what?)
Ox0239 : l Call subroutine (to do what?)
dO,a6@(-S) Set A6-S from DO
a6@(-9),dO Set DO from A6-S (this is redundant?)
OxOafe:l Call subroutl.ne (to do what?)

The example shows how little Newco's engineers know about the
object code. They can see operations being performed, but have no idea
why. There is a subroutineS II located at location OafcH that, if the num
ber of times it is used is any indication, is apparently important. There
are also other subroutines whose presence is shown by "jsr" instruc
tions. "Jsr" means "jump subroutine"S8 and is used to direct the
processor to break sequence, follow the instructions contained in the
specified subroutine and then return to execute the instruction follow
ing the "jsr."

To understand what a particular subroutine does, Newco's engi
neers must painstakingly examine the disassembled output for the sub
routine. If the subroutine itself contains "jsr" instructions that transfer
control to other subroutines, then these subroutines must be disassem
bled and comprehended. This kind of "nesting"S7 is absolutely normal.
Such nesting may occur to twenty or thirty levels in modern object
code, especially object code generated by an "optimizing" compiler
that translates the original source code, optimizes the object for execu
tion, and then "links" it with prefabricated libraries of fine-tuned ob-

35. A subroutine is a small self·contained group of instructions used to perform a specific
function . The computer stops executing the main program. starts executing the subroutine code.
and when the subroutine is complete. returns to the main code. The act of executing the subrou
tine usually changes the contents of the CPU registers. The main program places the data to be
processed by the subroutine into registers before transferring control into the subroutine. The
subroutine also places return values in the CPU registers. overwriting their previous contents.

36. A jump subroutine is like a footnote. The reader stops reading the main text body.
ducks down to read some additional information. and having read it. returns to the text following
the footnote.

37. The "nesting" being referred to is subroutines calling subroutines calling subroutines.

Published by eCommons, 1993

878 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

ject code subroutines prepared by specially skilled systems
programmers.

Any literary work that has twenty to thirty levels of indirection,
referring the reader from paragraph 102 to paragraph 239, then to par
agraph 97 and then to paragraph 3 and so on, would be deemed to be
totally incomprehensible. Yet, this is completely normal in software.
The computer itself does not "understand" the object code containing
the instructions it is executing; it blindly executes one instruction after
another and it does not matter to the computer that the instructions are
scattered around the program rather than being physically contiguous.
The poor Newco engineer must patiently plod through all of the sub
routines calling other subroutines, struggling to comprehend what each
subroutine does, and why it calls the other subroutines that call the
other subroutines.

Only by continuing this process can Newco's engineers gain
enough knowledge about the program and each of the subroutines it
calls to make one or two tentative inferences as to what the program
might be doing. Essentially, they are synthesizing a mental model of
what the program does, using as ingredients: (1) the actual instructions
that they see being given to the computer; (2) their skills as program
mers to understand the significance of those instructions; and (3) their
prior experience to infer the larger purpose of the code and the problem
that it is trying to solve.

Newco's engineers still do not have any symbolic names to add
any clues to this puzzle. The data variables and subroutines are devoid
of any semantic information that might provide a hint of what is hap
pening. After considerable study, the engineers can make intelligent
guesses as to what some of these subroutines are doing by examining
the object code. They could perhaps update their disassembly listing
with some symbolic names to help them remember what the code was
doing. In the example below, such names are shown in bold italics:

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994]

OOaO: linlcw
OOa4 : addl
OOaa: moveml
OOae: movl
OOb6: movl
OOba: jsr
OOcO : movl
OOc6 : movl
OOcc: lea
OOdO: jsr
OOd6: bhi
OOda: movl
OOde: jsr
OOe4: lea
00e8: jsr
OOee: jsr
00f4: movl
OOf8: movl

ENGINEERING IN THE REAL WORLD

a6,'O Set up link word (not sure why?)
.-OxlO,a? Add -10 hex to register A7 (why?)
#O,sp@ Initialize program ready to run
#O,a6@(-4) Initialize link word (why?)
a6@(-4),dO Set up reg. DO !rom A4 (what value?)

879

r.tod Con rt dllgl.-l..,gth 1'1o.oting point cumber to double l_gth .
Ox0200, a6@(-OxlO) More setup stuff?
Ox0204,a6@(-Oxc)
a6@(-OxlO),aO Point AO to A6-l0H
rc=p:f Doubl.-l..,gth 1'1Oll.ting point c:oapar.
Olfc Branch if "hi" condition on return (signifying what?)
a6@(-4),dO Point DO to A6-4 (why?)
r.tod eon rt _ingl_l_gth ~loating point cumber to double length .
Ox0208,aO Load address 0208 into regiscer AO
r.abcI SUbtract: doubl.-l_gth 1'1oating point
rdto. Con rt doubl.-l_gth 1'10.0 eing point to "ingl.-length.
dO,a6@(-8) set A6-8 !rom DO
a6@(-8),dO set DO from A6-8 (this is redundant?)

Newco's engineers can gradually add their understanding of what the
code appears to be doing instruction by instruction, subroutine by sub
routine, symbolic label by symbolic label. The emphasis is that they are
adding their ideas; the code does not contain any of the symbolic
names, or the higher-level material that they are adding.

f. Creating A Flow-Chart

Finally, after many long weeks of research, disassembly, comment
ing, guessing, and perhaps some actual observation of the program run
ning under the control of a diagnostic program, Newco's engineers can
make the leap to a higher level of abstraction, the flow-chart:

Published by eCommons, 1993

880 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

Increase

C·value by 1 %

No

Figure 2

Set F·value

to 0

,
Set C·value

from F·valua

Subtract 32

Irom C·value

Multiply

C·valu9 by

0.55555

,

II C·value > 39

Print out

F·valua and

C·value

Yes

Increase

C·value by 0%

Is this really
correct? Incresse
by 0"7

Increase

F·vaJua by 20
NO~V. .. ---..:.:.::-< F.value -2001 ;:......:..:8:'::"" __ -+1 Stop

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 881

For the first time, Newco's engineers can now see the overall "shape"
of Sensatemp's algorithm. The symbolic names, F-value and C-value,
were created by Newco's engineers to represent the two data variables
for Fahrenheit and Celsius temperatures respectively. The conversion is
performed by multiplying the F-value, less 32, by 0.55555 (the fraction
5/9 as a decimal number). Newco's engineers were puzzled to learn
that if the C-value is greater than 39, the object code dutifully at
tempts to increase the C-value by zero percent! This explains why their
observations of the Sensatemp output data showed that 200 0 F was ex
actly equal to the converted value without any apparent compensation.
Can this really be true? Why write a program to calculate an incre
ment of 0 %? Why not just leave the value exactly as it was without
any attempt to compensate? That remains a mystery.

g. Creating Source Code

For the purposes of this hypothetical example, a colleague of the
author was given the flowchart and asked to play the role of the Newco
programmer. He created the following source code: s8

38. The characters enclosed in / •... • / are comments and play no part in the calculation.
The reader should not attempt to make sense of the details of the program. The intent is to
provide a general idea of the "shape" of the program.

Published by eCommons, 1993

882 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

/* •••
Th~s program was written from a flow- chart provided .
It prints out compensated temperature values in Fahrenheit and
Celsius for values ot Fahrenheit from 0 to 200 degrees us~ng the logic shown
in the flow chart.
For temperatures less than 40·C, the temperature in ·C is increased by one
percent .
••• *1
'include <stdio.h>

main (argc, argv)
int argc;
char *argv[) ;
(

noat F, C;
F 2 0.0;
while (1)

1* Initialize Fahrenheit temperature to 0 *1
1* Enter permanent loop *1

[
C = F - 32; 1* Subtract ott 32 as start of conversion *1
C *~C * 0 . 55555;

1* Check if compensation required (below 40·e)
comp = 0.0; 1* A3sume no compensation required *1
it (C < 40) 1* Apply compensation if e less than 40· *1

comp - 0.01;
C - C + (C * Comp);

printf("\nFahrenheit ~f ,

if (F == 200) 1*
break; 1*

else

1* Apply compensation *1
Celsius ~ \f", F, e);
If F gets to 200, we are finished *1
Break out of while loop *1

F +- 20 Ie Increase F temp by 20 *1

h. The Original Source Code

Did the Newco programmer recreate the "original" source code?
Only a comparison of the Newco source code to the Sensatemp code
(written by this author) will show the answer to the question. The Sen
sa temp source code is as follows:

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD

* ttoc.c
*
* Copyright (c) 1992, sensatemp Inc.
* This source code contains proprietary intormation and trade
* secrets of Sensatemp Inc . and may not be reproduced in any
* torm without the written permission ot Sensatemp. Inc.
* This program contains a top-secret tormula for converting
* temperatures in tahrenheit to centigrade tor the purpose
* of displaying the results ot the XYZ Inc. temperature probe.
* Because ot a non-linear response from the XYZ Inc's probe,
* the need exists to increase the final temperature by l' per
* cent
* tor temperatures less than 40 C, and by 5% tor temperatures
* above that.
* The regular tormula is to subtract 32 and to multiply by
* 5/9.
*
*/

'include <stdio.h>

main (argc,argv)
int argc;
char *argv[);
{

tloat DegF, DegC;
tor (DegF = 0.; DegF <- 200.; DegF +- 20.)
(

/* Subtract oft the 32 */
/* 5/9 */

883

DegC s DegF - 32.;
DegC *- 0.55555555;
it (DegC <- 39.) /* Check which correction apply */
(

DegC s DegC + (DegC * 0.01); /* 1 percent */
else

DegC - DeqC + (DeqC * 0.0); /* 5 percent */
)
printf ("Temp. F - '7.4t, C = '7.4f\n", DeqF, DegC);

To appreciate the differences and similarities between the source code
produced by reverse engineering and that originally written by Sen
satemp, small fragments of the two pieces of source code must be
compared.

Published by eCommons, 1993

884 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

The Newco code reads:

/* •••• *.**.*** ••••• **.** ••••••••••• * •••••••• ~ •••••••••• * •••• -
Th15 program was wr1tten from a flow-chart prov1ded.
It prints out compensated temperature values in Fahrenhe1t and
Celsius for values of Fahrenheit from 0 to 200 degrees uS1ng the logic shown
in the flow chart. For temperatures less than 40'C, the temperature in ·C is
increased by one percent .
•• • •••••••••••• */

The corresponding part of the Sensa temp code reads:

j*

• ftoc.c

• Copyright (c) 1992, Sensatemp Inc.
• This source code contains proprietary information and trade
• secrets of Sensatemp Inc. and may not be reproduced in any
• form without the wr1tten permission of Sensatemp. Inc.
• This program contains a top-secret formula for converting
* temperatures in fahrenheit to centigrade for the purpose
* of displaying the results of the XYZ Inc. temperature probe.
* Because of a non-linear response from the XYZ Inc's probe,
* the need exists to increase the final temperature by 1% per
• cent
" for temperatures less than 40 c, and by 5. for temperatures
" above that.
" The regular formula is to subtract 32 and to multiply by
• 5/9 .

"I

Newco's initial comment block is quite different from Sensa temp's,
both in terms of what it says, and in the formatting. Newco used a
horizontal line of asterisks above and below the initial comment block
to highlight it. Sensatemp has used a different style, with a line of as
terisks down the left hand edge of each line to create a sort of change
bar effect.

The Sensatemp comments reveal that there are two apparent mis
takes in Newco's code. First, Sensa temp claims to compensate differ
ently for temperatures less than or equal to 40' C and those above
40'C. Newco's code applies compensation for temperatures less than
39' C. It appears that Newco's engineers are in error; they should have
checked for temperatures less than 41 'c to follow Sensatemp's com
ment. Furthermore, Sensatemp's comment says that above tempera
tures of 40'C, Newco should be compensating by a factor of 5%! For
temperatures above 39'C, Newco should not apply any compensation.

These mysteries can be resolved by further examination of the
source code. Newco's code reads:

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 885

••• **** •• *** •••••••••••••••• *** ••• ****** ••••• ***** •• **.*****. */
'include <stdio.h>

main (argc, argYl
int argc;
char "argv(];
(

The corresponding fragment of Sensatemp's code reads:

"/

'include <stdio.h>

main (argc, argYl
int argc; .
char "argvl];
(

Newco's code looks identical to Sensatemp's! Is this clear evidence
of slavish copying? The short answer is "No!" All of these lines are
absolutely standard for any program written in the C language and
therefore the similarity, such as it is, is a direct product of the con
straints under which the programmers developed the program.

There are small signals that Newco's code is not a slavish copy of
Sensatemp's. First, Newco's code has no blank line after the comment
block before the standard statement "#include <stdio.h>". Second,
Sensatemp's programmer wrote "main(argc,argv)" without a space af
ter the comma. Both programs are equally correct. They are similar
but not infringing.

Moving to the next code fragment, here is the N ewco code:

Published by eCommons, 1993

886 UNIVERSITY OF DAYTON LA W REVIEW [VOL. 19:3

float F, c;
F - 0.0;
while(l)

1* Initialize Fahrenheit temperature to 0 *1
1* Enter permanent loop *1

{

C = F - 32; 1* Subtract off 32 as start of conversion */
C *=C * 0.55555;

1* Check if compensat~on required (below 40·C)
comp = 0.0; 1° Assume no compensation required °1
if (C < 40) 1* Apply compensation if C less than 40·

Camp = 0.01;
C = C + (C * Camp) ; /* Apply compensation *1
printf("\nFahrenheit = %f, Celsius = %f", F, C);
if (F == 200) 1* If F gets to 200, we are finished

break; 1* Break out of while loop *1
else

F += 20; 1* Increase F temp by 20 *1

And here is the corresponding Sensa temp code:

float DegF, DegC;
for (DegF = 0.; DegF <2 200.; DegF += 20.)
{

DegC = DegF - 32.; 1* Subtract off the 32 *1
DegC *= 0 . 55555555; 1* 5/9 °1
if (DegC <= 39 .) 1* Check which correction apply *1
{

DegC = DegC + (DegC * 0.01) ; 1* 1 percent *1
else

DegC = DegC + (Degc • 0.0); 1* 5 percent °1
I
printf(nTemp. F = %7.4f, C = %7.4f\nn, DegF, DegC);

This is the heart of the program. It shows declarations of symbolic
variable names, the logic that makes the program loop around several
times, and the calculations to convert temperatures and print them out.
Newco's code uses the names "F" and "C" for the two data variables
to contain the Fahrenheit and Celsius temperatures respectively. Sen
satemp's code uses "DegF" and "DegC" respectively. The codes are
similar, of course, but not identical.

To achieve the effect of looping around several times, Newco's
code uses what is called a "while" loop (i.e. while a condition is true,
execute the next block of code-the intent being that the code in the
block will somehow change the condition so that the computer ulti
mately comes out of the loop). In fact, Newco's code uses a conven
tional means of making the loop appear infinite by saying "while(1)."
The only way out of this kind of loop is a "break" statement at the end
of Newco's "while" loop. The "break" statement is only executed if the
temperature in F reaches a value of 200. If the temperature in F is not

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 887

equal to 200, then the code increases the temperature in F by 20 and
returns to the top of the "while" loop.

On the other hand, Sensatemp's code uses a completely different
construct, a "for" loop, that initializes DegF to 0, and each time
around the loop checks to see if DegF is less than or equal to 200. If it
is less than or equal to 200, the computer executes the loop one more
time having incremented DegF by 20. Clearly Newco's logic for loop
ing around is very different. But how could this be? Newco's engineers
disassembled the actual object code produced by the compiler for Sen
sa temp's source code. Why does Newco's source code not conform to
Sensatemp's?

The answer is that the compiler Sensatemp used deliberately gen
erated object code that was a simpler version of the "for" loop.
Newco's engineers were guided by the compiler output (the object
code) not the Sensatemp source code.

Two more mysteries are also revealed. Regardless of what Sen
satemp's documentation said the program should do, it applies 1 %
compensation for Celsius temperatures less than or equal to 39 0 C.
Furthermore, examination of the source code line that does compensa
tion for temperatures above 39 0 C shows the following:

DegC = DegC (DegC * 0.0); /* 5 percent * /
The comment says 5 %, but the source code on the left says 0 %. The
fact that this comment and the one in the header block both say 5 %
indicates that Newco engineers have faithfully reverse engineered a
mistake in Sensatemp's program. Such a copied mistake has, in other
circumstances, been used as "proof' of copyright infringement.

III. TRUTHS OF REVERSE ENGINEERING

The preceding example has shown the realities of reverse engineer
ing as a process of painstakingly attempting to understand the ideas
embodied in the object code of a computer program. Revealing the
truths of reverse engineering in practice also demands that previously
disseminated falsehoods be shown for what they are. Therefore, this
paper concludes by addressing some of these technical falsehoods re
vealed either in articles opposing reverse engineering, or by the misun
derstandings of some courts when confronted by the very confusing and
apparently slippery concepts associated with computer science.

Published by eCommons, 1993

888 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

A. Is Software Reverse Engineering Necessary?

The opponents of reverse engineering who filed an Amici Curiae
BriefS' in Sega Enterprises Ltd. v. Accolade, Inc. stated:

The argument that it is necessary to copy and adapt the object code
version of a copyrighted computer program to understand its "ideas" is
without merit. Alternative means are available to study a program and
analyze how it operates. For example, a developer who wishes to learn
about a program can: read the documentation, user manuals and other
materials published by the developer; observe screen displays; observe
the program in operation, studying input, output, and the speed with
which the program functions are performed; read and study the object
code; perform timing tests; test the programs' functions by designing in
put data specifically for that purpose; and, by attaching test equipment,
physically examine the internal parts of the computer while the program
is running. '0

This argument is technically naive as can be seen if each suggested
alternative is considered in a real world context.

The argument assumes several points. First, it assumes that docu
mentation is available. No relevant documentation, however, is availa
ble from Nintendo or Sega. Second, it assumes that the documentation
contains all of the requisite information. In reality, in most instances
where reverse engineering is done, it is only done precisely because the
documentation, if any, fails to provide the required information. Third,
it assumes that the program even produces screen displays; but, the
essential code in both the Sega and Nintendo units operates invisibly. It
also assumes that the input and output are not encrypted and are com
prehensible. The Nintendo base unit outputs long streams of pseudo
random Os and Is with pauses of pseudo-randomly determined length.
It further assumes that timing computer software gives significant clues
to its function. The execution time of all but the most specialized
software is more affected by the sophistication of the compiler than the
underlying algorithm.

The argument makes further assumptions. For instance, it assumes
that modern object code is as simple and as small as software was back
in the dawn of computing. As this paper has demonstrated, however, a
modern program is hundreds of times larger than those early programs,

39. The amici were IBM, Apple Computers, Autodesk, Computer Associates, Digital
Equipment Corporation, Intel Corporation, Lotus Development Corporation, WordPerfect Corpo
ration and Xerox Corporation.

40. Amici Brief, supra note 12, at 18 (footnotes omitted). "It is possible to read object code .
. . . Indeed prior to the advent of assemblers and compilers in the early 50's, all programming was
done in machine language." [d. n.26 (citations omitted).

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 889

and the binary representation of each instruction is sufficiently arcane
that, taken together, human beings cannot, in a real and practical
sense, understand object code without making some kind of intermedi
ary copy. Next, it assumes that testing the programs' function by con
triving special input data is feasible or likely to yield relevant results.
But, the relevant code in Sega and Atari consisted of a "private" con
versation between two central processing chips. There was no means of
creating "special input data." The argument further assumes that the
test equipment attached to examine the internal parts of the computer
can operate without making any kind of intermediary copy. Such de
vices almost always produce such a torrent of information that some
kind of printout is required to understand all but the most minuscule
fragment of object code. Furtherinore, such devices almost always in
clude disassemblers to convert the binary data into a human compre
hensible form.

The Amici's assertions are bogus. The reality of the program only
exists within the object code. It is the object code alone that can answer
every question.

B. Decompilation Is Not Used For Developing Original Computer
Programs

Later, in this same Amici Curiae Brief, the Amici state: "Decom
pilation is not standard industry practice in developing original com
puter programs. "41 This is untrue because it presumes that "original
computer programs" are developed and run on a computer in isolation
from all other programs. That was true in the early 1960s when the big
mainframe computer was king. Today, however, nothing could be fur
ther from the truth. As this author writes this paper on a laptop com
puter using Microsoft Word for WJndows, there are eight major
software products that must interoperate flawlessly, executing billions
of computer instructions as the computer darts backwards and for
wards between each of the eight products.42 Imagine the company that
develops just one of these eight software products. What will it do if it
discovers an unexpected system crash during the development of its
software? If research shows that the problem does not lie in its own
software, it would have no option but to try and discover what peculiar
interaction between its software and the other seven programs would
cause the crash. It would immediately start to reverse engineer one or

41. [d. at 29.
42. Microsoft Windows, Microsoft Disk Operating System, Adobe Type Manager, Word

for Windows, Alki's MasterWord extensions to Word for Windows, Norton's Desktop For Win
dows, Stac Electronics' Stacker software that doubles the hard disk space, and QEMM managing
the computer memory.

Published by eCommons, 1993

890 UNIVERSITY OF DAYTON LA W REVIEW [VOL. 19:3

all of the other programs, following its instincts to determine which
program might be the cUlprit.

A recent excerpt from an industry trade magazine suggests that
even IBM may have to use reverse engineering to maintain compatibil
ity for its OS/2 operating system:

As its long-standing agreement with erstwhile partner Microsoft Corp.
draws to a close this week, IBM's Personal Software Products unit finds
itself at a cross-roads. While its rights to Microsoft's 16-bit DOS and
Windows code will ensure OS/2 sufficient compatibility for the bulk of
installed applications for at least the next year or so, observers call into
question IBM's ability to sustain future support in a timely fashion
Most agree that while it is feasible to reverse-engineer the APls", IBM
will surely be in the undesirable position of playing catch-up if it wants
to maintain compatibility with Microsoft's platforms.··

It would appear that even IBM may now find itself forced to reverse
engineer in order to keep its OS/2 operating system capable of running
programs originally designed to run under Microsoft Windows. Absent
a license with Microsoft, and presuming that IBM wishes to run
Microsoft Windows applications programs under OS/2, IBM will have
to reverse engineer and disassemble parts of future versions. of Win
dows. Its own counsel stated in a paper delivered at the 1993 Univer
sity of Dayton Intellectual Property Symposium that: "[Disassembly] is
without question an attempt to obtain information that the right-holder
lawfully seeks to withhold from its competitors."·fI'

C. As Programmers Can Read Object Code Directly, Is Disassembly/
Decompilation Necessary for Reverse Engineering?

Opponents of decompilation and reverse engineering make their
argument sound reasonable.48 Therefore, they are able to agree, and
they do so with amazing consistency. Computer programmers, in the
experience of this author, inevitably greet the opponent's assertion with
derision and disbelief. In consideration of its proponents, the argument
must be taken seriously, at least long enough to show the bogus techni
cal foundations on which it rests. These foundations are that: program
mers can read and comprehend object code directly when viewed on a
computer screen without the need to make notes; and the act of view
ing object code directly obviates the need for any infringing intermedi-

43. Knowledge of Application Program Interfaces is necessary to maintain compatibility
and allow programs designed to run under Windows to run under OS/2.

44. Amy Cortese, IBM Faces Hurdles with OS Strategy. PC WEEK, Sept. 13, 1993, at 57,
68.

45. Clapes, supra note 32.
46. Clapes, supra note 32.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 891

ary copies. Both of these arguments are built on technically faulty
foundations. On closer examination, they are bogus, especially when
judged by the metrics of infringement advanced by these very oppo
nents of disassembly and "decompilation."

While it is true that some of the more skilled programmers of the
world can read object code directly (including this author for certain
Intel CPU chips), the real issue is not one of perception but of compre
hension. Modern programs, as even the simplistic Sensa temp hypotheti
cal example showed, are not executed instruction-by-instruction from
the first to the last. The actual execution flow darts backwards and
forwards like a demented waiter taking orders from diners at widely
separated tables in a restaurant. One subroutine calls six other subrou
tines; each of these six may call another six subroutines and each of
these thirty-six subroutines call yet more subroutines. A skilled
programmer, attempting to comprehend the program (as opposed to
merely trying to read the object code), must grasp many different as
pects of the program mentally. Many of these aspects are only dimly
understood.

The challenge facing programmers trying to understand even the
most basic program is to hold all of this information in their brains
until they can resolve the numerous mysteries and unanswered ques
tions. Even as early as 1956, cognitive psychologists such as Professor
George Miller in his now classic paper The Magical Number Seven
Plus or Minus Tw047 demonstrated how painfully small a human's
"short term memory" really is. Such memory is capable of holding only
seven (plus or minus two) cognitive "chunks" of information at any
moment in time. This limited "working memory" (as it came to be
called) is shown, with graphic clarity, by Professor Ben Shneiderman in
his book "Software Psychology."48 Opponents of reverse engineering
should read this book to really understand why programmers cannot
read and comprehend large quantities of object code, or even source
code.

Speaking specifically of how the fact that programs jump back
wards and forwards inhibits comprehension (and bear in mind this was
source code resplendent with massive amounts of high-level of abstrac
tion information), Professor Shneiderman says: "[F]orward or back
ward jumps would inhibit 'chunking' (the name given to the process of
mentally gluing quanta of information to form higher level concepts)

47. George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on
our Capacity for Processing Information, 63 THE PsYCHOL REV . 81 (1956).

48. BEN SHNEIDERMAN. SOFTWARE PSYCHOLOGY: HUMAN FACTORS IN COMPUTER AND IN

FORMATION SYSTEMS 46-54 (1980).

Published by eCommons, 1993

892 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

since it would be difficult to form separate chunks without shifting at
tention to various parts of the program."4& The impossible situation
confronting a programmer trying to read and comprehend object code
viewed through the keyhole of a computer display screen could be ame
liorated if the programmer were to take written notes, jotting down
quanta of information that could not yet be "chunked" into concepts.

This very idea was put forward by an opponent of decompilation
and disassemblyliO as a "work around" for a programmer's inability to
comprehend large quantities of convoluted object code. It is a curious
and contradictory idea which falls prey to the additional argument of
those who oppose decompilation and disassembly (and echoed by
Sega's attorneys) that any such notes would be a derivative work, con
taining, as they would, detailed expressive information copied directly
from the original object code.

The notion that, by confining themselves to reading object code
directly on the computer's display screen, programmers obviate the
need to make intermediary (and infringing, as these opponents would
argue) copies of the object code, is similarly curious, contradictory and
ill-informed. According to the Copyright Act of 1976:

'Copies' are material objects, other than phonorecords, in which a work
is fixed by any method now known or later developed, and from which
the work can be perceived, reproduced, or otherwise communicated, ei
ther directly or with the aid of a machine or device A work is 'fixed'
in a tangible medium of expression when its embodiment in a copy or
phonorecord, by or under the authority of the author, is sufficiently per
manent or stable to permit it to be perceived. reproduced. or otherwise
communicated for a period of more than transitory duration.'!

Any intermediary copy of the object code made in order for a program
mer to read and comprehend it would, of necessity and definition, meet
this fixation requirement. It requires considerably more than "transi
tory duration" for even the most skilled programmers to stare at the
computer display screen and divine what the program is doing. It is
technically contradictory to argue that programmers can perceive the
code (and take the time to comprehend it), and yet, such copies would
not be "fixed" because they are transitory. If the copies were transi
tory, then the programmers could hardly comprehend them!

The second fundamental technical flaw in the foundational argu
ment of those who oppose disassembly and decompilation is that view
ing object code on the computer display screen obviates the production

49. [d. at 53.
50. See generally Clapes, supra note 32.
51. 17 U.S.C. § 101 (1988) (emphasis added) .

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 893

of intermediary copies of this object code. Not only is this false, but it
can be shown by even a novice programmer, that the display of object
code on the computer screen results in the same number of intermedi
ary copies being created as if a programmer were to view disassembled
source code on a computer screen. To illustrate this point demands a
brief excursion into the inner world of the computer. Imagine a pro
gram whose purpose is to read in object code and display it on the
computer's display screen, presenting screenful after screenful, and al
lowing a programmer to page backwards and forwards within the ob
ject code. For subsequent clarity, let this program be called
HEXDUMP.

Consider the inner operations that must occur within an IBM per
sonal computer when the HEXDUMP program displays the first
screenful of hexadecimal object code of, say, the main Lotus 1-2-3 pro
gram for use under MS-DOS (which, incidentally, requires over
900,000 bytes of memory). The following sets forth the specific opera
tions that will occur before HEXDUMP can display the first few bytes
of the program on the screen. First, HEXDUMP makes a request to
the MS-DOS operating system for the first 512 bytes of the 1-2-3 pro
gram to be read into a dedicated area of memory within the
HEXDUMP program itself. Second, the operating system transmits a
command to the hard disk drive controller to read the hard disk "sec
tor" (usually 512 bytes in size) containing the first part of the 1-2-3
program. To do this, the hard disk controller, a computer in its own
right, makes a copy of the required sector in a part of its own private
memory (this is memory on the hard disk controller and not part of the
main computer memory). Third, the hard disk controller then, in coop
eration with the electronics in the main personal computer, makes a
copy of the first 512 bytes of the 1-2-3 program in that part of the
memory under control of the operating system. Fourth, the operating
system, sensing that the requested data has arrived in that part of main
memory that it has dedicated to storing hard disk information, then
makes another copy of the first 512 bytes of the 1-2-3 program to the
designated area of main memory within the HEXDUMP program it
self. Fifth, the HEXDUMP program is then put back in control of the
machine. It must take the pure binary information it finds in the mem
ory area containing the object code from the hard disk and convert it
into a form that can be displayed on the computer's screen. It accom
plishes this by grouping the actual binary digits in memory, and substi
tuting different binary values in another working area of memory that,
when displayed, will reflect the true binary found in the object code.
Recall the output of a typical hexadecimal dump: the left hand side
shows the hexadecimal values of each byte, while the right side shows

Published by eCommons, 1993

894 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

these same bytes but viewed as ASCII. To perform this step, two more
copies are made of the 1-2-3 object code. Finally, to display the con
verted binary code, HEXDUMP must request that the operating sys
tem copy the converted image into a special area of main memory, the
so-called Video RAM (Random Access Memory), from which the
hardware of the IBM personal computer will illuminate the phosphor
dots on the computer screen so that the individual numbers and letters
can be read by the programmer. Thus, four more copies are
made-two in Video RAM (hexadecimal and ASCII) and two on the
phosphor of the display screen (hexadecimal and ASCII). This process,
offered as a means of avoiding intermediary copies, actually makes nine
intermediary copies. Ironically, if the same programmer used a disas
sembler to display the first few bytes of the 1-2-3 program, that process
too, would require nine intermediary copies, corresponding one for one,
for the copies described above.

It will likely be argued that these copies are not copies under the
meaning of the Copyright Act because they are not "fixed", but transi
tory. Is this really true? If Newco's valiant programmer stared at the
first screenful of object code for fifteen minutes (assuming there was no
other activity relating to the hard disk) all nine copies of the object
code would remain completely intact. Are these transitory in nature?
The court in MAl Systems Corp v. Peak Computer, Inc."2 ruled that
such RAM-based copies would be temporary, but not transitory:

RAM can be simply defined as a computer component in which data and
computer programs can be temporarily recorded. Thus, the purchaser of
[software] desiring to utilitize the programs on the diskette could ar
range to copy [the software] into RAM. This would only be a temporary
fixation. It is a property of RAM that when the computer is turned off,
the copy of the program recorded in memory is lost. &a

A temporary fixation is still a fixation which raises two questions. First,
what if the computer is not turned off, or the contents of RAM are
preserved with a small backup battery power supply, as happens in
most models of Toshiba laptop computers? Second, would that tempo
rary fixation effectively become permanent if preserved for long
enough? Opponents of disassembly and decompilation cannot have it
both ways. Either the intermediary copies are fixed or they are not. The
arbiter of fixation cannot be whether the screen is displaying hex
adecimal object code or disassembled source code.

52. 991 F.2d 511 (9th Cir. 1993) (quoting Apple Computer, Inc. v. Formula In1'l, Inc., 562
F. Supp. 775 (C.D. Cal. 1983), affd, 725 F.2d 521 (9th Cir. 1984».

53. Id. at 519 (emphasis added).

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 895

In the real world both the hexadecimal dump and the disassem
bled source code would be printed so that the programmer could com
prehend it. The cognitive task of trying to memorize page after page of
either is practically impossible. Such printouts are, to a programmer,
clearly fixed within the definition of 17 U.S.C. § 101. It could also be
argued that the intermediate copies produced by displaying hex
adecimal object code on the computer's display screen are permissible
under the terms of 17 U.S.C. § 101, on the basis that:

[I]t is not an infringement for the owner of a computer program to make
or authorize the making of another copy or adaptation of the computer
program provided: 1) that such a new copy or adaptation is created as an
essential step in the utilization of the computer program in conjunction
with a machine and that it is used in no other manner D4

This too, is technically fallacious. The 1-2-3 program's object code is
being processed entirely as data, not as a computer program that will
control the operations of the computer itself. It is therefore not "an
essential step in the utilization of the computer program."1i1i Those cop
ies that are made to bring the object code from the hard disk into the
main memory would be indistinguishable from those made to execute
the program because at that stage the process is identical. But there
the similarity ends; the object code never gets to control the computer
but is merely processed by the HEXDUMP program as incoming data.
As a software practitioner, the author also wonders whether, in this
context, a reverse engineer is legally an "owner" or a "licensee."

D. Can Disassembly/Decompilation Be Used To Make A Program
Run On A Different Computer?

It has also been argued that disassembly and decompilation can be
used to migrate a program running on an Intel 80486 CPU chip to run
on a Motorola 68040 CPU chip, for example. This implausible process
is alleged to operate by extracting a program's assembly language
source code from the Intel 80486 object code, translating that source
code into Motorola 68040 assembly language source code, and passing
the 68040 assembly language source code through an assembler pro
gram to form a new version of the binary object code that, mirabile
dictu, will be ready to run on a Motorola 68040 machine.

There are several technical fallacies with this argument. The inter
nal architecture of the Intel 80486 is very different from that of the
Motorola 68040. The 80486 stores binary numbers in a radically differ-

54. 17 U.S.C. § 107 (1988).
55. [d.

Published by eCommons, 1993

896 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

ent wayll6 than the 68040, so much so that assembly language code
written for the 80486 will simply not work in the 68040 without major
modifications to the overall logic. Similarly, the internal storage regis
ters in the 80486 operate in a completely different way from those in
the 68040, sufficiently different to confound any automated translitera
tion program. The differences in the two CPU chips and their respec
tive operating methods further conspire to ensure that the very logic of
the original 80486 program would not work if simply transported to the
68040. Assuming for a moment that the original 80486 program was
designed to run on an IBM personal computer (PC) under Microsoft
Windows, and the Motorola 68040 is destined to run on an Apple Mac
intosh computer running System 7.1 of the Macintosh operating system
(and these are merely typical examples), there is absolutely no chance,
even if the transliteration from one CPU to another could be done, that
the program will work correctly. The hardware of the two computers is
completely different, the operating systems of the two computers is
completely different, and at higher levels of abstraction, the whole
software environment of the two computers is completely different. In
practice not even software developers "port" (as the act of migration is
called) their software from the PC to the Macintosh; they rewrite it. If
such developers, armed with all of the high level of abstraction infor
mation that they have created, cannot translate their own programs,
what chance does someone armed with just a PC disassembler and
Macintosh assembler have? They have absolutely no chance.

This suggested use of disassemblers is ill-founded. Its assertion is
based on technical capabilities that simply do not exist. Even if such
capabilities could be made to exist by sheer force of will, they fail mis
erably because of the differing software and hardware environments
that prevail in different computer systems.

E. Does Reverse Engineering Lay Bare A Program's Inner Secrets?

Reverse engineering does not lay bare a program's inner secrets.
Indeed, it cannot. The inner secrets of a program, the real crown jew
els, are embodied in the higher levels of abstraction material such as
the source code commentary and the specification. This material never
survives the process of being converted to object code. As the inner
secrets of a program are not in the object code, reverse engineering
cannot lay them bare.

56. Large numbers require mUltiple adjacent bytes of binary digits, and are stored with the
least significant byte first on the Intel 80486. On the other hand, the Motorola 68040, more in
tune with the way humans store numbers, places the most significant binary digits first.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 897

Furthermore, the implication is that reverse engineering is a pro
cess of distillation, removing information from the original object code
to form an understanding of what the original source code must have
been. As the preceding examples have shown, almost all of the infor
mation about the program (other than the low-level assembly language
instructions) comes from the mind of the reyerse engineer. In other
words, reverse engineering is almost entirely an additive process, with
the reverse engineer adding his or her knowledge and experience to the
meager information contained within the object code.

F. What Information Does Reverse Engineering Reveal About A
Program?

Reverse engineering can only reveal information contained within
the binary object code being studied. In the event it appears to reveal
more than that, it is actually information being supplied by the reverse
engineer. In practical terms, and given considerable time, a skilled re
verse engineer can divine precise, but partial, information about what a
program does (as distinct from why it does it) in the following areas.
First, information can be divined concerning the user interface. That is,
the externally visible visual and audio interface perceived by someone
using the program. It could be argued that reverse engineering this in
formation is perverse as, in most cases, this information can be ob
tained more easily by Black Box observation of the program in
operation.

Second, information can be divined concerning most of the inter
nal interfacesll

'7 between the individual blocks of software being ana
lyzed. There are inevitably some interfaces whose existence can be seen
but, like some unused back country roads, never used. The reverse en
gineer, absent any information to the contrary, can only assume that if
an interface exists, sooner or later someone will use it.

Third, information may be divined concerning most of the internal
and external data structures used by the program under scrutiny. The
existence and purpose of internal data structures can only be analyzed
by observing the program placing data into, or retrieving data from,
the various data fields within the structure. In many cases, the reverse
engineer will observe that there are data fields within a data structure
that never appear to be used no matter how diligently all of the differ
ent capabilities of the program are exercised. These data fields,

57. An interface is a software "connection" between one body of software and another. This
author suggests a definition of an interface as "a point in an information processing system
through which information passes without any intentional change to its format or its meaning."
Opponents of reverse engineering deny that an adequate definition for an interface exists.

Published by eCommons, 1993

898 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

whether they are internal to the program or contained within a data file
created or read by the program, will remain a mystery until they are
seen in use. Data files can also be analyzed by creating special test data
with predetermined data values in each data field. By analyzing the
contents of these files, the reverse engineer can infer what information
is being stored and how it is represented. This knowledge, however, is
not all-seeing. Many times the reverse engineer will see a single prede
termined data value that provokes numerous data fields to be set to
special values. The reverse engineer can only speculate as to what these
values represent unless he or she can reverse engineer a program that
actually uses one or more of these values in the course of its operation.

Also, information can be divined concerning some aspects of the
algorithms used by the program under scrutiny. Absent the high level
of abstraction information, the reverse engineer can observe what the
algorithms do, at least in those test situations that can be induced while
the program is being observed. It is not at all unusual, however, that
only ten to thirty percent of the object code is executed during normal
operation of a modern program. The remaining seventy to ninety per
cent is reserved for error handling and special conditions that the re
verse engineer might not be able to recreate. Although the amount of
code executed will vary from one program to another, the real point is
that it is unlikely that the reverse engineer will enjoy the luxury of
observing all of the program's code in action. This fact makes discern
ment of specific algorithms much harder or even impossible.

Another piece of information which a reverse engineer can gather
from the process of reverse engineering is the overall static structure of
the object code, revealing how the object code is laid out when the
program is loaded into memory to be run on the computer. This static
structure of the object code is vastly different from the static structure
of the source code. The source code has been translated by a Compiler
program and glued together with other object code by a Linker pro
gram. The final object code is more a product of the Compiler and the
Linker than the programmer who wrote the source code.

Reverse engineering also reveals information concerning the dy
namic structure and execution sequence, the chronological sequence in
which parts of the program are executed by the computer. This, how
ever, will take the form of a vast amount of information, so large in
fact that most reverse engineers would not find the information useful
except where it can be focused on some detailed arcana that eludes
understanding by other easier means.

G. What Can Never Be Discovered By Reverse Engineering?

No matter how talented the reverse engineer, and no matter how
much time and money is dedicated to the task, software reverse engi-

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 899

neering can never recreate any of the following areas of information.
First, it cannot reveal the original higher levels of abstraction informa
tion contained in design documentation, specifications, or business
plans. The object code form of the program is devoid of this kind of
information and the reverse engineer cannot therefore recreate it.

It also cannot reveal the original source code, complete with its
commentary. This too, is simply not present in the object code. It can
not therefore be recreated. The original data structures, complete with
data fields that might be set aside for future use, can also not be re
vealed. These will never be used by the program as it executes, and
therefore, their purpose cannot be divined.

Reverse engineering cannot determine the original design ration
ale. The reverse engineer can discern what a program is doing, but not
the underlying reasons why it does it the way it does, or why it does it
one particular way rather than another.

H. Can Reverse Engineering Show Current and Future Compatibility
Requirements?

Reverse engineering cannot show current and future compatibility
requirements. The court in Atari Games Corp. v. Nintendo of America.
Inc.rJs committed a major technological error when it stated:

Program code that is strictly necessary to achieve current com pat ability
[sic] presents a merger problem, almost by definition, and thus is ex
cluded from the scope of any copyright. A defendant may not only make
intermediate copies of an entire program to discover the existence of
such code, but it may also copy the code into its final product. In con
trast, program code that relates only to future compatability [sic] has no
current function and thus cannot merge with the expression of any idea.
Such code is therefore entitled to copyright protection. Ie

The court failed to understand that reverse engineering cannot tell
whether a given feature is required for current or future compatibility;
it can only show whether a given feature is in current use or not. Cur
rent use is determined by actual observation of the execution of the
computer program under a variety of test circumstances. If the reverse
engineer fails to see any use of the feature, he or she simply cannot
know whether it is because the feature is a vestigial remnant of some
previous requirement, or some embryonic future requirement for to
morrow or years hence.

58. 975 F.2d 832 (Fed. Cir. 1992).
59. Atari Games Corp. v. Nintendo of Am., Inc., No. C 88-4805 FMS, C 89-0027 FMS,

1993 U.S. Dist. LEXIS 6786, at ·4 (N.D. Cal. May 18, 1993). "In other words, there is only one
way to express the idea of generating a signal stream that unlocks the NES console." Id. n.3.

Published by eCommons, 1993

900 UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

Atari's challenge was to obtain samples of all of the different types
of Nintendo base units in use in the world today in order to establish
overall compatibility requirments. It must be remembered that
Nintendo markets different models for each country or major geo
graphical region in the world. Only by observing all of the known
Nintendo models in operation could Atari have determined whether or
not a specific internal interface was in current use or not.

Given that Atari could have examined all of the known models,
and could determine that none of these base units used the interface in
question, it still would make absolutely no sense whatsoever for Atari,
either by choice or court edict, to simply ignore an apparently unused
compatibility requirement. If a compatibility requirement is seen to ex
ist, one must assume that sometime, sooner or later, it will be brought
into play. To fail to implement the same feature because one cannot see
it being used is to commit economic suicide in the computer industry.
Imagine distributing hundreds of thousands of game cartridges without
this compatibility requirement only to wake up one morning and dis
cover that new base units sold only in Europe now demand that the
requirement be present. Worse yet, imagine that the base units are ca
pable of maintaining the date with an internal clock chip and that on
February 4, 1994, all base units, in unison, will use that compatibility
requirement from then on.

/. Are Copied Bugs Always A Sign Of Infringement?

If an allegedly infringing program is found to contain some (or all)
of the same mistakes as the original, it would be easy to conclude that
the apparently infringing program had been slavishly copied from the
original. Reverse engineering does not necessarily guard against this. If
the original program has an error of logic, that error (if the reverse
engineering is done properly) should appear in the subsequent code. If
it does not, that would tend to point towards some skullduggery. How
did the reverse engineers know how to correct this mistake? How did
they know that it was a mistake?

J. Can Reverse Engineering Be Used To Disguise Copying?

Some opponents of software reverse engineering have asserted that
the process provides the would-be software thief with a cheap method
of eviscerating a successful software product. They claim that by shuf
fling the components into a new arrangement to disguise their origins,
they can thereby reap unjustified enrichment on the intellectual coat
tails of the original program's owner.

Asserting that software reverse engineering allows people to shuffle
a program's internal source code, thereby creating a disguised copy of
the original, is both technical and commercial nonsense. If a thief

https://ecommons.udayton.edu/udlr/vol19/iss3/3

1994] ENGINEERING IN THE REAL WORLD 901

merely shuffles the original source code, the resulting object code will
still contain numerous indicia of the software's origin and the theft
would be readily exposed. If the thief, however, being particularly con
scientious, both shuffles and heavily modifies the source code to disguise
it, almost certainly the program either will no longer work at all, or it
will be so unreliable that the thief will not find many buyers.

Assuming that, against all odds, the thiers source code shuffle has
not induced massive internal problems into the rearranged software,
the lack of knowledge of the software's inner workings will prove com
mercially fatal, either when the thief attempts to provide end-user sup
port, or tries to amend the program to stay competitive. Experience
shows that, even when changing one's own code, any modifications
made to a modern program have a less than ten percent chance of
working the first time and will usually cause some other part of the
program to fail. The chances of successfully making modifications to
code that was reverse engineered and lacks the high levels of abstrac
tion explaining how the program works are probably on a par with
those of winning a state lottery.

A software thief who lives by reverse engineering will die a death
in the marketplace because of reverse engineering. The costs of reverse
engineering, taken across the product's entire life, usually five to seven
years, will invariably be higher than software written de novo.

As this paper has demonstrated, reverse engineering is the most
expensive remedy of last resort. Software thieves have neither the time
nor the funds to spend on massive reverse engineering. For them, the
emphasis is on making a quick profit and moving on before the authori
ties track them down. The underlying reasons for reverse engineering
are antipodean in nature to the motivation of a software thief who has
no desire to take the time to understand how the software works when
all that stands between him and illicit profits is the means to copy dis
kettes and photocopy manuals.

IV. CONCLUSION

Reverse engineering is a demanding and time-consuming process.
Its results depend heavily upon a reverse engineer's skill and experi
ence. The process has existed almost since the day that computers were
created, being called into play whenever a programmer needed to un
derstand how a program really works or what is causing an unexpected
failure. Reverse engineering is not a technique used by software thieves
because it takes too much time and costs too much money. Further
more, even if thieves were to use reverse engineering, it would yield too
much information of the wrong sort for a "fast buck" merchant.

The real issue is not whether or not reverse engineering should be
a proscribed act because it might be used to misappropriate protectable

Published by eCommons, 1993

902 -UNIVERSITY OF DAYTON LAW REVIEW [VOL. 19:3

expression, but whether or not the large software companies can pro
teet their ideas using copyright law. Opponents of reverse engineering
are rarely programmers or small software development companies.
Most programmers would vehemently oppose any restrictions on re
verse engineering. They are united in their repugnance for those who
plagiarize or steal the software of others. One must wonder why this is
so.

https://ecommons.udayton.edu/udlr/vol19/iss3/3

	Software Reverse Engineering in the Real World
	Recommended Citation

	tmp.1684512363.pdf.vzWsE

