
Multi‐Robot Visibility‐Based Pursuit‐Evasion with Probabilistic Evader Models

Mukilan A.R. University of Dayton ashokrajrajapriyam1@udayton.edu
Nicholas M. Stiffler University of Dayton nstiffler1@udayton.edu

Contribution
A formulation of the visibility‐based pursuit‐evasion problem that incorporates
information about how the target agents (evaders) are “likely” to move in a given
scenario to produce a more robust search strategy for our searchers (pursuers).

Existing Techniques

l Can not readily incorporate any information about the targets behavior/movement
and default to an uninformed search.

l These techniques are designed to be “complete” (they will find everyone . . .
eventually). However, there is no way to modify the search strategy in any
meaningful way to search known high density areas first.

Our Approach
l Predicts what the targets are likely to do.
l Design a two‐phase algorithm that
1. Exploits the information from our prediction.
2. Explores the remainder of the environment to find any remaining targets.

What is Pursuit‐Evasion?
A two‐player game where one group of agents,
called the pursuers, actively seek out members of
a second group, the evaders.

l The pursuers’ goal is to capture the evaders.
l The evaders wish to evade capture.

Modeling Evaders’ behavior

Emergency Egress ‐ a method of exit which people can access safely in an
emergency.
Informed Evacuation Model ‐ A predictive model that describes how an agent
might behave in an emergency situation.

Probabilistic Evader Models

The pursuers can use the Probabilistic Evader Model to
generate/sample a path representative of an evader that decides

to follow a given model.

Multi‐Robot Visibility‐Based Pursuit‐Evasion

Rather than try to reason about where any specific evader “could be” we instead
worry about the currently seen and unseen areas of the environment.

Visibility Polygons (Seen)

All points visible from a given point p = (x, y)

contribute to the Visibility Polygon VP(p).

Shadows (unseen)

Shadows are the unseen area of the environment,
S = Env \ VP(p). The key idea is that we maintain

the status of each shadow.
A shadow can be either:

l clear ‐ we can guarantee it does not contain an evader

l contaminated ‐ it “may” contain an evader

Objective
Compute a strategy where all shadows are simultaneously clear.

Problem Setup

Problem Formulation and Algorithm

Problem Definition ‐ Given an environment and a team of pursuers, compute a
joint strategy for the pursuers that locates all of the evaders in the environment.

Our algorithm proceeds in TWO PHASES
1. Exploit Phase
2. Explore Phase

Metrics
Expected Time to Capture (ETC) : Expected time to locate each and every evader in the

environment. ETC is the average time taken by the pursuers to capture each evader.
Guaranteed Time to Capture (GTC) : Time required for the pursuer to complete its

solution strategy. GTC is the total time taken to complete both the phases.

Exploit Phase

Generate representative paths from a probabilistic model of
evader behavior and compute a joint plan to capture the
evaders based on the model.

l INPUT: Environment, Probabilistic Evader Model(s), # of Pursuers
l OUTPUT: A joint parameterized Pursuer path

Explore Phase

Although the exploit phase guarantees to find all the evader that adhere to
the “sampled” trajectories, it does not provide any guarantees regarding
evaders who do not adhere to the model. Thus, we will Append additional
pursuer motions to the plan to ensure all evaders are found, regardless of
their behavior.

l We use a data structure called the Sample‐Generated Pursuit‐Evasion Graph (SG‐
PEG) to reason about reachable joint pursuer configurations.

l A search through this graph yields a feasible motion strategy for the pusuers to
ensure the detection of all evaders.

Implementation/Simulation
The algorithm was implemented in Python. Pertinent packages include:

l Graphs and other Data Structures : NetworkX Package
l Computational Geometry : Scikit‐Geometry Package
l Plots and Figures : Matplotlib Package
l Optimized representations : BitVector (For Bit values)

We are in the process of building the simulator for the purpose of demonstration,
and it is expected that the simulation would be ready by June.

Acknowledgement

This material is supported by the University of Dayton, College
of Arts and Sciences, Graduate Student Summer Fellowship.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors.


