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ABSTRACT

A decomposition of a graph Γ is a collection C of subgraphs, perhaps nonisomorphic, that partition

the edges of Γ. Analogously, consider a group of truck drivers whose non-overlapping routes jointly

cover all of the roads between a set of cities; that is, each road is traversed by precisely one driver.

In this scenario, the cities are the vertices of the graph, the roads are the edges between vertices,

and the drivers’ routes are the subgraphs in the decomposition. Given a graph H, we call C an

H-decomposition of Γ if each subgraph in C is isomorphic to the graph H. Continuing with the

previous analogy, this would imply that each truck driver travels a route which is identical in

connectivity between neighboring cities, but differs in locale.

A subdecomposition of C refers to a nonempty subset of C which partitions the edges of

an induced subgraph of Γ, and C is said to be t-primitive when there exist no proper subdecompo-

sitions of C containing t or more subgraphs. To visualize this, we consider a scenario in which t of

our truck drivers, along with their respective routes, are infected with an illness that spreads to any

healthy driver that travels directly between two sick towns. Assuming that an infected driver will

infect their entire route, we ask the natural question of whether this illness spreads to the entire

collection of drivers and cities, or whether it ends up confined to some subset of them. If any t sick

drivers result in universal infection, the highway network which their routes partition is t-primitive.

In this work we examine decompositions of cocktail party graphs into triangles. In par-

ticular, we establish the existence of 2-primitive triangle decompositions of cocktail party graphs

with 6k + 2 vertices for each nonnegative integer k. Coupled with the results of a recent under-

graduate capstone, this work completes the classification of when such decompositions exist for all

cocktail party graphs.
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CHAPTER 1

Introduction

In daily life, we frequently encounter systems which can be modeled by graph theory,

and can answer questions about those systems by understanding their graph theoretic properties.

Consider a metropolitan area, in which a collection of cities is joined by a highway network, and

suppose that this area is supplied by a group of truck drivers. Suppose that each truck driver, need-

ing to fulfill their supply network, drives a unique route along the highway network; in particular,

assume that each highway is traversed by exactly one driver and that the group’s non-intersecting

routes jointly supply every highway in the metropolitan area. Now, suppose that some number,

say t, of our drivers contract an illness and infect the cities that they visit and the highways that

they traverse. Assuming that a highway between two infected cities will infect the driver of the

highway between them, we ask the natural question of whether the entire metropolitan area (cities,

highways, and drivers) will be infected as infected drivers carry the disease along their routes.

Suppose that the images in Figure 1 represent three such metropolitan areas, where the

numbered circles represent cities, the colored lines represent the highways between cities, and each

color corresponds to a truck route.

Under the infection rules we have outlined, the entirety of route collection A would

become infected if any single driver were infected. For example, infecting the driver of the brown

route would spread the disease to every brown highway and cities 0, 1, 2, and 5, causing the driver

of the green route to be infected by the highway between 1 and 2. Once the brown and green routes

are infected, the disease spreads to every city and highway in the area.

Route collection B, by contrast, is resilient to the infection of a single driver. For

example, if the driver of the red route is infected, then the disease is contained to the red highways

and cities 1, 3, and 4 since none of the other colored routes traverse a highway directly between

cities infected by the driver of the red route. However, one can check that, if any pair of drivers

becomes sick, then the disease will inevitably spread to the entire area.
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Figure 1. A graph with decompositions of varying primitivity

Given the same metropolitan area, three different route collections A, B and C are shown. Route

collection A is 1-primitive, route collectionB is 2-primitive, but not 1-primitive, and route collection

C is not 2-primitive.

Finally, route collection C can survive the infection for certain pairs of drivers. In

particular, if the red and green routes are infected, then the infection is contained in the red and

green highways and cities 1, 2, 3, and 4. No other driver traverses a road between cities infected

by the drivers of the red and green routes.

From this example, we see that the answer to our question depends on several factors.

First, the likelihood of survival may be influenced by the number of drivers that are infected. If many

drivers are initially infected, one would generally expect the outcome of universal infection, while

we might expect some uninfected survivors in a scenario when few are initially infected. Second,

the routes of the infected drivers determine which local cities and highways, and by extension which

other drivers, will contract the illness. It would be plausible to expect that infecting a driver with

an extensive route covering a substantial quantity of highways between cities would spread the

infection more readily than one which does not have an extensive route. Finally, the size of the

metropolitan area could influence the spread of the infection, and one might suspect that a large

area could be more resilient to infection than a small area.

Indeed, the answer may depend heavily on both the metropolitan area and the routes of

the infected drivers. Thus, an interesting question to consider is the following: given a metropolitan

area with a specified collection of routes, is there a threshold number of infected drivers which

guarantees universal infection, and, if so, can we quantify its size?

2



In this scenario, the metropolitan area can be viewed as a graph Γ, the cities as the

vertices of Γ, and the roads as the edges of Γ. The unique routes driven by the truckers constitute

a decomposition of Γ; that is, a collection of subgraphs C such that this collection partitions the

edges of Γ. Of particular interest are scenarios in which all of the drivers have similar (isomorphic)

routes. Here, the subgraphs in C are all isomorphic to some graph H, and thus to each other, and

the corresponding decomposition is referred to as an H-decomposition of Γ.

Given a subcollection S ⊆ C of the subgraphs, S is referred to as a subdecomposition

of C if S is a decomposition of an induced subgraph of Γ, which is defined later. Decompositions

may be classified according to the nature of their proper subdecompositions. In particular, a

decomposition is called primitive if it contains no proper subdecompositions, and this property has

been a popular subject of focus in the literature. In 2000, Rodger and Spicer [7] classified primitive

(K4 − e)-decompositions of complete graphs, in 2012 Dinavahi and Rodger [3] classified primitive

Pm-decompositions of complete graphs for all positive values of m, and in 2022, Asplund et al. [1]

examined primitive Cm-decompositions of complete graphs and cocktail party graphs for m ≥ 4.

However, there are some graphs for which, given a graphH, a primitiveH-decomposition

does not exist. For example, decomposing a graph into subgraphs which are each isomorphic to C3

is not primitive in general, since an individual C3 subgraph is always an induced subgraph. A 1969

paper by Doyen [4], whose work inspired the methods in this paper, examined the existence of

primitive C3-decompositions of complete graphs when the number of vertices is congruent to 1 or 3

modulo 6, with the exception that he did not consider an individual C3 subgraph as a proper sub-

decomposition. For the purpose of describing these nearly primitive decompositions, Schroeder [8]

introduced the phrase t-primitivity, a generalized concept of primitivity which describes a decom-

position containing no proper subdecompositions with t or more subgraphs.

With this new definition in mind, we can now revisit Figure 1, where each image depicts

a graph imbued with a decomposition whose subgraphs correspond to the colored edges. By the

previous discussion, we can conclude that the decomposition A is 1-primitive, the decomposition B

is 2-primitive, but not 1-primitive, and the decomposition C is not 2-primitive. This new definition

also allows our infection question to be equivalently restated as two separate questions. Given a

graph with a decomposition, can we find t such that the decomposition is t-primitive? Furthermore,
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given a graph and t, can we find a t-primitive decomposition?

In this paper, we examine C3-decompositions of cocktail party graphs with n vertices.

In a 2021 undergraduate capstone, Stamm [9] leveraged the methods of Doyen [4] in the study

of 2-primitive C3-decompositions of complete and cocktail party graphs to prove the following

theorem:

Theorem 1.1. Let k ≥ 1. There exists a 2-primitive C3-decomposition of cocktail party graphs

with 6k vertices.

In this paper, we complete the classification of 2-primitive C3-decompositions of cocktail

party graphs by investigating cocktail party graphs with 6k + 2 vertices for nonzero integers k.

We begin in Chapter 2 by presenting some relevant definitions and results from abstract algebra,

defining our graph theoretic objects, and describing constructions of C3-decompositions of complete

and cocktail party graphs with 6k + 3 and 6k + 2 vertices, respectively, for k ≥ 1. Following these

preliminaries, we present and prove a modified version of Doyen’s construction of a 2-primitive

C3-decomposition of complete graphs with 6k + 3 vertices in Chapter 3. Ultimately, in Chapter 4,

we parallel Doyen’s methods to demonstrate the following theorem as the main result:

Theorem 1.2. Let k ≥ 1. There exists a 2-primitive C3-decomposition of cocktail party graphs

with 6k + 2 vertices.

Theorem 1.1 and Theorem 1.2, in conjunction with necessary numerical conditions on k,

classify the existence of a 2-primitive C3-decomposition of all cocktail party graphs, which is sum-

marized in the following theorem:

Theorem 1.3. For k ≥ 1, there exists a 2-primitive C3-decomposition of cocktail party graphs with

6k + ℓ vertices if and only if ℓ = 0 or ℓ = 2.

After the main results are presented in Chapter 4, we conclude in Chapter 5 with some

future directions and open questions.
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CHAPTER 2

PRELIMINARIES

We begin this chapter by recalling some group theoretic terminology and defining the

notation used for group operations, which are central to the construction of our C3-decompositions,

as well as in arguments concerning 2-primitivity. Additionally, we prove some results about cosets

that we later leverage to demonstrate the 2-primitivity of our C3-decompositions in the main

theorems. Subsequently, we formally define the graph theoretic terminology and notation, followed

by an examination of the necessary numerical conditions for a C3-decomposition of a cocktail party

graph to exist. We conclude the chapter by providing the constructions of C3-decompositions of

complete and cocktail party graphs with 6k+3 and 6k+2 vertices, respectively, that are discussed

throughout the paper.

2.1 Abstract algebra

Given a nonempty set G with an associative binary operation ∗, we say that G is a

group if there is an element e ∈ G satisfying that a ∗ e = e ∗ a = a for every a ∈ G, and for each

a ∈ G there exists an inverse element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e. A subset H ⊆ G

is a subgroup of G if H is a group under ∗, and we denote this relationship H ≤ G. In this paper,

we work with abelian groups, which satisfy the additional property that ∗ is commutative. For

this reason, the operation ∗ is generally written in additive notation; for the rest of this paper,

we denote the operation ∗ by +, e by 0, and a−1 by −a. Note that for an abelian group of odd

order, the operations of doubling and halving an element are well-defined. In general, for x ∈ G,

we adopt the common notational conventions that 2x = x + x and x/2 is the unique element

y ∈ G such that 2y = x. Given a set A ⊆ G, we also use the notation 2A = {2a : a ∈ A} and

1
2A = {a/2 : a ∈ A}. Selecting a fixed value a ∈ G, we define the coset a+H of a subgroup H to

be a + H = {a + h : h ∈ H}. The set of cosets of H forms a partition of the group G. Readers

seeking more information on group theory are directed to the textbook by Fraleigh [5].

The following lemma provides sufficient conditions for when a set is a coset of a nontrivial

subgroup of an abelian group of odd order.
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Lemma 2.1. Let G be a finite abelian group of odd order and A ⊆ G be nontrivial. If (x+y)/2 ∈ A

and 2z − x ∈ A for all x, y, z ∈ A, then A is a coset of a nontrivial subgroup of G.

Proof. Let a ∈ A and define B = −a + A. It is sufficient to show that B is a nontrivial subgroup

of G. Clearly, 0 ∈ B, and B is nontrivial since A is nontrivial by the hypothesis. Furthermore,

given b ∈ B, we note that a+ b ∈ A and that 2a− (a+ b) = a− b ∈ A by the hypothesis. Hence,

−b ∈ B whenever b ∈ B, and thus B contains its elements’ inverses.

Now we need only show that B is closed under addition. Let b, c ∈ B. Then, we have

that a+ b and a+ c belong to A. By the hypothesis, we have that (a+ b+ a+ c)/2 = a+ (b+ c)/2

belongs to A and hence that 2(a+ (b+ c)/2)− a = a+ b+ c belongs to A. Thus, b+ c ∈ B.

Lemma 2.1 allows us to demonstrate that a set is a coset of a nontrivial subgroup simply

by testing for the inclusion of carefully chosen elements. The next lemma provides a method for

describing the intersection of a coset of a nontrivial subgroup of Zn with general subsets of Zn. This

will be instrumental in the proof of Lemma 2.3, which provides a powerful diagnostic for testing

whether a coset of a nontrivial subgroup of Zn is equal to Zn.

Lemma 2.2. Let A be a coset of a nontrivial subgroup H ≤ Zn, where H = ⟨d⟩ for some positive

integer d such that d divides n. If Y ⊆ Zn contains at least d consecutive integers, then A∩Y ̸= ∅.

Proof. It is sufficient to assume that Y contains precisely d consecutive integers. The result follows

for any set containing more than d consecutive integers by extracting a subset containing precisely

d consecutive integers. Since H = ⟨d⟩, there exists some x ∈ Zn such that 0 ≤ x ≤ d − 1 and

A = x+H. Observe that for each y ∈ Y , we have that 0 ≤ y (mod d) ≤ d− 1. Furthermore, given

y, y′ ∈ Y , note that −(d − 1) ≤ y − y′ ≤ d − 1, and hence y ≡ y′ (mod d) if and only if y = y′.

Thus, since |Y | = d, there exists a unique element a ∈ Y such that a ≡ x (mod d). Equivalently,

a − x ≡ 0 (mod d). However, this implies that a − x is a multiple of d, and hence a − x ∈ H.

Additionally, a− x+ x = a is in A since A = x+H. So, a ∈ A ∩ Y , as desired.
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Lemma 2.3. Let k ≥ 1 and A ⊆ Z2k+1. Let ϕ be the permutation of Z2k+1 given by the cycle

ϕ = (1 · · · k). If A and ϕ(A) are both cosets of a nontrivial subgroup of Z2k+1, then A = Z2k+1.

Proof. Observe that the result follows immediately if 2k + 1 is prime, since Z2k+1 has no proper

nontrivial subgroups. So, let k ≥ 4. First, note that |A| = |ϕ(A)|, and hence A and ϕ(A) are cosets

of the same nontrivial subgroup H ≤ Z2k+1 since, for each divisor of 2k + 1, there exists a unique

subgroup of Z2k+1 with that order. Furthermore, H is cyclic since Z2k+1 is cyclic. Thus, there

exists an integer d such that d divides 2k + 1 and d generates H, and d ≤ (2k + 1)/3 since 2k + 1

is odd and |H| ≥ 3. Now, define the sets Y = {1, . . . , k− 1} and Z = {k+ 1, . . . , 2k}. Since k ≥ 4,

k − 1 ≥ 2k + 1

3
≥ d,

and it follows that both Y and Z have at least d consecutive integers. By Lemma 2.2, A ∩ Y and

A ∩ Z are nonempty. Let y ∈ A ∩ Y and z ∈ A ∩ Z. Then, since y, z ∈ A and A is a coset of H,

y − z ∈ H. Furthermore, since y ∈ Y and z ∈ Z, ϕ(y) = y + 1 and ϕ(z) = z, and hence y + 1 and

z are elements of ϕ(A). Since ϕ(A) is also a coset of H, (y + 1) − z ∈ H. Since H is a subgroup,

H is closed under addition and contains the additive inverse of each of its elements. It follows that

(y + 1)− z − (y − z) = 1 is an element of H; so H = ⟨1⟩. Therefore, A = H = Z2k+1.

The previous lemma is the main tool used in our modified version of Doyen’s [4] proof of

2-primitivity at the end of Chapter 3, as well as the proof of Theorem 1.2 at the end of Chapter 4.

2.2 Basic graph theory

A graph Γ is a collection of vertices connected by edges, where the vertex set is usually

denoted by V (Γ) and the edge set by E(Γ). Given two vertices x, y ∈ V (Γ), an edge in E(Γ)

between x and y may be denoted by {x, y} or simply xy, and x and y are said to be adjacent if

xy ∈ E(Γ). Additionally, the vertices x and y are referred to as the endpoints of the edge xy, and

we say that xy is incident to x and y.

Given a graph Γ, a subgraph Γ′ is a subcollection of vertices and edges of Γ such that

V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ). An induced subgraph of a graph Γ is a subgraph formed by

deleting all vertices in some vertex set V ′ ⊆ V (Γ) and all edges e ∈ E(Γ) such that e is incident

7



to a vertex in V ′. Consider route collection C in Figure 1; the red and green edges constitute the

induced subgraph formed by deleting vertices 0 and 5 and their incident edges. However, the cyan

edges do not correspond to an induced subgraph in any of the three route collections.

The degree of a vertex is given by the number of edges which are incident to that vertex.

A k-regular graph is a graph in which every vertex has degree k. A complete graph with n vertices,

denoted Kn, contains every edge between distinct vertices; equivalently, it is an (n − 1)-regular

graph with n vertices. A perfect matching, which sometimes referred to as a 1-factor, is a 1-regular

graph. A cocktail party graph is a (n − 2)-regular graph with n vertices formed by deleting the

edges of a perfect matching from a complete graph with n vertices. Throughout the paper, we

denote cocktail party graphs with n vertices by Kn − I, where I is the perfect matching removed

from Kn. In particular, we generally interpret I as the set of edges removed from Kn.

A decomposition of Γ is a collection C of subgraphs of Γ whose edges partition the edges

of Γ. We use the notation E(C) to refer to the set of edges appearing in C and V (C) as their

incident vertices. A subdecomposition S is a nonempty subset of C that is a decomposition of an

induced subgraph of Γ. As previously discussed, the red and green routes of route collection C

decompose an induced subgraph; therefore, the red and green routes form a subdecomposition of

route collection C. A decomposition C is said to be t-primitive if the only subdecomposition of C

containing at least t elements is C itself.

In this paper, we are concerned with finding triangle decompositions of graphs; that is,

we seek decompositions of graphs into subgraphs isomorphic to cycles of length 3, denoted as C3.

As previously discussed, a 1-primitive triangle decomposition of Γ is impossible if V (Γ) > 3. In

much of the literature, including Doyen’s [4] original paper, triangle decompositions are referred to

as Steiner triple systems. When describing the elements of a triangle decomposition, we frequently

refer to these subgraphs as triangles or triples. We often represent a C3 subgraph by the triple

corresponding to its vertices. For example, the triple {x, y, z} corresponds to a graph of vertex set

{x, y, z} and edge set {xy, xz, yz}.

In practice, we typically use the following observation to classify a decomposition as

t-primitive by analyzing the vertex sets of its subdecompositions.

8



Observation 2.4. Let Γ be a graph and C a decomposition of Γ. Let S be a subdecomposition

of C. Then, S = C if and only if V (S) = V (C) = V (Γ). Therefore, if V (S) = V (Γ) for all

subdecompositions S of C for which |S| ≥ t, then C is t-primitive.

Readers seeking more information on graph and design theory are directed to the often-

cited textbook by Lindner and Rodger [6], and discussion on primitivity can be found in papers by

Asplund et al. [1] and Schroeder [8].

2.3 Decompositions of graphs

Given a particular family of graphs and a decomposition, it is of primary interest to

determine what numerical conditions need to be satisfied for a decomposition to exist. For a

complete graph with n vertices, a triangle decomposition is possible only if n ≡ 1 or 3 (mod 6) [6].

In the following lemma, we establish a similar condition on the number of vertices in a cocktail

party graph with a triangle decomposition.

Lemma 2.5. Let m ≥ 1. If K2m − I has a C3-decomposition, then m ≡ 0 or 1 (mod 3).

Proof. Suppose that K2m − I has a C3-decomposition for some m ≥ 1. Let m = 3q + r for some

integers q and r such that r ∈ {0, 1, 2}. Let x denote the number of edges in K2m − I. Then,

x =

(
2m

2

)
−m =

2m(2m− 1)

2
−m = m(2m− 1)−m = m(2m− 2) = 2m(m− 1).

Furthermore, 3 must divide x since K2m − I has a C3-decomposition. By our definition of m,

x = 2m(m− 1) = 2(3q + r)(3q + r − 1) = 3(6q2 + 4qr − 2q) + 2r(r − 1).

Since 3 divides x, we have that r = 0 or 1, so it follows that m ≡ 0 or 1 (mod 3).

Note that in the prior lemma, we choose to write our cocktail party graph as K2m − I

out of convenience, since cocktail party graphs only exist when the number of vertices is even. This

lemma can be equivalently stated as K6k+ℓ − I has a C3-decomposition only if ℓ = 0 or ℓ = 2, as

seen in Theorem 1.3. This condition captures both the fact that the number of vertices must be
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even in order for the perfect matching I to exist, and that the number of edges must be divisible

by 3 in order for a triangle decomposition to be possible.

2.4 The Bose construction

In Doyen’s original paper, he constructed a 2-primitive triangle decomposition of K6k+3

by starting with the Bose construction [2]. We first make a few observations about solutions to

linear equations in G, which we will make frequent use of throughout the paper. Afterward, we

present the Bose construction and show it decomposes K6k+3 for all positive integers k.

Observation 2.6. Let k ≥ 1, G be an abelian group of odd order 2k+ 1, and ϕ be a permutation

on G. Then, the following statements hold:

1. For distinct u, v ∈ G, there is a unique element w ∈ G such that ϕ(u) + ϕ(v) = 2ϕ(w).

2. For distinct u,w ∈ G, there is a unique element v ∈ G such that ϕ(v) = 2ϕ(w)− ϕ(u).

Definition 2.7 (The Bose construction). Let G be a finite abelian group of odd order 2k + 1 for

some integer k ≥ 1, and let Gi = {(x, i) : x ∈ G} for each i ∈ Z3. Label the vertices of K6k+3 so

that V (K6k+3) = G0 ∪G1 ∪G2. Define the following triples:

1. For each x ∈ G, let Wx = {(x, 0), (x, 1), (x, 2)}.

2. For each i ∈ Z3 and distinct x, y ∈ G, let Ti,{x,y} = {(x, i), (y, i), (z, i + 1)}, where z ∈ G is

the unique element satisfying x+ y = 2z guaranteed by Observation 2.6.

As mentioned earlier, a triple is a C3 subgraph; the definition above specifies the vertices used by

a subgraph, and every edge is assumed present. We denote the union of these triples by B(G).

Visually, the Bose construction can be interpreted as a division of the vertices into three

rows, where each row is a “copy” of the group G. In Doyen’s [4] original paper, the set Wx was

referred to as the vertical passing through x for each x ∈ G, and the set Ti,{x,y} can be viewed as

forming a triangle between x and y in row i and z in row i+1 for i ∈ Z3 and distinct x, y ∈ G. See

Figure 2.

We now demonstrate that the Bose construction provides a legitimate decomposition of

K6k+3 for all integers k ≥ 1.
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W0 = {(0, 0), (0, 1), (0, 2)} T0,{0,1} = {(0, 0), (1, 0), (3, 1)} T1,{0,1} = {(0, 1), (1, 1), (3, 2)} T2,{0,1} = {(0, 2), (1, 2), (3, 0)}
W1 = {(1, 0), (1, 1), (1, 2)} T0,{0,2} = {(0, 0), (2, 0), (1, 1)} T1,{0,2} = {(0, 1), (2, 1), (1, 2)} T2,{0,2} = {(0, 2), (2, 2), (1, 0)}
W2 = {(2, 0), (2, 1), (2, 2)} T0,{0,3} = {(0, 0), (3, 0), (4, 1)} T1,{0,3} = {(0, 1), (3, 1), (4, 2)} T2,{0,3} = {(0, 2), (3, 2), (4, 0)}
W3 = {(3, 0), (3, 1), (3, 2)} T0,{0,4} = {(0, 0), (4, 0), (2, 1)} T1,{0,4} = {(0, 1), (4, 1), (2, 2)} T2,{0,4} = {(0, 2), (4, 2), (2, 0)}
W4 = {(4, 0), (4, 1), (4, 2)} T0,{1,2} = {(1, 0), (2, 0), (4, 1)} T1,{1,2} = {(1, 1), (2, 1), (4, 2)} T2,{1,2} = {(1, 2), (2, 2), (4, 0)}

T0,{1,3} = {(1, 0), (3, 0), (2, 1)} T1,{1,3} = {(1, 1), (3, 1), (2, 2)} T2,{1,3} = {(1, 2), (3, 2), (2, 0)}
T0,{1,4} = {(1, 0), (4, 0), (0, 1)} T1,{1,4} = {(1, 1), (4, 1), (0, 2)} T2,{1,4} = {(1, 2), (4, 2), (0, 0)}
T0,{2,3} = {(2, 0), (3, 0), (0, 1)} T1,{2,3} = {(2, 1), (3, 1), (0, 2)} T2,{2,3} = {(2, 2), (3, 2), (0, 0)}
T0,{2,4} = {(2, 0), (4, 0), (3, 1)} T1,{2,4} = {(2, 1), (4, 1), (3, 2)} T2,{2,4} = {(2, 2), (4, 2), (3, 0)}
T0,{3,4} = {(3, 0), (4, 0), (1, 1)} T1,{3,4} = {(3, 1), (4, 1), (1, 2)} T2,{3,4} = {(3, 2), (4, 2), (1, 0)}

G0

G1

G2

0 1 2 3 4

Figure 2. The Bose decomposition B(Z5)

The set of 35 triples displayed above constitute the Bose decomposition B(Z5), where the far left

column contains the vertical triples Wx for each integer x ∈ Z5. The three subsequent columns

contain the triples of the form T0,{x,y}, T1,{x,y}, and T2,{x,y}, respectively, for each pair of distinct

integers x, y ∈ Z5. Below, five triples from the decomposition B(Z5) are illustrated. The verticals

W0 and W1 are shown in cyan and brown, respectively, and the triples T0,{2,4}, T1,{2,4}, and T2,{2,4}

are illustrated in red, green, and blue, respectively.
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Lemma 2.8. Let k ≥ 1 and G be a finite abelian group of order 2k + 1. Then, B(G) yields a

decomposition of K6k+3.

Proof. Each edge in K6k+3 is of the form (x, i)(y, j), where x, y ∈ G and i, j ∈ Z3. We first

demonstrate that each edge of K6k+3 is associated to at least one triple in B(G). Suppose that

x = y. Further suppose that i ̸= j. Then, (x, i)(y, j) = (x, i)(x, j) ∈ E(Wx).

Now, suppose x ̸= y. Further suppose that i = j. By Observation 2.6, there is a unique

z ∈ G satisfying that x + y = 2z. Thus, (x, i)(y, j) = (x, i)(y, i) ∈ E(Ti,{x,y}). Next, suppose

that i ̸= j. Without loss of generality, suppose that j = i + 1. Then, there is a unique z ∈ G

satisfying that z = 2y − x, and it follows that (x, i)(y, j) = (x, i)(y, i + 1) ∈ E(Ti,{x,z}). Thus,

E(K6k+3) ⊆ E(B(G)).

It is now sufficient to show that |E(B(G))| ≤ |E(K6k+3)|. First, observe that K6k+3 has(
6k+3
2

)
= 3(2k + 1)(3k + 1) edges. Since |G| = 2k + 1 and i ∈ Z3, there 2k + 1 triples of the form

Vx for some x ∈ G, and there are 3 ·
(
2k+1
2

)
triples of the form Ti,{x,y} for some x, y ∈ G. Hence,

|E(B(G))| ≤
∑
α

|E(Wα)|+
∑
α ̸=β

|E(Ti,{α,β})| = 3(2k + 1) + 9

(
2k + 1

2

)
= 3(2k + 1)(3k + 1),

and it follows that |E(B(G))| ≤ |E(K6k+3)|, which finishes the proof.

Note that the Bose decomposition is not 2-primitive, in general. However, using the

following definition, we present a tool that we use to modernize Doyen’s [4] generalization of the

Bose decomposition, and as we demonstrate later, this generalized decomposition can be used to

find a 2-primitive C3-decomposition of K6k+3 for k ≥ 1.

Definition 2.9. Let G be a finite abelian group. Then, we call Φ a permutation triple of G if Φ is

an ordered triple (ϕ0, ϕ1, ϕ2) of permutations of G. If ϕ0(0) = ϕ1(0) = ϕ2(0) = 0, we say that Φ is

a proper permutation triple of G.

Definition 2.10 (The augmented Bose decomposition). Let G be a finite abelian group of odd

order 2k+1 for some integer k ≥ 1, and let Gi = {(x, i) : x ∈ G} for each i ∈ Z3. Label the vertices

of K6k+3 so that V (K6k+3) = G0 ∪G1 ∪G2. Let Φ be a proper permutation triple of G, and define

the following triples:
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1. For each x ∈ G, let Wx = {(x, 0), (x, 1), (x, 2)}.

2. For each i ∈ Z3, Ti,{x,y} = {(x, i), (y, i), (z, i+1)}, where z ∈ G is the unique element satisfying

ϕi(x) + ϕi(y) = 2ϕi(z) guaranteed by Observation 2.6.

We denote the union of these triples by C(G,Φ) and refer to it as an augmented Bose decomposition

derived from G acted on by Φ. Figure 3 gives an example of the augmented Bose decomposition

C(Z5,Φ), where Φ = ((234), (12), (1423)).

Observe that C(G,Φ) is also a legitimate triangle decomposition ofK6k+3; given x, y ∈ G,

the equation ϕi(x) + ϕi(y) = 2ϕi(z) is solved by a unique element z ∈ G. This condition, as in the

Bose decomposition, ensures that no two triangles share an edge. We also note that, in Doyen’s

original argument, there are no restrictions on ϕ0, ϕ1, and ϕ2 to fix zero, but we require this for

our constructions later. In particular, this constraint is relevant for the following construction for

a triangle decomposition of K6k+2 − I, which is used as the primary subject of focus in generating

a 2-primitive triangle decomposition of K6k+2 − I in Chapter 4.

Definition 2.11 (The deleted Bose decomposition). Let k ≥ 1, G an abelian group of order 2k+1,

and Φ a proper permutation triple of G. Define D(G,Φ) as the set obtained by deleting all triples

from C(G,Φ) which use (0, 0) as one of its vertices; that is,

D(G,Φ) = C(G,Φ) \ {T ∈ C(G,Φ) : (0, 0) ∈ V (T )}.

Furthermore, note that D(G,Φ) is a decomposition of K6k+2 − I, where

V (K6k+2 − I) = [G0\{(0, 0)}] ∪G1 ∪G2, and

I = {(0, 1)(0, 2)} ∪ {(x, 0)(z, 1) : ϕ0(x) = 2ϕ0(z)}

∪ {(x, 2)(y, 2) : ϕ2(x) + ϕ2(y) = 0}.

Recall that Figure 3 gave an example of the augmented Bose decomposition C(Z5,Φ), where

Φ = ((234), (12), (1423)). Removing the triples highlighted in red produces the deleted Bose de-

composition D(Z5,Φ).
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W0 = {(0, 0), (0, 1), (0, 2)} T0,{0,1} = {(0, 0), (1, 0), (2, 1)} T1,{0,1} = {(0, 1), (1, 1), (2, 2)} T2,{0,1} = {(0, 2), (1, 2), (2, 0)}
W1 = {(1, 0), (1, 1), (1, 2)} T0,{0,2} = {(0, 0), (2, 0), (3, 1)} T1,{0,2} = {(0, 1), (2, 1), (3, 2)} T2,{0,2} = {(0, 2), (2, 2), (3, 0)}
W2 = {(2, 0), (2, 1), (2, 2)} T0,{0,3} = {(0, 0), (3, 0), (4, 1)} T1,{0,3} = {(0, 1), (3, 1), (4, 2)} T2,{0,3} = {(0, 2), (3, 2), (4, 0)}
W3 = {(3, 0), (3, 1), (3, 2)} T0,{0,4} = {(0, 0), (4, 0), (1, 1)} T1,{0,4} = {(0, 1), (4, 1), (1, 2)} T2,{0,4} = {(0, 2), (4, 2), (1, 0)}
W4 = {(4, 0), (4, 1), (4, 2)} T0,{1,2} = {(1, 0), (2, 0), (4, 1)} T1,{1,2} = {(1, 1), (2, 1), (4, 2)} T2,{1,2} = {(1, 2), (2, 2), (4, 0)}

T0,{1,3} = {(1, 0), (3, 0), (0, 1)} T1,{1,3} = {(1, 1), (3, 1), (0, 2)} T2,{1,3} = {(1, 2), (3, 2), (0, 0)}
T0,{1,4} = {(1, 0), (4, 0), (3, 1)} T1,{1,4} = {(1, 1), (4, 1), (3, 2)} T2,{1,4} = {(1, 2), (4, 2), (3, 0)}
T0,{2,3} = {(2, 0), (3, 0), (1, 1)} T1,{2,3} = {(2, 1), (3, 1), (1, 2)} T2,{2,3} = {(2, 2), (3, 2), (1, 0)}
T0,{2,4} = {(2, 0), (4, 0), (0, 1)} T1,{2,4} = {(2, 1), (4, 1), (0, 2)} T2,{2,4} = {(2, 2), (4, 2), (0, 0)}
T0,{3,4} = {(3, 0), (4, 0), (2, 1)} T1,{3,4} = {(3, 1), (4, 1), (2, 2)} T2,{3,4} = {(3, 2), (4, 2), (2, 0)}

Figure 3. The decompositions C(Z5,Φ) and D(Z5,Φ), where Φ = ((234), (12), (1423))

The entire set of triples displayed represents the augmented Bose decomposition C(Z5,Φ), where

Φ = ((234), (12), (1423)). Each of the triples highlighted in red contains the vertex (0, 0); removing

these triples produces the deleted Bose decomposition D(Z5,Φ).
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CHAPTER 3

DOYEN CONSTRUCTION FOR 2-PRIMITIVE STS(6k + 3)

We begin this chapter by defining some new, descriptive terminology that makes the

hypotheses and proofs of results in our updated version of Doyen’s [4] argument more concise.

Namely, given a subdecomposition of the augmented Bose decomposition, the following definition

is convenient for describing the vertex set of the induced graph to which the subdecomposition asso-

ciates. This structure is later mirrored in Chapter 4. Following this definition is a lemma using this

new notation to concisely describe the vertex set corresponding to a nontrivial subdecomposition.

Definition 3.1. Let k ≥ 1, Φ be a proper permutation triple of an abelian group G of order 2k+1,

and S be a subdecomposition of C(G,Φ). We say S has vertex type (V0, V1, V2) if for each i ∈ Z3,

Vi = {x ∈ G : (x, i) ∈ V (S)}.

Lemma 3.2. Let k ≥ 1, Φ be a proper permutation triple of an abelian group G of order 2k+1, and

S be a subdecomposition of C(G,Φ) of vertex type (V0, V1, V2) for some V0, V1, V2 ⊆ G and suppose

that |S| ≥ 2. Then, for each i ∈ Z3, |Vi| > 0.

Proof. Suppose that S associates to an induced subgraph Γ′ on t vertices. Since |S| ≥ 2, we have

that t ≥ 5. Note that since Γ′ is an induced subgraph of a complete graph, Γ′ must be isomorphic

to Kt. Therefore, t ≡ 1 or 3 (mod 6) and, since |S| ≥ 2, hence t ≥ 7, which implies that |Vi| ≥ 3

for some i ∈ Z3. Let u, v, w ∈ Vi be distinct and x, y, z ∈ G such that

ϕi(u) + ϕi(v) = 2ϕi(x),

ϕi(u) + ϕi(w) = 2ϕi(y), and

ϕi+1(x) + ϕi+1(y) = 2ϕi+1(z).

Since u, v ∈ Vi and {(u, i), (v, i), (x, i + 1)} ∈ C(G,Φ), it follows that {(u, i), (v, i), (x, i + 1)} ∈ S

and hence x ∈ Vi+1. Likewise, since u,w ∈ Vi and {(u, i), (w, i), (y, i + 1)} ∈ C(G,Φ), we have

that {(u, i), (w, i), (y, i + 1)} ∈ S and y ∈ Vi+1. A similar line of reasoning demonstrates that

{(x, i+ 1), (y, i+ 1), (z, i+ 2)} ∈ S and z ∈ Vi+2. Therefore, |Vi+1| ≥ 2 and |Vi+2| ≥ 1.
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Lemma 3.2 demonstrates that for a subdecomposition of the augmented Bose decom-

position containing at least two triples, each Vi is nonempty. This means that each of the three

rows of vertices, or more precisely, each of the three copies of G used to label the vertices of K6k+3,

contributes at least one vertex.

Definition 3.3. Let k ≥ 1, Φ be a proper permutation triple of an abelian group G of order 2k+1,

and S be a subdecomposition of C(G,Φ). Let A ⊆ G. Then, S is columned with respect to A if S

has vertex type (A,A,A).

The next lemma strengthens the conditions on the vertex type of a subdecomposition

of the augmented Bose decomposition even further and allows us to precisely describe the vertex

type of any subdecomposition of the augmented Bose decomposition containing at least two triples

using this new definition.

Lemma 3.4. Let k ≥ 1, Φ be a proper permutation triple of an abelian group G of order 2k + 1,

and S be a subdecomposition of C(G,Φ) such that |S| ≥ 2. Then, there exists A ⊆ G such that S is

columned with respect to A.

Proof. Suppose that S is a subdecomposition of vertex type (V0, V1, V2) for some V0, V1, V2 ⊆ G that

associates to an induced subgraph Γ′ with t vertices. Since Γ′ is an induced subgraph of a complete

graph, Γ′ is isomorphic toKt and henceKt has a triangle decomposition. By Lemma 3.2, |Vi| > 0 for

each i ∈ Z3. Let i ∈ Z3 such that |Vi| is maximal, and define A = Vi. We first demonstrate by way

of contradiction that Vi−1 ⊆ Vi. Assume to the contrary that there exists some x ∈ Vi−1\Vi. Define

the function α : Vi → Vi−1\{x} such that {(x, i− 1), (α(y), i− 1), (y, i)} ∈ S for each y ∈ Vi; these

triples are illustrated in Figure 4. Note that since Γ′ is a complete graph and every edge is contained

in a unique triple, α is well-defined. Additionally, α is an injection; otherwise, α(y) = α(y′) for some

distinct y and y′ in Vi would imply the existence of the triples {(x, i − 1), (α(y), i − 1), (y, i)} ∈ S

and {(x, i− 1), (α(y), i− 1), (y′, i)} ∈ S, which share an edge. It follows that

|Vi| = |α(Vi)| ≤ |Vi−1\{x}| = |Vi−1| − 1,

which is bounded above by |Vi| − 1, which is a contradiction. Thus, Vi−1 ⊆ Vi.
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· · ·

· · ·

x α(y1) α(y2) α(yk)

x y1 y2 yk

Vi−1

Vi

Figure 4. Illustration of the function α between Vi and Vi−1

Assuming the existence of x ∈ Vi−1\Vi, the function α is used to map Vi into Vi−1\{x} injectively.

This injective map, in conjunction with numerical conditions on Vi and Vi−1, is used to prove that

Vi−1 ⊆ Vi by way of contradiction. The triples {(x, i − 1), (α(y), i − 1), (y, i)} are illustrated for

each y ∈ Vi.

· · ·

· · ·

x β(y1) β(y2) β(yk)

x y1 y2 yk

Vi−1

Vi

Figure 5. Illustration of the function β between Vi and Vi−1

When Vi−1 ⊆ Vi and x ∈ Vi−1 is given, the function β is used to map Vi\{x} into Vi−1\{x}

injectively, which is used in conjunction with numerical conditions on Vi and Vi−1 to prove that

Vi−1 = Vi. The triples {(x, i− 1), (β(y), i− 1), (y, i)} are illustrated for each y ∈ Vi\{x}.
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Now, let x ∈ Vi−1 and define the function β : Vi\{x} → Vi−1\{x} such that for each

y ∈ Vi\{x}, {(x, i− 1), (β(y), i− 1), (y, i)} ∈ S; these triples are illustrated in Figure 5. Note that

β is well-defined and injective for precisely the same reasons as α. So, we have that

|Vi| − 1 = |Vi\{x}| = |β(Vi\{x})| ≤ |Vi−1\{x}| = |Vi−1| − 1.

Equivalently, |Vi| ≤ |Vi−1|, and it follows that |Vi| = |Vi−1| since |Vi| was assumed maximal. Since

Vi−1 ⊆ Vi and |Vi| = |Vi−1|, it follows that Vi = Vi−1. Since |Vi−1| is now maximal, an identical line

of argument demonstrates that Vi−1 = Vi−2, and we have that Vi−2 = Vi−1 = Vi = A.

Lemma 3.4 indicates that all subdecompositions of the augmented Bose decomposition

containing at least two triples possess a large amount of inherent structure in their vertex set. If

x ∈ Vi for any i ∈ Z3, then the vertical Wx ∈ S. Of particular importance is the observation that

V (S) = A×Z3. The next lemma provides the final piece of information to construct a 2-primitive

decomposition of K6k+3.

Lemma 3.5. Let k ≥ 1, Φ be a proper permutation triple of an abelian group G of order 2k+1, and

S be a subdecomposition of C(G,Φ), which is columned with respect to some A ⊆ G, and suppose

that |S| ≥ 2. Then, the set ϕi(A) is a coset of a nontrivial subgroup of G for each i ∈ Z3.

Proof. Let i ∈ Z3. We show that the conditions of Lemma 2.1 hold for ϕi(A). Let x, y ∈ ϕi(A).

First we show that (x+ y)/2 ∈ ϕi(A). Since x, y ∈ ϕi(A), there exist u, v ∈ A such that ϕi(u) = x

and ϕi(v) = y. Furthermore, since u, v ∈ A, we have that u, v ∈ Vi. Define z = (x + y)/2 and let

w ∈ G be the element satisfying ϕi(w) = z. By construction, ϕi(u) + ϕi(v) = 2ϕi(w), and hence

{(u, i), (v, i), (w, i+ 1)} ∈ C(G,Φ). Since u, v ∈ Vi, it follows that {(u, i), (v, i), (w, i+ 1)} ∈ S and

hence w ∈ Vi+1. So, w ∈ A and hence z ∈ ϕi(A).

Now, let x, z ∈ ϕi(A). We demonstrate that 2z − x ∈ ϕi(A). Since x, z ∈ ϕi(A), there

exist u,w ∈ A such that ϕi(u) = x and ϕi(w) = z. Furthermore, since u,w ∈ A, we have that

u,w ∈ Vi. Define y = 2z − x and let v ∈ G be the element satisfying ϕi(v) = y. By construction,

ϕi(u) + ϕi(v) = 2ϕi(w) and hence {(u, i), (v, i), (w, i+ 1)} ∈ S. Therefore, v ∈ Vi and hence v ∈ A.

Thus, y ∈ ϕi(A).
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By cleverly selecting our permutation triple Φ, we can now construct a 2-primitive

triangle decomposition of K6k+3 by leveraging the algebraic results in Chapter 2.

Theorem 3.6. There exists a 2-primitive triangle decomposition of K6k+3 for all k ≥ 1.

Proof. Let k ≥ 1 and Φ be the permutation triple (id, ϕ, id) of Z2k+1, where id represents the

identity permutation and ϕ is the permutation given in Lemma 2.1; note that Φ is proper. We

claim that C(Z2k+1,Φ) is a 2-primitive triangle decomposition of K6k+3. Suppose that S is a

subdecomposition of C(Z2k+1,Φ) such that |S| ≥ 2. By Lemma 3.4, there exists A ⊆ G such that

S is columned with respect to A. By Lemma 3.5, A = id(A) and ϕ(A) are cosets of a nontrivial

subgroup of Z2k+1, and hence A = Z2k+1 by Lemma 2.3.

So, V (S) = A× Z3 = V (C(Z2k+1,Φ)), and the result follows from Observation 2.4.
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CHAPTER 4

CONSTRUCTION OF 2-PRIMITIVE DECOMPOSITION OF K6k+2 − I

Throughout this chapter, we parallel the results demonstrated for the augmented Bose

decomposition in Chapter 3 to build up to a proof Theorem 1.2. We start with a lemma that

allows us to classify induced subgraphs of cocktail party graphs into two distinct categories, which

allows us to sidestep large amounts of case-by-case analysis. We follow with a definition analagous

to Definition 3.1 that allows us to concisely discuss the vertex set of any subdecomposition of the

deleted Bose decomposition containing at least two triples.

Lemma 4.1. Let m ≥ 1 and suppose K2m− I has a decomposition C such that each vertex in each

subgraph of C has even degree. If S is a subdecomposition of C, then the induced subgraph to which

S associates is either a complete graph or a cocktail party graph.

Proof. Assume that S is a subdecomposition with associated induced subgraph Γ′ with t vertices,

and let x ∈ V (Γ′). Clearly, degΓ′(x) ≤ t− 1. Also, since Γ′ is an induced subgraph of K2m − I, it

follows that for each vertex x ∈ V (Γ′), there is at most one vertex y ∈ V (Γ′) such that xy ̸∈ E(Γ′),

since exactly one edge of I is incident to x. Thus, degΓ′(x) ≥ t−2. Now, observe that degΓ′(x) must

be even because degΓ′(x) =
∑

C∈C degC(x), and each term in this sum is even by the hypothesis.

We have already established that the degree of each vertex is either t−1 or t−2; however, precisely

one of these values is even. If t is odd, then Γ′ must be (t−1)-regular and is therefore isomorphic to

a complete graph. Otherwise, Γ′ is (t− 2)-regular and is isomorphic to a cocktail party graph.

Corollary 4.2. Let m ≥ 1. If K2m − I has a C3-decomposition with subdecomposition S, then the

induced subgraph to which S associates is either complete or a cocktail party graph.

In light of the previous corollary, we make the following observation about the corre-

spondence between the type of induced subgraph to which a subdecomposition of the deleted Bose

decomposition associates and the inclusion of zero in the vertex set of the subdecomposition.

Observation 4.3. Let k ≥ 1, G be an abelian group of order 2k+1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) that associates to Γ′. If Γ′ is a complete graph,

then 0 ̸∈ V1 ∩ V2; otherwise, Γ
′ is a cocktail party graph and either 0 ∈ V1 ∩ V2 or 0 ̸∈ V1 ∪ V2.
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Definition 4.4. Let k ≥ 1, G be an abelian group of order 2k+1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ). We say S has vertex type (V0, V1, V2; v0, v1, v2)

if for each i ∈ Z3, Vi = {x ∈ G : (x, i) ∈ V (S) and vi = |Vi\{0}|.

Lemma 4.5. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) of vertex type (V0, V1, V2; v0, v1, v2) and suppose

|S| ≥ 2. Then, vi > 0 for each i ∈ Z3.

Proof. Suppose that S associates to a subgraph Γ′ with t vertices. By Corollary 4.2, Γ′ is either

a complete graph or a cocktail party graph. Note that t = |V0| + |V1| + |V2|, and observe that

t− 2 ≤ v0 + v1 + v2 ≤ t since v0 = |V0|, |V1| − 1 ≤ v1 ≤ |V1|, and |V2| − 1 ≤ v2 ≤ |V2|.

Suppose that Γ′ is a complete graph. Then, since |S| ≥ 2 and t ≡ 1 or 3 (mod 6), it

follows that t ≥ 7. If vi > 0 for each i ∈ Z3, then the result holds. Assume vj = 0 for some j ∈ Z3.

It follows that vi ≥ 3 for some i ∈ Z3; otherwise, v0+v1+v2 ≤ 4 and hence t ≤ 6. Let x, y, z ∈ Vi be

distinct and nonzero. Since Γ′ is complete, (x, i)(y, i), (x, i)(z, i), and (y, i)(z, i) are each contained

in E(Γ′). Let u, v, w ∈ G satisfy the following:

ϕi(x) + ϕi(y) = 2ϕi(u)

ϕi(x) + ϕi(z) = 2ϕi(v), and

ϕi(y) + ϕi(z) = 2ϕi(w).

Then, {(x, i), (y, i), (u, i+ 1)}, {(x, i), (z, i), (v, i+ 1)}, and {(y, i), (z, i), (w, i+ 1)} are each triples

in S, and at most one of u, v, and w is zero. So, vi+1 is nonzero. A similar line of reasoning using u,

v, and w produces a nonzero element of V2, completing the proof of the result when Γ′ is complete.

Now, suppose that Γ′ is a cocktail party graph. Then, since t ≡ 0 or 2 (mod 6) and

|S| ≥ 2, we have that t ≥ 6. As before, assume that vi = 0 for some i ∈ Z3. Then, vi ≥ 2 for some

i ∈ Z3, else v0 + v1 + v2 ≤ 2 and hence t ≤ 4. Observe that v0 = v1 since the missing 1-factor I

creates a natural pairing between V0 and the nonzero vertices of V1. Thus, we establish the result

in two different cases: when v0 = v1 ̸= 0 and v2 = 0 and when v2 ̸= 0 and v0 = v1 = 0.
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First, suppose that v0 ̸= 0 . It follows that v0 ≥ 2, and hence v1 ≥ 2, by the previous

discussion. Let x ∈ V1 be nonzero. If 0 ∈ V1∩V2, let z ∈ G such that ϕ1(0)+ϕ1(x) = 2ϕ1(z). Then,

{(0, 1), (x, 1), (z, 2)} ∈ S. Since ϕ1(0) = 0 and x ̸= 0, it follows that 2ϕ1(z) ̸= 0 and hence z ̸= 0.

Thus, v2 > 0 if 0 ∈ V1 ∪ V2. So, 0 ̸∈ V1 ∪ V2, and v1 ≥ 3. Note that there exists a unique x′ ∈ G

such that ϕ1(x) + ϕ1(x
′) = 0. Choose y ∈ V1\{x′}; so ϕ1(x) + ϕ1(y) ̸= 0. Let z ∈ G such that

ϕ1(x) + ϕ1(y) = 2ϕ1(z). Then, {(x, 1), (y, 1), (z, 2)} ∈ S. Since ϕ1(0) = 0 and ϕ1(x) + ϕ1(y) ̸= 0,

we have that z ̸= 0. Therefore, v2 > 0, which is a contradiction.

So, v0 = v1 = 0 and v2 ̸= 0. It follows that v2 ≥ 4. Let x ∈ V2 be nonzero. Note

that there exists a unique nonzero x′ ∈ G such that ϕ2(x) + ϕ2(x
′) = 0. Select y ∈ V2\{x′}; so

ϕ2(x) + ϕ2(y) ̸= 0. Let z ∈ G such that ϕ2(x) + ϕ2(y) = 2ϕ2(z). Then, {(x, 2), (y, 2), (z, 0)} ∈ S.

Furthermore, z ̸= 0 since ϕ2(0) = 0 and ϕ2(x) + ϕ2(y) ̸= 0. It follows that v0 > 0, which is a

contradiction. So, v0, v1, and v2 are all positive when Γ′ is a cocktail party graph.

While Lemma 3.2 guarantees a nonempty contribution from each Vi in a subdecomposi-

tion of the augmented Bose decomposition containing at least two triples, the result of Lemma 4.5

guarantees that each Vi in a subdecomposition of the deleted Bose decomposition containing at least

two triples contributes a nonzero vertex; in particular, Vi\{0} is nonempty for each i ∈ Z3. Since

an analysis of V (S) requires particular attention to the vertices with first ordinate zero, Lemma 4.5

is useful when we need to separately describe the behavior of the nonzero vertices of Vi.

Continuing with the parallels to Chapter 3, we modify Definition 3.3 to introduce

columned terminology pertaining to subdecompositions of the deleted Bose decomposition contain-

ing at least two triples, and subsequently mirror the result of Lemma 3.4 using this new definition.

Definition 4.6. Let k ≥ 1, G be an abelian group of order 2k+1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) and A ⊆ G. Then, S is columned with respect

to A if S has vertex type (A\{0}, A,A).

Lemma 4.7. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) and suppose |S| ≥ 2. If S associates to a

complete graph, then there exists A ⊆ G such that S is columned with respect to A and 0 ̸∈ A.
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Proof. Suppose that S has vertex type (V0, V1, V2; v0, v1, v2). Let A = V0. Then, A ⊆ G and 0 ̸∈ A.

The result follows if we show that V0 = V1 = V2.

Suppose that S associates to a complete graph Γ′. By Lemma 4.5, we know that vi > 0

for each i ∈ Z3. It is sufficient to show that if i ∈ Z3 and vi = max{v0, v1, v2}, then Vi = Vi−1.

We demonstrate this fact on a case-wise basis, where each case presents an argument based on set

containment.

Case 0: Suppose that v0 = max{v0, v1, v2}. By way of contradiction, we demonstrate

that V2 ⊆ V0. Assume to the contrary that there exists some x ∈ V2\V0. Define the function

α0 : V0 → V2\{x} such that {(x, 2), (α0(y), 2), (y, 0)} ∈ S for each y ∈ V0. Since Γ′ is a complete

graph and the triples in S partition E(Γ′), α0 is well-defined and injective. It follows that

v0 = |V0| = |α0(V0)| ≤ |V2\{x}| = |V2| − 1.

Equivalently, |V2| ≥ v0 + 1. Observe that if 0 ̸∈ V2, then |V2| = v2, and so v2 ≥ v0 + 1, which is a

contradiction. Thus, 0 ∈ V2, and |V2| = v2 + 1. Hence, v2 ≥ v0, and it follows from the maximality

of v0 that v2 = v0.

In order to generate a contradiction to the assumption that x ∈ V2\V0, we further

demonstrate by way of contradiction that V1 ⊆ V2. To that end, suppose that there exists some

z ∈ V1\V2 and define the function α1 : V2 → V1\{z} such that {(z, 1), (α1(y), 1), (y, 2)} ∈ S for

each y ∈ V2. Note that α1 is a well-defined injection for the same reasons as α0, so we have that

|V2| = |α1(V2)| ≤ |V1\{z}| = |V1| − 1.

That is, |V2| ≤ |V1| − 1. It was previously demonstrated that 0 ∈ V2 necessarily. As a consequence

of Γ′ being complete, it follows that 0 ̸∈ V1, else there would be a missing edge between (0, 1) and

(0, 2) in Γ′, which is fixed under ϕ1. So, |V1| = v1, and therefore

v0 + 1 = v2 + 1 = |V2| ≤ |V1| − 1 = v1 − 1.

This is equivalent to v0 ≤ v1 − 2, which is a contradiction. Therefore, V1 ⊆ V2.
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With this, we now finally contradict the assumption that x ∈ V2\V0. Let z ∈ V1, and

therefore z ∈ V2. Define the function β0 : V2\{z} → V1\{z} such that {(z, 1), (β0(y), 1), (y, 2)} ∈ S

for each y ∈ V2\{z}. As with α0 and α1, β0 is a well-defined injection. So,

v2 = |V2| − 1 = |V2\{z}| = |β0(V2\{z})| ≤ |V1\{z}| = |V1| − 1 = v1 − 1.

However, v2 = v0, so the above implies v0 ≤ v1−1, contradicting the maximality of v0. So, V2 ⊆ V0.

Now, let x ∈ V2. Then, x ∈ V0. Define the function β1 : V0\{x} → V2\{x} such that

{(x, 2), (β1(y), 2), (y, 0)} ∈ S for each y ∈ V0\{x}. As before, β1 is a well-defined injection. Thus,

|V0| − 1 = |V0\{x}| = |β1(V0\{x})| ≤ |V2\{x}| = |V2| − 1.

Equivalently, |V0| ≤ |V2|. Since V2 ⊆ V0, this implies that V0 = V2, which completes the demon-

stration of the first case.

Case 1: Suppose v1 = max{v0, v1, v2}. As in the first case, we first demonstrate that

V0 ⊆ V1 by way of contradiction.

Suppose, contrarily, that there exists some x ∈ V0\V1. Define α : V1 → V0\{x} as the

function such that {(x, 0), (α(y), 0), (y, 1)} ∈ S for each y ∈ V1. Again, α is a well-defined injection,

and it follows that

|V1| = |α(V1)| ≤ |V0\{x}| = |V0| − 1 = v0 − 1.

This is equivalent to v0 ≥ |V1| + 1, but |V1| ≥ v1. Thus, v0 ≥ v1 + 1, which is a contradiction.

Hence, V0 ⊆ V1.

Now, let x ∈ V0. Then, x ∈ V1 also. Define the function β : V1\{x} → V0\{x} by

{(x, 0), (β(y), 0), (y, 1)} ∈ S for each y ∈ V1\{x}. Again, β is a well-defined injection, so

|V1| − 1 = |V1\{x}| = |β(V1\{x})| ≤ |V0\{x}| = |V0| − 1.

Hence, |V1| ≤ |V0|, and we have that V1 = V0, completing the demonstration of the second case.
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Case 2: Suppose v2 = max{v0, v1, v2}. We again proceed by showing that V1 ⊆ V2 by

way of contradiction. Assume to the contrary that there exists some x ∈ V1\V2. Define the function

α0 : V2 → V1\{x} such that {(x, 1), (α0(y), 1), (y, 2)} ∈ S for each y ∈ V2. Again, α0 is well-defined

and injective, so

|V2| = |α0(V2)| ≤ |V1\{x}| = |V1| − 1.

Thus, |V1| ≥ |V2|+ 1. Note that if 0 ̸∈ V1, then |V1| = v1, and so v1 ≥ |V2|+ 1 ≥ v2 + 1. However,

this would contradict the maximality of v2. It follows that 0 ∈ V1, and thus |V1| = v1 + 1. Hence,

v1 ≥ v2 and we have that v1 = v2.

A similar line of reasoning to that used in Case 0 is employed to contradict the existence

of x ∈ V1\V2, in which we next demonstrate by way of contradiction that V0 ⊆ V1. Assume,

contrarily, that there exists some z ∈ V0\V1 and define the function α1 : V1 → V0\{z} such that

{(z, 0), (α1(y), 0), (y, 1)} ∈ S for each y ∈ V1. As usual, α1 is a well-defined injection, so

v1 + 1 = |V1| = |α1(V1)| ≤ |V0\{z}| = |V0| − 1 = v0 − 1.

Thus, v0 ≥ v1 + 2 and hence v0 ≥ v2 + 2, which contradicts the maximality of v2. Hence, V0 ⊆ V1.

As before, we are now equipped to demonstrate that V1 ⊆ V2. Let z ∈ V0. Then,

z ∈ V1. Define the function β0 : V1\{z} → V0\{z} such that {(z, 0), (β0(y), 0), (y, 1)} ∈ S for each

y ∈ V2\{z}. Since β0 is another well-defined injection,

v2 = v1 = |V1| − 1 = |V1\{z}| = |β0(V1\{z})| ≤ |V0\{z}| = |V0| − 1 = v0 − 1.

Equivalently, v0 ≥ v2+1, which is a contradiction. Hence, there does not exist an element x ∈ V1\V2,

and we have that V1 ⊆ V2.

Let x ∈ V1. Then, x ∈ V2. Define the function β1 : V2\{x} → V1\{x} such that

{(x, 1), (β1(y), 1), (y, 2)} ∈ S for each y ∈ V2\{x}. As before, β1 is a well-defined injection. Thus,

|V2| − 1 = |V2\{x}| = |β1(V2\{x})| ≤ |V1\{x}| = |V1| − 1.
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Equivalently, |V2| ≤ |V1|. Since V1 ⊆ V2, this implies that V2 = V1, completing the demonstration

of the final case. Therefore, V0 = V1 = V2.

Note that although the proof of Lemma 4.7 is considerably more complex than that

of Lemma 3.4, it demonstrates that when a subdecomposition of the deleted Bose decomposition

containing at least two triples associates to an induced subgraph which is complete, the vertex type

of the subdecomposition exactly matches the vertex type described by Lemma 3.4, as one might

intuitively expect. The following lemma provides the analagous result for subdecompositions of

the deleted Bose decomposition containing at least two triples that associate to cocktail party

graphs, and we subsequently summarize our collective results in a corollary that describes the

one-to-one correspondence between the vertex type of nontrivial subdecomposition of the deleted

Bose decomposition containing at least two triples and the type of induced subgraph to which the

subdecomposition associates.

Lemma 4.8. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) and suppose |S| ≥ 2. If S associates to a

cocktail party graph, then there exists A ⊆ G such that S is columned with respect to A and 0 ∈ A.

Proof. Suppose that S has vertex type (V0, V1, V2; v0, v1, v2) and that S associates to a cocktail party

graph Γ′. We achieve the result by demonstrating the following claims in sequence: v2 ≤ v0 = v1,

0 ∈ V1 ∩ V2, V0 ⊆ V1, V0 ∪ {0} = V1, and finally V1 ⊆ V2.

Because the edges of the missing 1-factor I create a natural pairing between the sets

V0 and V1\{0}, we have that v0 = v1. We initially demonstrate that v2 ≤ v0 = v1 by way of

contradiction. Assume to the contrary that v2 > v0 = v1. To generate the needed contradiction,

we first demonstrate by way of contradiction that V1 ⊆ V2. Suppose, contrarily, that there exists

some nonzero x ∈ V1\V2. Since x is nonzero, we have also that ϕ1(x) is nonzero, and hence

(x, 1)(y, 2) ̸∈ I for all y ∈ V2. Define the function α : V2 → V1\{x} such that for each y ∈ V2,

{(x, 1), (y, 2), (α(y), 1)} ∈ S; observe that α is well-defined and injective. It follows that

|V2| = |α(V2)| ≤ |V1\{x}| = |V1| − 1.
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If 0 ∈ V1∩V2, then |V1| = v1+1 and |V2| = v2+1; otherwise, 0 ̸∈ V1∪V2 and we have that |V1| = v1

and |V2| = v2. However, both of these situations result in v2 ≤ v1 − 1, which is a contradiction.

Hence we have that V1 ⊆ V2, and since v2 > v1, V1 ⊊ V2.

Now, let x ∈ V1 be nonzero and define the function β : V2\{x} → V1\{x} such that

{(x, 1), (y, 2), (β(y), 1)} ∈ S for each y ∈ V2\{x}. Note that β is a well-defined injection for the

same reasons as α, and observe that

|V2| − 1 = |V2\{x}| = |β(V2\{x})| ≤ |V1\{x}| = |V1| − 1.

Equivalently, |V2| ≤ |V1|, but this is again a contradiction. It follows that v2 > v0 = v1 is impossible,

and hence v2 ≤ v0 = v1.

We next demonstrate by way of contradiction that 0 ∈ V1 ∩V2. Assume to the contrary

that 0 ̸∈ V1∪V2. As in the previous claim, it is first necessary demonstrate by way of contradiction

that V2 ⊆ V0. Suppose, contrarily, that there exists some nonzero x ∈ V2\V0. Define the function

α : V0 → V2\{x} such that {(x, 2), (y, 0), (α(y), 2)} ∈ S for each y ∈ V0. Note that α is a well-

defined injection because x is nonzero and every edge is present between vertices of V0 and V2 in Γ′.

Therefore,

v0 = |V0| = |α(V0)| ≤ |V2\{x}| = |V2| − 1.

Equivalently, |V2| ≥ v0 + 1. Since 0 ̸∈ V1 ∪ V2, we have |V2| = v2, and our inequality becomes

v2 ≥ v0 + 1, contradicting the maximality of v0. Thus, there does not exist an element x ∈ V2\V0;

that is, V2 ⊆ V0.

Now, let x ∈ V2 be nonzero. Define the function β : V0\{x} → V2\{x} such that

{(x, 2), (y, 0), (β(y), 2)} ∈ S for each y ∈ V0\{x}. Since ϕ2(0) = 0 and every edge is present

between vertices of V0 and V2 in Γ′, β is a well-defined injection. Thus,

v0 − 1 = |V0| − 1 = |V0\{x}| = |β(V0\{x})| ≤ |V2\{x}| = |V2| − 1.

Since 0 ̸∈ V1 ∪V2, |V2| = v2, and our inequality becomes v2 ≥ v0. Therefore, it follows that V0 = V2

since |V0| = v0 = v2 = |V2|.
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Suppose that x ∈ V2. Then, since Γ′ is a cocktail party graph, there exists some y ∈ V2

such that ϕ2(x) + ϕ2(y) = 2ϕ2(0) = 0 by Observation 2.6. That is, (x, 2)(y, 2) ∈ I. Since V0 = V2,

it follows that x, y ∈ V0. Furthermore, since ϕ0 = ϕ2, we also have that ϕ0(x)+ϕ0(y) = 2ϕ0(z) = 0

for some z ∈ V1. This implies that z = 0 and that {(x, 0), (y, 0), (z, 1)} ∈ S, which gives that

0 ∈ V1, which is a contradiction. Therefore, 0 ∈ V1 ∩ V2.

Now, we demonstrate that V0 ⊆ V1 by way of contradiction. Assume to the contrary

that there exists some x ∈ V0\V1. Let z be the unique vertex in V1 such that (x, 0)(z, 1) ∈ I, and

define the function α : V1\{z} → V0\{x} such that {(x, 0), (y, 1), (α(y), 0)} ∈ S for each y ∈ V1\{z}.

Since (x, 0)(y, 1) ∈ E(Γ′) for each y ∈ V1\{z}, α is well-defined and injective. It follows that

v1 = |V1| − 1 = |V1\{z}| = |α(V1\{z})| ≤ |V0\{x}| = |V0| − 1 = v0 − 1.

Equivalently, v0 ≥ v1 + 1, but this contradicts the fact that v0 = v1. Hence, there does not exist

an element x ∈ V0\V1, and we have that V0 ⊆ V1. Since v0 = v1, it also follows that V0 ∪ {0} = V1.

Next, we demonstrate that V1 ⊆ V2. Let x ∈ ϕ0(V1) be nonzero. Then, there exists a

nonzero element u ∈ V1 such that ϕ0(u) = x. By Observation 2.6, there exists v ∈ V0 such that

ϕ0(0) + ϕ0(v) = 2ϕ0(u). Let y = ϕ0(v). Then, since ϕ0(0) = 0, we have that y = 2x, and hence

ϕ0(V1) = 2ϕ0(V1). Furthermore, since V0 ∪ {0} = V1, we have that ϕ0(V0) = 2ϕ0(V0), and hence

ϕ2(V0) = 2ϕ2(V0) since ϕ0 = ϕ2.

Now, let u ∈ V1 be nonzero and let x = ϕ0(u) = ϕ2(u); note that x ∈ ϕ0(V1). Since

ϕ0(V1) = 2ϕ0(V1), we also have that 1
2x ∈ ϕ0(V1). Let u′ ∈ V1 such that ϕ0(u

′) = 1
2x. Note that

u′ ̸= 0 and hence u′ ∈ V0 since V0 ∪ {0} = V1. Now, since u′ ∈ V0 and 0 ∈ V2, we have that

(0, 2)(u′, 0) ∈ E(Γ′) and hence there exists some v ∈ V2 such that {(0, 2), (v, 2), (u′, 0)} ∈ S by

Observation 2.6. Therefore, ϕ2(0) + ϕ2(v) = 2ϕ2(u
′). Furthermore, ϕ2(0) = 0 and ϕ2(u

′) = 1
2x, so

we have that ϕ2(v) = x, and hence u = v. Thus, u ∈ V2, and we have that V1 ⊆ V2. Furthermore,

since v2 ≤ v1, we have that V1 = V2, and hence V0 ∪ {0} = V1 = V2, as desired.

Corollary 4.9. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) that associates to Γ′ and suppose |S| ≥ 2.

Then, there exists A ⊆ G such that S is columned with respect to A, and Γ′ is either a complete

graph or a cocktail party graph. Furthermore, 0 ∈ A if and only if Γ′ is a cocktail party graph.
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We conclude the chapter by demonstrating an important result detailing the relationship

between the type of induced subgraph to which a subdecomposition of the deleted Bose decom-

position containing at least two triples associates and the nature of the elements included in the

set with respect to which it is columned. Subsequently, we prove two results which are jointly

analagous to Lemma 3.5 and leverage these results to prove Theorem 1.2.

Lemma 4.10. Let k ≥ 1, G be an abelian group of order 2k+1, and Φ be a proper permutation triple

of G. Let S be a subdecomposition of D(G,Φ) that associates to Γ′ and suppose |S| ≥ 2. Let A ⊆ G

such that S is columned with respect to A. Let u ∈ A and v, w ∈ G such that ϕ2(u) + ϕ2(v) = 0

and ϕ0(u) = 2ϕ0(w). If Γ′ is a cocktail party graph, then v, w ∈ A; otherwise, v, w ̸∈ A.

Proof. Suppose that Γ′ is a cocktail party graph. If u = 0, then v = w = 0 and the result holds

trivially. So, suppose that u ̸= 0. Observe that for each (x, i) ∈ V (K6k+2−I), there exists a unique

vertex (y, j) ∈ V (K6k+2 − I) such that (x, i)(y, j) ∈ I; furthermore, (x, i) ∈ V (Γ′) if and only if

(y, j) ∈ V (Γ′). Since u ∈ A, u ∈ V2 and (u, 2) ∈ V (Γ′). By Definition 2.11, (u, 2)(v, 2) ∈ I since

ϕ2(u)+ϕ2(v) = 0. Since (u, 2) ∈ V (Γ′), it follows that (v, 2) ∈ V (Γ′). Thus, v ∈ V2 and hence v ∈ A.

Similarly, since u ∈ A and u is nonzero, u ∈ V0 and (u, 0) ∈ V (Γ′). Since ϕ0(u) = 2ϕ0(w), we have

by Definition 2.11 that (u, 0)(w, 1) ∈ I. Thus, (w, 1) ∈ V (Γ′) since (u, 0) ∈ V (Γ′). So, w ∈ V1 and

hence w ∈ A.

Now, suppose that Γ′ is a complete graph. For any vertices (x, i), (y, j) ∈ V (K6k+2− I),

(x, i)(y, j) ∈ E(K6k+2 − I) if and only if (x, i)(y, j) ̸∈ I. Furthermore, for any (x, i), (y, j) ∈ V (Γ′),

(x, i)(y, j) ∈ E(Γ′) if and only if (x, i)(y, j) ̸∈ I since Γ′ is an induced subgraph of K6k+2−I. Then,

(u, 2)(v, 2) ̸∈ E(Γ′) since (u, 2)(v, 2) ∈ I and (u, 0)(w, 1) ̸∈ E(Γ′) since (u, 0)(w, 1) ∈ I. However,

since Γ′ is complete, this implies that (v, 2) ̸∈ V (Γ′) and (w, 1) ̸∈ V (Γ′). Thus, v ̸∈ V2 and w ̸∈ V0,

and hence v, w ̸∈ A.

Lemma 4.11. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) that associates to Γ′ and suppose |S| ≥ 2. Let

A ⊆ G such that S is columned with respect to A, and suppose that ϕ0 = ϕ2. Then, the sets ϕ0(A)

and ϕ2(A) are cosets of a nontrivial subgroup of G.
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Proof. It is sufficient to show that ϕ2(A) is a coset of a nontrivial subgroup of G since ϕ0 = ϕ2.

We demonstrate that ϕ2(A) meets the conditions of Lemma 2.1. Let x, y ∈ ϕ2(A). We first

show that (x + y)/2 ∈ ϕ2(A). This holds trivially if x = y; so, suppose that x ̸= y. Define

z = (x + y)/2 and let w ∈ G satisfy that ϕ0(w) = ϕ2(w) = z. Since x, y ∈ ϕ2(A), there exist

u, v ∈ A such that ϕ2(u) = x and ϕ2(v) = y. Furthermore, since u, v ∈ A, we have that u, v ∈ V2.

By construction, ϕ2(u) + ϕ2(v) = 2ϕ2(w). Since x ̸= −y, then (u, 2)(v, 2) ∈ E(Γ′) and hence

{(u, 2), (v, 2), (w, 0)} ∈ S. Thus, w ∈ V0 and hence w ∈ A. It follows that z ∈ ϕ2(A). If x = −y,

then ϕ2(u) + ϕ2(v) = 0 and w = z = 0. By Lemma 4.10, Γ′ is a cocktail party graph, so 0 ∈ A and

hence 0 ∈ ϕ2(A) by Corollary 4.9.

Next, let x, z ∈ ϕ2(A); now we demonstrate that 2z − x ∈ ϕ2(A). As before, this holds

trivially if x = z, so suppose that x ̸= z. Since x, z ∈ ϕ2(A), there exist u,w ∈ A such that

ϕ2(u) = x and ϕ2(w) = z. Define y = 2z−x and let v ∈ G be the element satisfying ϕ2(v) = y. By

construction, ϕ2(u) + ϕ2(v) = 2ϕ2(w). If z = 0, then w = 0 and ϕ2(u) + ϕ2(v) = 2ϕ2(w) = 0. By

Corollary 4.9, Γ′ is a cocktail party graph. So, by Lemma 4.10, v ∈ A and hence y ∈ ϕ2(A). If x = 0,

then u = 0 and ϕ2(v) = 2ϕ2(w). Again, we have by Corollary 4.9 that Γ′ is a cocktail party graph.

Note that since ϕ0 = ϕ2, we have that ϕ0(v) = 2ϕ0(w). It follows from Lemma 4.10 that v ∈ A

and hence y ∈ ϕ2(A). Finally, if x, z ̸= 0, then (u, 2)(w, 0) ∈ E(Γ′) and {(u, 2), (v, 2), (w, 0)} ∈ S.

So, v ∈ V2 and thus y ∈ ϕ2(A).

Lemma 4.12. Let k ≥ 1, G be an abelian group of order 2k + 1, and Φ be a proper permutation

triple of G. Let S be a subdecomposition of D(G,Φ) that associates to Γ′ and suppose |S| ≥ 2. Let

A ⊆ G such that S is columned with respect to A. Then, the set ϕ1(A) is a coset of a nontrivial

subgroup of G.

Proof. We proceed by showing that the conditions of Lemma 2.1 are met by ϕ1(A). Let x, y ∈ ϕ1(A).

We first demonstrate that (x+y)/2 ∈ ϕ1(A). This holds trivially for x = y; so, suppose that x ̸= y.

Since x, y ∈ ϕ1(A), there exist u, v ∈ A such that ϕ1(u) = x and ϕ1(v) = y. Furthermore, since

u, v ∈ A, we have that u, v ∈ V1. Define z = (x + y)/2 and let w ∈ G be the element satisfying

ϕ1(w) = z. By construction, ϕ1(u) + ϕ1(v) = 2ϕ1(w). Note that each pair of vertices in G1 are

adjacent in Γ; since u, v ∈ V1, it follows that (u, 1)(v, 1) ∈ E(Γ′) and hence {(u, 1), (v, 1), (w, 2)} ∈ S.
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Therefore, w ∈ V2 and hence w ∈ A. Thus, z ∈ ϕ1(A).

Now, let x, z ∈ ϕ1(A). We demonstrate that 2z − x ∈ ϕ1(A). Since x, z ∈ ϕ1(A), there

exist u,w ∈ A such that ϕ1(u) = x and ϕ1(w) = z. Again, if x = z this holds trivially, so we

suppose that x ̸= z. Define y = 2z − x and let v ∈ G be the element satisfying ϕ1(v) = y. By

construction, ϕ1(u) + ϕ1(v) = 2ϕ1(w). It follows that y ̸= x; otherwise, 2z − x = x, implying that

x = z. Note that (0, 1)(0, 2), which is the only edge between G1 and G2 in I, is not the image of

(u, 1)(w, 2) under ϕ1. We have that (u, 1)(w, 2) ∈ E(Γ), and since (u, 1), (w, 2) ∈ V (Γ′), we have

that {(u, 1), (v, 1), (w, 2)} ∈ S. Therefore, v ∈ V1 and hence v ∈ A. Thus, y ∈ ϕ1(A).

Using all of the structure that we have built up concerning the vertex structure of

nontrivial subdecompositions of the deleted Bose decomposition containing at least two triples, we

now conclude the chapter with the demonstration of Theorem 1.2.

Proof of Theorem 1.2. Let k ≥ 1, G an abelian group of order 2k + 1, and Φ = (id, ϕ, id) be a

permutation triple of G, where id represents the identity permutation and ϕ is the permutation

given in Lemma 2.1; note that Φ is proper. We claim that D(Z2k+1,Φ) is a 2-primitive triangle

decomposition of K6k+3. Suppose that S is a subdecomposition of D(Z2k+1,Φ) such that |S| ≥ 2.

If S associates to a complete graph, then we have by Lemma 4.7 that there exists A ⊆ G such

that S is columned with respect to A. Otherwise, if S associates to a complete graph, then we

have by Lemma 4.8 that there exists A ⊆ G such that S is columned with respect to A. By

Lemmas 4.11 and 4.12, A = id(A) and ϕ(A) are cosets of a nontrivial subgroup of Z2k+1, and hence

A = Z2k+1 by Lemma 2.3. Therefore, V (S) = A × Z3 = V (C(Z2k+1,Φ)), and the result follows

from Observation 2.4.

Theorems 1.1 and 1.2, with the necessary conditions in Lemma 2.5, prove Theorem 1.3,

completing the classification of 2-primitive triangle decompositions of cocktail party graphs.

31



CHAPTER 5

FUTURE DIRECTIONS

As mentioned in the introduction, there are several decompositions that have been

shown to be primitive in the traditional sense [1, 3, 7]. The concept of t-primitivity allows us to

generalize the traditionally studied property of primitivity by rephrasing the question of primitivity

as a threshold value, rather than an absolute property of a decomposition. In particular, given an

H-decomposition in which H itself can be formed as an induced subgraph, t-primitivity provides

a tool for meaningfully classifying the amount of structure in the decomposition. The work of

Doyen [4] characterizes the existence of 2-primitive triangle decompositions of K6k+1 and K6k+3

for all positive integers k, and this paper completes the classification of when 2-primitive triangle

decompositions exist for all cocktail party graphs, as summarized in Theorem 1.3. A recent paper by

Schroeder [8], utilizing methods similar to those of this paper, classified the existence of 2-primitive

C4-decompositions of cocktail party graphs.

Thus, there are several graphs with decompositions that have been demonstrated to

be 1-primitive, and a modest handful that have been shown to be 2-primitive. However, there

are many families of graphs for which structured decompositions are known, but it is currently

undetermined for which values of t these decompositions are t-primitive. It is unknown whether any

decompositions exist that are t-primitive for t ≥ 3, but not ℓ-primitive for ℓ < t. In particular, we

do not know if a decomposition exists which is 3-primitive, but not 1-primitive or 2-primitive. Thus,

determining the primitivity threshold of known decompositions and constructing decompositions

with a desired primitivity threshold are open research questions.
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