

Honors Thesis

Honors Program

5-4-2023

Song's Site at Los Angeles Eco-Village Redevelopment

Kendall Gilbert kgilbe11@lion.lmu.edu

Marina Rios mmirele2@lion.lmu.edu

Kristin Hernandez kherna42@lion.lmu.edu

Gianna Morelli gmorelli@lion.lmu.edu

Follow this and additional works at: https://digitalcommons.lmu.edu/honors-thesis

Part of the Civil Engineering Commons, Environmental Design Commons, Structural Engineering Commons, and the Urban, Community and Regional Planning Commons

Recommended Citation

Gilbert, Kendall; Rios, Marina; Hernandez, Kristin; and Morelli, Gianna, "Song's Site at Los Angeles Eco-Village Redevelopment" (2023). *Honors Thesis*. 460. https://digitalcommons.lmu.edu/honors-thesis/460

This Honors Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Honors Thesis by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.

Song's Site at Los Angeles Eco-Village Redevelopment

A thesis submitted in partial satisfaction

of the requirements of the University Honors Program

of Loyola Marymount University

by

Kendall Gilbert

May 4th 2023

A P R I L 28 2023

SONG'S AT LAEV REDEVELOPMENT

Prepared For:

Dr. Joseph C. Reichenberger Dr. Negin Taugberg

Gianna Morelli Kristin Hernandez Kendall Gilbert Marina Rios

1 LMU Dr., Los Angeles, CA 90045

April 28, 2023

Prof. Joseph C. Reichenberger and Dr. Negin TaubergLoyola Marymount University1 LMU Dr.,Los Angeles, CA 90045

Subject: LA Ecovillage

Prof. Reichenberger and Dr. Tauberg,

In response to your request, Eco-Lions Engineering is pleased to present the design package for the site of the recently acquired "Songs at LAEV" site located at the corner of West 1st Street and Bimini Place in Los Angeles, CA. Enclosed in this report is the initial CEQA study, and design procedures for the site's learning garden and garden structure, an updated aquaponics system, and a rainwater collection and use system design for the existing structure. Relevant design calculations and a preliminary cost estimate are also included with this report.

Please do not hesitate to contact us with any questions, comments, or concerns.

Sincerely,

e**d**dall Gilbert

Gianna Morelli, E.I.T.

Kristin Hernandez, E.I.T.

Marina Mireles-Rios

TABLE OF CONTENTS

INTROD	UCTION	. 5
1.1.	BACKGROUND	. 5
1.2.	COMMUNITY DESIGN PLANS	. 5
1.3.	COMMUNITY OBJECTIVES	. 6
1.4.	PROJECT DESCRIPTION	. 7
1.5.	SITE DESCRIPTION	. 9
1.6.	DESIGN CRITERIA AND CODES	14
PROPOS	SED PROJECT	15
2.1.	Proposed Site Plan and Assumptions	15
2.2.	UTILITIES PLAN	17
2.3.	SUSTAINABILITY ELEMENTS	18
2.4.	Cost Estimates	19
2.5.	СЕФА СНЕСКLIST	20
3.1.	CONCEPTUAL DESIGN	22
3.1	1. Layout	24
3.2.	Structural Materials Selection	25
3.3.	Roof Drainage Design	27
3.4.	GRAVITY STRUCTURAL ANALYSIS	28
3.4	1. Design Loads	29
3.4	2. Structural Framing Design	35

3.5.	Seismic and Lateral Force Design	
3.6.	Foundation Design	44
3.6	o.1. Soil Properties	44
3.6	0.2. Footing Design	45
3.7.	ADA REGULATIONS	46
3.8.	Design Alternatives	47
3.9.	Future Recommendations	47
3.9	2.1. Garden Path	47
3.9	2.2. Produce Washing Station	47
3.9	2.3. Solar Panels	47
3.9	2.4. Signage	48
3.9	2.5. Methane Intrusion	48
3.9	2.6. Further Analysis of Diaphragm Design	48
4.1.	Conceptual Design	49
4.1	.1. Process Flow Diagram	
4.2.	LOW IMPACT DEVELOPMENT	50
4.3.	Site Hydrology Assessment	51
4.3	8.1. Rainfall Frequencies	51
4.3	8.2. Hydrology Calculations	51
4.3	8.3. Capture and Use Feasibility	53
4.4.	Non-Potable Water Uses	54
4.5.	Tank Sizing and Connections	54

4.5	.2. C	Connection Details	55
4.6.	Str	RUCTURAL DESIGN	56
4.6	.1. S	Seismic Bracing for Cisterns	57
4.6	.2. T	Fank Foundations	59
4.7.	Des	SIGN ALTERNATIVES	60
4.8.	Fut	fure Recommendations	60
4.8	.1. C	Design Volume based on Climate Projections	60
4.8	.2. S	Site Runoff Collection and Infiltration	61
4.8	.3. R	Rebates and Incentives	61
AQUAP	ONIC	CS	62
5.1.	Des	sign Layout	62
5.2.	Prc	DCESS BLOCK DIAGRAM	63
5.3.	Fish	h and Plant Integration	63
5.4.	Sys	STEM SELECTION AND MEDIA	66
5.5.	Sys	STEM WATER AND AERATION DESIGN	67
5.6.	Ope	erations and Maintenance	69
5.7.	Hyp	DRAULICS DESIGN	70
5.8.	Str	RUCTURAL DESIGN	72
5.8	.1.	Framing Design	72
5.8	.2.	Gravity and Seismic Bracing	75
5.8	.3.	Foundation Design	77

5.9.	Design Alternatives	78
5.10.	Future Recommendations	79
REFEREI	NCES	80
APPENC	DIX A: STRUCTURAL CALCULATIONS	91
APPENC	DIX B: HILTI PROFIS SEISMIC AND GRAVITY BRACING	92
APPENC	DIX C: RUNOFF CALCULATIONS	93
APPENC	DIX D: HYDROLOGY REPORT	94
APPENC	DIX E: AQUAPONICS CALCULATIONS	95
APPENC	DIX F: TOPOGRAPHIC SURVEY	96
APPENC	DIX G: SITE DRAWINGS	97
APPENC	DIX H: COST ESTIMATES	98
APPENC	DIX I: CEQA CHECKLIST	99
APPENC	DIX J: MENTOR AND CLIENT CORRESPONDENCE	100
APPENC	DIX K: PRESENTATION AND POSTER BOARD	101
APPENC	DIX L: ETHICS PRESENTATION	102
APPENC	DIX M: SUMMARY OF BROWNFIELD INVESTIGATION	103
APPENC	DIX N: BORING LOG DATA FOR 3560 BEVERLY BLVD	104
APPENC	DIX O: TIMESHEETS	105

INTRODUCTION

1.1. Background

The Los Angeles Eco-Village (LAEV) is a 40-tenant co-op housing community focused on sustainable and economic cooperative living. The community consists of the two blocks of Bimini and White House Place located in the north end of the Wilshire Center area of Los Angeles. In 2016, CRSP, the nonprofit developer of the LAEV, acquired a quarter acre property known as Songs, formerly an auto shop, on the north end of the neighborhood. The property is classified as a Brownfield and significant work has already been done to address soil remediation and retrofit of the existing auto shop structure. The LAEV wishes to transform and redevelop this new acquisition into a thriving multipurpose community hub for tenants and visitors seeking to learn about sustainable urban living.

1.2. Community Design Plans

Eco-Lions Engineering met with LAEV founder Lois Arkin, and several community members during initial stages of the project to tour the LAEV and discuss their objectives for redevelopment and improvement of the Eco-Village properties. Because the site was previously an auto-shop, the site is currently undergoing soil remediation testing. In the future, the asphalt and concrete paving plan to be removed to remediate the soil underneath. This will remain unpaved postremediation. The LAEV also plans to demolish the west building, a vacant restaurant, and turn the space into a diversity garden. This would include vegetation representative of the various cultural backgrounds of community members. The most immediate discussion point was to include an improved learning garden area around existing storage space in the southeast tail of the site, to educate beginners on the basics of urban agricultural gardening. Additional ideas included a retrofit of the existing Song's auto-shop into a community hub, an expansion of the existing aquaponics system, the addition of an eco-hostel building, and the implementation of sustainable runoff harvesting practices.

1.3. Community Objectives

Based upon community input, four goals were established for the project design:

- 1. The design should cultivate new, highly sustainable, and resilient ideas on urban living.
- 2. The design should incorporate educational elements to inspire visitors and tenants to live more sustainably.
- 3. The project should fit within the schedule and scope of the existing community plans.
- 4. The design should minimize costs.

In a follow up meeting, Eco-Lions Engineering and LAEV selected to redevelop portions of the Song's site because it has the most potential to meet the project design goals. These goals have been incorporated into each element of the project design. The project team has continued to be in close contact with several members of the LAEV, who have provided feedback on preliminary reports and continue to have a working relationship with Eco-Lions Engineering.

1.4. Project Description

Eco-Lions engineering proposes three design elements to improve the community use of the newly acquired Songs at LAEV site:

- 1. Learning garden and education center.
- 2. Rainwater collection, storage, and use.
- 3. Improved aquaponics system.

The area on the Southeast portion of the site has been reimagined and designed as a 'Learning Garden' to be equipped with a 120 square foot structure that serves as a multi-purpose Garden Education Center. The Los Angeles Eco-Village provides tours for members of the public who are interested in learning more about cooperative and ecological living to fulfill the mission of educating others on sustainable urban living through urban food gardening and permaculture. The proposed Learning Garden space will aim to satisfy LAEV's expressed interest in developing a garden space with potential for community engagement and learning opportunity. The Learning Garden and Garden Education Center could be used to educate the public on sustainable gardening techniques that could be implemented in small, urban spaces. The space can be used to host introductory planting lessons, provide a space for small tour groups to meet before touring the site, or be used as a space to store gardening equipment such as seedling trays.

This design proposal also includes a rainwater collection, storage, and use system for the site. It is the goal of the client to collect and use as much on-site runoff as possible in order to improve the sustainable practices of the community. Harvesting on-site runoff for non-potable uses is a resilient and accessible practice, and it is a goal of the community to maximize collection and use on site while inspiring visitors and other members of the community to adopt similar practices. Rainwater harvesting benefits the community economically by reducing water use and environmentally by reducing the carbon footprint of the community and keeping the gardens and soil healthy year-round. This proposal will summarize runoff volumes for the site according to the City of LA Low Impact Development requirements and propose an easily implemented design for roof runoff collection, storage, and use.

The current aquaponics system, shown in Figure 6 later in this report, serves as an additional source of produce for the community, and is used to educate and inspire visitors to try constructing their own aquaponics systems. Eco-lions engineering proposes an expanded system to include live fish as the source of nutrients and the growing space expanded by implementing a stacked media bed design. The new system is designed to include production of microgreens per the suggestion of the community. With two media bed layers dedicated to microgreen production, the community can not only benefit from nutrient-rich, rapid harvests but also profit due to the high microgreen demand in the culinary industry. The shallow bed depth of microgreens also allows for less system head loss, and a more efficient pump design. Additional benefits of microgreens will be elaborated further in this report. The top media bed was sized for full-size fruit and vegetable growth, so the community has the opportunity to continue growing the seasonal species they plan to grow with their current system.

1.5. Site Description

Songs at LAEV is located at 3554 and 3560 West 1st Street in the City of Los Angeles, California as shown in Figure 1. The trapezoidal shaped lot is bordered by West 1st street, Bimini Place, the Los Angeles Eco-Village main building, and a commercial zoned area as illustrated by the red boundary line in Figure 1. The site coordinates are 34°4′22.5″ N Latitude and 118°17′23.8″ W Longitude. The site was formerly used as an auto repair shop, consisting of a one-story block building and associated parking lot, in addition to a separate structure that functioned as a restaurant/cafe prior to recent demolition. Figure 2 in more detail indicates current site features and topography based on the most recent site survey included in Appendix E, and site images shown in Figures 3 through 6.

Figure 1. 2019 Satellite Image of the Current Los Angeles Eco-Village Site with the Songs Site boundary outlined in red.

Figure 2. Plan View of Current Site

Figure 3. (Left) Image of soil remediation testing site and restaurant structure to be demolished. Taken January 28, 2023.

Figure 4. (Right) Image of South entrance to auto shop and asphalt to be removed. Taken January 28, 2023.

Figure 5. Image of current learning garden area and existing storage shed. Taken January 28, 2023.

Figure 6. Image of current aquaponics system to be redesigned by Eco-Lions Engineering. Taken January 28, 2023.

1.6. Design Criteria and Codes

The Garden Education Center structural design is subject to the Los Angeles Municipal Building Code which references the 2018 International Building Code (IBC) and ASCE 7-16. Songs at LAEV is classified as a C1.5 commercial use building under the Los Angeles Department of City Planning Zoning Regulations, which includes retail buildings with limited manufacturing, service stations and garages, retail business, churches, schools, auto sales, in addition to R4 Uses. There are no setback requirements or minimum areas/lot widths for commercial uses of this zone type. High-rise zoning regulations in relation to building height do not apply to commercial zones of this type. In accordance with the 2021 IBC and 2022 California Building Code (CBC), the building's occupancy is classified as Assembly Group A-3. The Occupancy Classification Group A-3 includes buildings intended for worship, recreation, amusement, and other assembly purposes.

The Song's at LAEV site is subject to the City of Los Angeles Department of Public Works Low Impact Development Manual and the LA Sanitation Low Impact Development Handbook. All stormwater management on site, including the proposed rainwater collection and reuse system, must follow the City of Los Angeles LID Handbook. Specifically, the site redevelopment must comply with the requirements listed under part 2b of Section C of City of Los Angeles Low Impact of Development Ordinance: "Development or Redevelopment resulting in an alteration of less than 50% of the impervious surfaces of an existing developed site, only such incremental developments shall comply with the standards and requirements of this article and with the Development Best Management Practices Handbook." (City of Los Angeles).

PROPOSED PROJECT

2.1. Proposed Site Plan and Assumptions

The Song's at LAEV site is currently a brownfield site undergoing remediation. Eco-Lions Engineering has been informed by the client that all asphalt and concrete will be removed from the site and all soil fully remediated before any of the design elements proposed in this report are implemented. It is assumed that the site will maintain existing grade as much as possible; an estimate of the new rough grade for the area of the demolished building has been included in the proposed site plan in Appendix F. The scope for this project does not include precise grading, drainage, and erosion control for the remediated site. It is assumed these elements will be completed prior to the implementation of the design proposed by Eco-Lions engineering.

The proposed elements included in this design report focus primarily on the Eastern half of the site as seen in the site plan shown in Figure 7. The garden learning center is proposed to be located on the southeast side of the site, allowing room for access to the learning garden and the existing storage shed located on the southeast tail of the site which the community desires to keep for storage purposes. The rainwater collection tanks will be located on the west wall of the auto shop and connect to the existing downspout. The updated aquaponics system will be located on the South wall of the auto shop, in the same location as the current system. Ecolions Engineering suggests the addition of a pathway, constructed from recycled bricks from the demolition of the restaurant structure to allow for ADA accessibility during site tours.

Figure 7. Proposed Site Plan

2.2. Utilities Plan

Current onsite utilities are provided by the city. The scope for this project does not include the replacement or addition of new utilities. The existing plan will be obtained by the client for review. Utilities connections per the most recent site survey are seen in Figure 8. The services required only consist of pump power and lighting connections, which will be conducted by an electrical engineer.

Figure 8. Utilities Connection Locations

2.3. Sustainability Elements

The proposed project expands on existing LAEV site sustainability elements, including:

- Reduced parking footprint, with access to quality transit (bus stops and bike racks).
- On-site Composting.
- Community environmental education.
- Solar panels to be placed on retrofitted auto shop/community hub.
- Aquaponics system.

The Eco-Lions Engineering team utilized these elements and input from the community to incorporate additional sustainable qualities into the project. First, the site is to be left unpaved per community request and follow LID requirements for rainwater recapture, and above ground storage and use. The selection of above-ground storage serves as inspiration for guests to pursue their own rainwater capture systems. The team also left recommendations for future bioswale potential for the pervious areas, with the current grading. Next is the Learning Garden element. This garden can utilize plant species that improve soil quality and permaculture. The garden structure design also offers further opportunity for community learning, as a space for LAEV community members to inform visitors about the site and teach

guests the basics of gardening. This both inspires sustainable action and promotes wellness in the surrounding community. The benefits of gardening include ("The Health Benefits of Gardening."):

- Gained confidence with a new developed range of skills.
- Physical activity
- Nutrition

This is especially beneficial for seniors and persons with health conditions or impairments (Gonzalez, Marlen C.). The newly designed aquaponics system provides sustainability aspects as well as the system conserves water, reduces chemical use, and reduces waste. The team also provides recommendations for future projects based upon current design elements, including a vegetable washing station. Finally, "on-site" and recycled materials were selected for the garden structure and aquaponics system media.

2.4. Cost Estimates

Table 1 below shows the total costs for the project. The estimates do not include the cost of site restoration taking place before design implementation, including asphalt and concrete removal, soil remediation, erosion control, and precise grading and drainage. The cost of the Garden Education Center materials and construction is estimated to be around \$6500. The total cost of the rainwater collection and storage system is approximately \$2500. The improved aquaponics system is estimated to cost

\$4,500. Total operations and maintenance for the design elements will cost about \$1500.

Category	Total Cost
Structural Costs	\$9,250.00
Rainwater Harvest and Use System	\$4,250.00
Total Aquaponics Cost	\$6,000.00
Sitwork	\$3,500.00
Total O&M Cost	\$2,500.00
Total Construction Cost	\$25,500.00
Total w/ 15% Contingencies	\$30,000.00

Table 1. Project Cost Estimate

2.5. CEQA Checklist

The information in the table below addresses all project elements with potential

environmental impact in regard to geology and soils. All other CEQA checklist items

designated as "No Impact" are located in Appendix H.

GEOLOGI AND SOILS		
a) Directly or indirectly cause pote injury, or death involving:	ntial substantial adverse effects, including the risk of loss,	
ii) Strong seismic ground shaking?		
CEQA Determination:	Argument:	
Less Than Significant with Mitigation Incorporated	This site is located within a "Zone 4" area, indicating a "Very High" seismic hazard rating. This quantifies as about a 30% probability of experiencing strong ground shaking. However, all project elements have been designed with seismic bracing in compliance with relevant building code seismic requirements in the event of a disaster, and emergency procedures will be followed.	

iii) Seismic-related ground failure, including liquefaction?

CEQA Determination:	Argument:
	Although the team does not possess a geotechnical report
	for the site itself, based on Boring Log reports from a site a
	block away, there is a small likelihood for liquefaction.
	These reports are located in Appendix M. Figure 9 below
	confirms that the soil data is within close proximity to the
Less Than Significant with	LAEV site. The reports show that there is a perched water
Mitigation Incorporated	table at a depth of 17 feet, but the clayey soil beneath is
	dry, indicating that the aquifer is relatively deep and not a
	concern. The average blow count converted from Cal
	MOD SS to SPT also indicates firm soil. Finally, the site
	does not fall within a liquefaction zone on the CGS Seismic
	Hazards Program Map.

Figure 9. "SONGS at LAEV" to 3560 Beverly Blvd, location of nearing boring log data included in Appendix M.

GEOLOGY AND SOILS CONT.			
c) Be located on a geological unit or soil that is unstable, or would become unstable as a result of the project, and potentially result in on- or off site- landslide, lateral spreading, subsidence, liquefaction, or collapse?			
CEQA Determination:	Argument:		
Less Than Significant Impact	Project elements will not impact the stability of the soil on or off site and are designed with appropriate foundation and seismic bracing. The site is also not located on a hillside, therefore there is no cause of concern for landslides. Refer to the Geology and Soils a.i. section for additional soil information regarding liquefaction and other issues.		
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial or indirect risks to life or property?			
CEQA Determination:	Argument:		
Less Than Significant Impact	Based upon the soil remediation reports provided, the soil type has potential for expansion, however, refer to the Geology and Soils a.i. section for additional soil information on soil stability. It is assumed that any expansive soils would be removed and not incorporated to any fill.		

LEARNING GARDEN AND GARDEN STRUCTURE

3.1. Conceptual Design

The Garden Education Center (GEC) structure will be 10 ft x12 ft single-story oriented in the east-west direction, with the longest side facing south. The roof will have a 4:1 slope with a maximum height of 14 ft on the north side and a minimum height of 10 ft on the south side. The roof will have a 1-ft overhang in both the north and south directions, providing a total roof area of 153 square feet. Figure 10 below shows a SketchUp visualization of the structure. The building is designed to serve the residents of LA Eco-Village and visitors as a shared space to teach the basics of urban agriculture. Occupants of the building can use the space as a welcome center for scheduled tours, to host educational sessions or to store seedlings and newly planted plants. The surrounding area is designed as an outdoor garden space that can be used by residents and visitors for gardening workshops.

Assuming an Occupancy Load Factor of 15 square feet per person and a 120 square foot building, the maximum occupancy of the building is approximately 8 people. The center is designed to comfortably accommodate an intimate group of visitors or residents of the Song's at LAEV site. The maximum occupancy was estimated for Use and Occupancy Classification Group A-3 under IBC guidelines.

Figure 10. Garden Education Center Isometric View (SketchUp)

3.1.1. Layout

Figure 11. Garden Education Center Location on Site Plan

The Garden Education Center (GEC) will be located on the Southeast side of the site, as shown in Figure 11 above. The center's entrance will be directly to the left of visitors and community members as they enter the site. The location was selected so that the center can immediately orient visitors to the LAEV and provide guidance for their path through the garden. This selection is supported by research on wayfinding in educational settings, like museums. According to Bitgood and Lankford 1995, the initial orientation a visitor receives at the entrance and lobby area is critical for determining their overall experience. The location of the center is also offset from the historic trolley tracks that run east to west on the site. The client requested that the tracks remain undisturbed to allow for future education on the history of Los Angeles public transportation.

The orientation of the structure and roof design were also selected to provide optimum sunlight to the roof for potential solar electricity generation. The client has several solar panels on site that could be installed on the roof of the structure. These panels could be used to generate renewable electricity for the Garden Education Center and other elements of the Learning Garden.

3.2. Structural Materials Selection

The following specifications will govern the methods of construction and material selection used for the construction of the proposed garden education center:

Framing.

Douglas Fir girders, rafters, and studs are proposed as the framing materials for the garden education center. Design values for this material were referenced from the National Design Specifications (NDS) for Wood Design Supplementary Tables. Based on research done by the National Timber Group, Douglas Fir is expected to last well over 35 years. It is also resilient to fungal decay, and it has a high resin content that allows it to maintain its durability over time. The estimated lifespan will accommodate the LAEV's commitment to sustainable living.

Roof Paneling.

Semi-translucent, corrugated polycarbonate sheets are selected as the roofing material for the building. Polycarbonate paneling is selected based on the durability and low cost of maintenance of the material. The paneling will be made from recyclable polycarbonate and can be continued to be used as a construction material after the use of the building. The semi-translucent material will allow solar heat and natural light to enter the building more readily than traditional roofing material, which will help to preserve interior heat without the use of mechanical heating. The selected material will have a thickness of 10 mm (0.394 inches). The dimensions of each panel are 144 inches long x 24 inches wide. Six panels will be used to cover the entire surface of the roof and 1 foot overhang on either side of the North and South edges.

Wall Sheathing.

The material selected for both the shear wall and non-structural wall sheathing is 0.375-inch plywood. Plywood sheathing was selected over OSB for its durability, low maintenance, and ease of installation.

Wall Cladding.

White Oak hardwood is selected as the material for wall siding. A thickness of ½ inch is recommended for the siding. A transparent silicone preservative will be applied to the White Oak in order to protect the wood from moisture, humidity,

and UV damage. The silicone surface coating can prevent damage such as splitting and cracking.

Foundation.

The foundation will be made from 4-inch-thick reinforced concrete in accordance with the International Building Code (IBC).

3.3. Roof Drainage Design

The roof of the Garden Education Center is designed to drain precipitation from a 60-minute 100-year storm event, as required by the Los Angeles Plumbing Code and ASCE 7-16. Based on this precipitation intensity and the area of the roof, a 3-inch diameter gutter at a slope of 1/16" per foot of gutter was selected as the primary drainage system from the Los Angeles Plumbing Code 2022. The gutter will be placed on the south side of the roof so water can drain along the 2/5 roof slope into it. The gutter will be sloped from west to east and drain into a cistern placed below as shown in Figure 12. For details on the cistern sizing and downspout connection from the gutter, please see the Rainwater Collection, Storage, and Use section of the report. Precipitation in excess of the amount designed to be captured by the gutter is free to overflow off the edges of the roof. When this is the case, ASCE 7-16 does not require the design of a secondary drainage system, so the roof will not include secondary drains or scuppers.

Figure 12. Gutter on Garden Education Center Roof

3.4. Gravity Structural Analysis

The design procedure used to determine the gravity loads acting on the Garden Education Center and size the members of the roof and walls are as follows:

- Make material selection and determine preliminary structural member dimensions based on conceptual design.
- 2. Determine dead, live, wind, seismic, snow, and rain loads per ASCE 7-16.
- 3. Check member capacities such as shear, bending, axial compression and deflection per LRFD and NDS regulations.
- 4. Compare member capacity to member demand.
- 5. Resize members if necessary.

3.4.1. Design Loads

The Garden Education Center Structure shall be designed using ASCE 7-16 load combinations for strength design (LRFD). The maximum LRFD load will be used for the design of gravity load carrying members. Brief descriptions of how each of the LRFD loads on the structure were determined are provided below. For more detailed information on how each of the loads were calculated, see Appendix A.

Load Summary Weight (psf)		
Dead (D)	13.5	
Live (L)	0	
Roof Live (Lr)	19.2	
Rain (R)	0	
Snow (S)	0	
Wind (W)	11.97	
Seismic (Ev)	4.37	
Seismic (Eh)	8.14	
Seismic (Emh)	18.78	
Seismic (Em)	14.41	

Table 2. Design Loads Summary

LRFD Load Combinations per ASCE 7-16	Roof (psf)
1.4D	18.9
1.2D+1.6L+0.5Lr	25.8
1.2D+1.6L+0.5S	16.2
1.2D+1.6L+0.5R	16.2
1.2D+1.6Lr+L	46.92
1.2D+1.6S+L	16.2
1.2D+1.6R+L	16.2
1.2D+1.6Lr+0.5W	52.90
1.2D+1.6S+0.5W	22.18
1.2D+1.6R+0.5W	22.18
1.2D+W+L+0.5Lr	37.77
1.2D+W+L+0.5S	28.17
1.2D+W+L+0.5R	28.17
0.9D+W	24.12
1.2D+Ev+Eh+L+0.2S	31.06
0.9D-Ev+Eh	18.27
1.2D+Ev+Emh+L+0.2S	44.78
0.9D-Ev+Emh	32.00
Maximum Load Combination	53

Table 3. LRFD Load Combinations

Dead Loads.

The loads considered for roof dead load were the polycarbonate paneling, framing self-weight for wood girders and rafters, utilities/lights, and solar panels. Dead loads were determined using ASCE 7-16 and research on typical weights of the listed materials. The maximum roof dead load was determined by summing up the dead loads acting on the roof. The dead load on the roof was determined to be 13.5 psf as shown in Table 4.

Roof Dead Load		
Material Type	Weight (psf)	
Roof Paneling	1.93	
Girders	1.5	
Rafters	6	
Utilities/Lights	2	
Solar Panels	2	
Total	13.43	
Rounded Total	13.5	

Table 4. Dead Load on Roof

Live Loads.

The Garden Education Center is a single-story structure, so the live loads consist only of the live load on the roof. The live load is 20 psf and can be reduced according to the tributary area of the roof rafters and slope of the roof, as permitted by ASCE 7-16.

Rain Loads.

The secondary drainage system for the roof of the Garden Education Center is free to overflow off the roof's edges. This means that the static head of water on the roof is negligible. For this roof design, ASCE 7-16 allows for the assumption that the hydraulic head on the roof is negligible, given that the length of free edge drainage is greater than the roof flow rate divided by 400. The Garden Education Center roof design meets this criterion for the 3.2 gpm roof flow rate, so the hydraulic head is assumed to be negligible. Since the roof will not have static or hydraulic head of water during a storm event, the rain load on the roof was determined to be 0 psf.

Snow Loads.

The ground snow load for the Los Angeles area is 0 psf per ASCE 7-16. This means that the snow load on the roof of the structure will also be 0 psf.

Wind Loads.

The wind loads on the Garden Education Center were determined using the directional procedure for wind loads on the main wind force resisting system (MWFRS) in ASCE 7-16. This procedure is applicable for enclosed buildings of all heights, which the Garden Education Center fits into. The wind loads were analyzed in both the east-west and north-south directions on the MWFRS walls and roof. The wind design parameters, based on ASCE 7-16 chapter 26, are shown in Table 5, and the wind pressures on the MWFRS are shown in Table 6.

Wind Design Parameters			
Exposure Category	В		
Elevation (ft)	286		
Maximum Structure Height (ft)	14		
V(mph)	88		
Ke	1		
Kd	0.85		
Kz for h=0-15'	0.57		
Kzt	1		
qi=0.00256KzKdKeKztV^2	9.6		

Table 5. Wind Design Parameters.

MWFRS Wind Pressures

N-S Direction (psf)
Walls, Windward, h=0-14'
Walls, Leeward
Walls, Sidewalls
Roof, Windward
Roof, Leeward

Table 6. MWFRS Wind Pressures.

Seismic Loads.

The seismic load effects on the structure were determined using a seismic base shear analysis per the ELF procedure in ASCE 7-16 chapter 12. Since the site does not have a soils report, it was conservatively assumed to be site class D. The seismic design parameters, summarized in Table 7 were determined based on the default values for this site class and ATC Hazards website for the site location. Based on these parameters the SDC is category D.

Seismic Design Parameters			
Building Occupancy Risk Category	I		
l _e	1		
Site Class	D		
Ss	2.02		
S1	0.72		
Fa	1.2		
F_{ν}	1.7		
S _{ms}	2.43		
S _{m1}	1.23		
S _{DS}	1.62		

Table 7. Seismic Design Parameters

S _{D1}	0.82
T _L (s)	8
SDC	D

The seismic weight of the structure was iteratively calculated as the members were sized. The final seismic weight was used to determine the seismic base shear. Per chapter 11 of ASCE 7-16 the seismic base shear must be increased by a factor of 1.5 when using site class D as the default.

Table 8. Seismic Base Shear.

Seismic Base Shear Analysis per ELF	
Governing Cs	0.25
Seismic Weight (k)	3.31
Base Shear (k)	0.82
Adjusted Base Shear for Default Site Class (k)	1.24

To resist the seismic loads on the structure, a seismic force resisting system (SFRS) of light frame wood walls sheathed with wood structural panels (A15 in ASCE 7-16) was selected. This SFRS has a response modification factor of 6.5. The horizontal seismic load effect was determined based on the effect of horizontal seismic forces, from the base shear, and the redundancy factor of 1.3 required by the seismic design category. The vertical seismic load effect was determined based on the dead load and design spectral response acceleration at short periods. These effects were used to calculate the LRFD load combinations and are summarized in Table 9.

Seismic Load Effects and Combinations		
SFRS	A15	
E _v (psf)	4.37	
E _h (psf)	8.14	
E _{mh} (psf)	18.78	
E _m (psf)	14.41	

Table 9. SFRS and Seismic Load Effects.

3.4.2. Structural Framing Design

The structural member sizing of the Garden Education Center is summarized in Table 10 below. The detailed calculations based on the maximum factored LRFD load combinations are shown in Appendix A.

Framing Material Selection		
Member	Material Selection	
Roof Rafters	2x6 No. 1 Douglas Fir	
Roof Girders	4x10 No. 1 Douglas Fir	
Wall Studs	2x6 No. 1 Douglas Fir	
Roof Studs	2x6 No. 1 Douglas Fir	
Floor Joists	2x6 No. 1 Douglas Fir	

Table 10. Structural Framing Material and Sizing

The member sizing and spacing of the structural framing system is shown in the following elevation views. Note that this system does not include elements designed to resist lateral forces such as collectors and shear walls, which will be discussed later.

Figure 13. Framing Plan for South Wall.

Figure 14. Framing Plan for North Wall.

Figure 15. Framing Plan for East/West Walls

Figure 16. Framing Plan for Roof System.

Figure 17. Framing Plan for Floor System.

3.5. Seismic and Lateral Force Design

The Garden Education Center will also be designed to resist loads due to seismic and lateral forces. The seismic forces on the structure will govern the lateral force design. For a one-story structure, the seismic base shear will be the force used to design the seismic resistance.

Shear Wall Design

As discussed in section 3.4.1, SFRS A15 was selected from ASCE 7-16 to resist seismic shear forces on the structure. The shear walls were laid out based on the conceptual design of the Garden Education Center. Each wall's dimensions were determined by the SDPWS 2021 height to base ratios for seismic shear resistance of wood structural panels. Figures 18 to 21 show the locations and dimensions of the shear walls on the structure.

Figure 18. Plan View showing location of Shear Walls.

Figure 19. North Elevation View Shear Wall Plan

Figure 20. South Elevation View Shear Wall Plan

Figure 21. East/West Elevation View Shear Wall Plan

The shear strength required by the shear walls was determined by applying the seismic base shear in both the North-South and East-West directions. The seismic base shear was divided by the length of shear wall in the direction of interest to get the shear demand. Plywood structural sheathing panels at 3/8-inch thickness were determined to have an appropriate shear strength rating with a safety factor of 1.5.

The shear wall material details and nailing pattern are shown in Table 11 .

Shear Wall Material Specifications		
Material	Plywood Sheathing Structural Panel	
Wood Specification	STRUCTURAL 1	
Thickness (in)	0.375	
Minimum Nail Bearing Length in Framing		
and Blocking (in)	1.375	
Panel Nail Edge Spacing (in)	6	
Vs (plf)	645	
Ga (k/in)	14	

Table 11. Shear Wall Materials and Nailing.

The shear walls must also resist the overturning moment caused by the seismic base shear on the structure. The shear walls are a segmented system so each wall will have two seismic hold-downs. The overturning moment on each shear wall was resolved into a tension-compression couple at the hold-down locations. Figure 22 shows the hold-down locations for a segmented shear wall system. The hold-down type was selected to resist the maximum tension load on all shear walls. Then the hold-down type was checked to ensure that it could connect to the 2 by 6 studs, which act as the shear wall chords. Table 12 summarizes the selected hold-down and fastenings.

Figure 22. Seismic Hold-Down Locations (Breyer et. al., 2015).

Seismic Hold-Down Material Specifications		
Installation	Post Pour	
Connection Materials	Wood to Concrete	
SST Heavy Tension Tie	HTT4	
Anchor Rod Diameter (in)	0.625	
Wood Fasteners (in)	(18) #19 by 1.5" SD	
Min Wood Member Size (in)	2 by 6	
Allowable Tension Load (lb)	4455	

Each shear wall was checked for acceptable deflection per NDS 2018. Based

on these deflections, P-delta effects do not need to be considered for the design.

Diaphragm Design.

The structure's diaphragm must be designed to resist seismic shear forces received

from the shear walls. Based on the seismic base shear and the shear wall design the

diaphragm fasteners must be able to resist the loads summarized in Table 13.

Diaphragm fasteners and spacing were not designed yet for this structure. Please see section 3.9.6 for future recommendations on the diaphragm design.

Diaphra	agm Fastener Shear Force
Direction	Loads on Diaphragm from Shear walls (lb/ft)
N-S	123.7
E-W	154.6

Table 13. Shear Demand on Diaphragm Fasteners.

Collector Design.

The structure must contain collector elements. The collectors were sized based on

IBC 2018's guidance for header design and AWC's maximum span calculator. The

collectors will be doubled 2 by 4 Douglas-fir larch placed over each door and

window.

Table 14. Collector Material Specifications	Table	14. C	Collector	Material	Specification	s.
---	-------	-------	-----------	----------	---------------	----

Collector Elements		
Material	No. 1 Douglas Fir Larch	
Nominal Size	2 by 4	
Deflection Limit	L/360	
Maximum Horizontal Span (ft)	7	
Quantity	2 per collector	
Locations	Above all windows and doors	

Perpendicular Wind Loads to Components and Cladding.

The wall cladding and roof cladding of the structure were checked for appropriate resistance to the maximum wind pressure on components and cladding. The wind pressures on each zone of the walls and roof were determined using the procedures outlined in ASCE 7-16 chapter 30. The maximum wind pressures from all zones of the walls and roof were selected and compared to the strength of the material resisting the pressure. Table 15 summarizes the strength capacity of the claddings and maximum wind pressures.

Wall Cladding **Roof Cladding** Polycarbonate Panels Material Plywood Panels Material Thickness (in) 0.375 Thickness (in) 0.315 Nominal Uniform Load Capacity for 24 in 30 Flexural 13500 Spacing (psf) Strength (psi) Maximum Roof Maximum Wall Cladding Wind Pressure Cladding Wind -22.08 -36.48 (psf) Pressure (psf)

Table 15. Wall and Roof Cladding Perpendicular Strength and Wind PressureDemands.

3.6. Foundation Design

3.6.1. Soil Properties

Since the team does not possess a geotechnical report for the site, boring log reports were analyzed from a site 0.3 miles away from the Songs at LAEV site. These reports were obtained from the GeoTracker website, which contains records for sites that require cleanup. The reports show that the soil is likely a silty sand with an average blow count of 24, once applying a correction factor from Cal MOD SS to Standard Penetration Test. The moist unit weight and friction angle were estimated based upon the blow counts and the Hantaka & Uchida SPT friction angle correlation for sands. These properties are reflected in Appendix A. The boring log reports and California Department of Water Resources Groundwater Level reports also indicate that the phreatic surface is deep and will not interfere with upper soil layers.

3.6.2. Footing Design

The structure followed the IBC Section 1809.7 requirements for Prescriptive Footings Supporting Walls of Light-Frame Construction. The design utilized a continuous strip footing along the perimeter of the structure. The ultimate bearing capacity was checked using Terzaghi and Meyerhof approaches, with continuous strip and rectangular shape factors. Immediate settlement was considered using the Timoshenko and Goodier Theory of Elasticity. This settlement was less than 0.1% of the height of the sand layer, indicating minimal settlement. These calculations are reflected in Appendix A. The footing design is illustrated in Figure 23. The reinforcement in the strip footing is designed to be 2 #4 bars placed longitudinally and 2 #4 bars placed transversely. All reinforcement will have a 2inch cover to meet minimum requirements.

Figure 23. Garden Education Center Foundation Detail.

3.7. ADA Regulations

The garden structure will be designed in accordance with the California American with Disabilities Act (ADA). The door of the garden education center is designed in compliance with S3235 of the California ADA. The on-site door will be the side swinging type with a direct and obvious exit path. The door will be 7' x 6' in accordance with ADA minimum door dimension requirements. The proposed development will not include stairs or ramps to be considered for ADA compliance.

3.8. Design Alternatives

The initial design was a pitched roof greenhouse for the learning garden. Upon further consideration, a greenhouse was not necessary for LAEV since the community already grows seasonal fruits and vegetables, and the location did not fully satisfy the sunlight requirements of a greenhouse design. The structure now serves as a learning area to meet community needs more directly. It also incorporates a monoslope roof to better capture rainwater.

3.9. Future Recommendations

3.9.1. Garden Path

The Eco-Lions Engineering team proposes building a path through the garden using recycled bricks from the demolition of the former restaurant structure in the Northwest portion of the site.

3.9.2. Produce Washing Station

A produce washing station that utilizes collected water from the roof of the structure is recommended. Eco Lions Engineering has discussed the use of recycled tubs as produce washing stations with members of the LAEV community.

3.9.3. Solar Panels

The addition of solar panels to the roof of the Garden Education Center (GEC) would be beneficial for generating on-site, renewable energy. The roof of the GEC has already been sized to carry additional loads from the solar panels.

3.9.4. Signage

One of the main focuses of the learning garden is community education, and a potential option to achieve better education is signage. This addition is suggested to help visitors understand the process of urban gardening.

3.9.5. Methane Intrusion

Eco-Lions Engineering recommends that the LAEV carefully consider methane intrusion in the design of the concrete slab. According to the Department of Building and Safety ZIMAS website, the Song's at LAEV site is located in a Methane Hazard Zone. It is recommended that a vapor barrier is installed under the concrete slab to prevent methane from leaching through the soil and into the building.

3.9.6. Further Analysis of Diaphragm Design

This design does not include a thorough design of the structure's diaphragm. Eco-Lions Engineering recommends further analysis of polycarbonate paneling shear strength capacity from different manufacturers. Once a manufacturer is selected, the shear strength capacity can be used to determine an appropriate fastener arrangement for seismic force resistance.

Eco-Lions Engineering also recommends checking the diaphragm chords for appropriate strength based on the polycarbonate paneling fastener arrangement.

RAINWATER COLLECTION, STORAGE, AND USE

4.1. Conceptual Design

The existing former auto-shop structure and proposed garden education center are

both to be equipped with collection tanks connected to the corresponding

downspouts, as shown in Figures 24 and 25.

4.1.1. Process Flow Diagram

Figure 24. Process Flow Diagram of Rainwater Capture from Former Auto shop.

Figure 25. Process Flow Diagram of Rainwater Capture from Garden Education Center.

4.2. Low Impact Development

The Song's site at the LAEV is classified by the Los Angeles Country Department of Public Works as a Designated Redevelopment Project. Specifically, it is a redevelopment that results in replacement of 5,000 square feet or more of impervious surface of a site that was previously developed as an automotive service facility with 5,000 square feet or more of surface area. By the time of the implementation of the design elements included in this report, all impervious asphalt and concrete ground surfaces will have been removed and left as remediated soil. Therefore, the project falls under the conditions of a site where less than 50 percent of the impervious surface is proposed to be altered, "only the proposed alteration must meet the requirements of the LID Standards Manual." (County of Los Angeles, 2014).

The stormwater management requirements for the given project therefore is to retain 100 percent of the stormwater quality design volume on site from the proposed development alterations using infiltration, evapotranspiration, runoff harvest and use, or a combination of these methods. Designated projects must: conduct site assessment to identify feasibility and design considerations, apply site specific source control measures, calculate the stormwater quality design volume, implement stormwater quality control measures, and implement any further compliances or requirements if deemed necessary. The proposed BMP for the Song's at LAEV site is a collection and use system for the roof areas of the existing auto shop and proposed garden structure. It is the desire of the LAEV community to maximize the potential of harvesting rainwater than explore infiltration BMPs. There are a number of applicable non-potable uses for the site including irrigation use for the future diversity garden and proposed learning garden, the proposed vegetable washing station, and the aquaponics system.

4.3. Site Hydrology Assessment

4.3.1. Rainfall Frequencies

It is required by the LA City LID requirements to design for the 85th percentile, 24-hour rain event. The team must consider incremental periods with high intensity rainfall. The rainfall hydrograph has a peak intensity about ¾ of the way through the 24-hour storm, as seen in Figure 26 below. This is developed through a computer program, which generates volume and peak rate. It specifies the 85th percentile rainfall value to be approximately 1 inch. The corresponding rainfall intensity for this value is approximately 0.04 inches per hour over a 24-hour period.

4.3.2. Hydrology Calculations

Runoff coefficients for impervious surfaces of the site were determined using Table 3-2 from the NCDENR Stormwater BMP Manual. the roof of the auto shop, a runoff coefficient of 0.9 was used for a flat roof. For the inclined roof of the garden structure, the runoff coefficient is 1.0. The soil type for the unpaved portion of the site was found according to the LA county hydrology map and determined to be soil type 004. According to the LACDPW Runoff Coefficient Curve, this soil type under the intensity determined above yields an undeveloped runoff coefficient of 0.1.

The total site runoff was calculated for the Songs site using the Modified Rational Method through the LA County HydroCalc Software. The peak flow for the site is approximately 0.0176 cubic feet per second as shown in the runoff hydrograph in Figure 26. The total rainwater collection volume applied only to runoff from the roof areas of the existing auto shop building roof and proposed garden structure roof. The total site runoff and total collection volume are shown in Table 16.

	Cubic Feet	Gallons
Total Site Runoff	237.1	1744.6
Rainwater Collection Volume	163.8	1225.0
	Cubic Feet per Second	Gallons Per Minute
	(cfs)	(gpm)
Peak Flow Rate	0.0176	7.90

Table 16. Site Runoff and Flow Rate Volumes

Figure 26. Hydrograph for the Song's Site

4.3.3. Capture and Use Feasibility

Per the Los Angeles City LID Manual, a site's feasibility for a capture and use BMP is determined by the Estimated Total Water Use for irrigation from October 1st to April 30th. This volume must be greater than or equal to the volume of water produced by the stormwater design storm event. The rainwater collection volume for the scope of this project is approximately 1,160 gallons. Estimated Total Water Use for the site was determined using sample calculations from the Los Angeles County Department of Public Works Low Impact Development Standards Manual. A standard planting factor of 0.3 and average 7-month evapotranspiration value of 21.7 inches were used for the site. The estimated total water use for 7-month wet period was determined to be approximately 35,673 gallons per the calculations in Appendix B. For capture and use to be feasible, this value must be greater than or equal to the design collection volume.

$$ETWU_{7 month} \ge V_{design}$$

Therefore, capture and use is a feasible BMP option. The site must also apply and receive approval from the County of Los Angeles, Department of Public Health for a capture and use system.

4.4. Non-Potable Water Uses

The Song's at LAEV site has a high non-potable water demand, which is why rainwater harvesting is the best stormwater management option for the community. On-site irrigation for the current learning garden, future learning garden, or even on the LAEV property itself are just a few potential uses for the collected runoff. Other on-site uses include replenishing the new aquaponics system or the vegetable washing station being considered as an addition to the learning garden.

4.5. Tank Sizing and Connections

4.5.1. Cisterns and Rain Barrels

One large 1200-gallon cistern will be installed on the west side of the auto shop structure and connect to the existing downspout for rainwater collection. One 75-gallon plastic storage tank will connect to the downspout of the garden structure. The corresponding tank dimensions, provided from ProTank.com are shown in Table 17.

Rainwater Collection		Tank Size (gallage)	
	Volume (gallons)	Tank Size (gallons)	
Songs Building Roof	1192.6	1200	
GEC Roof	72.8	75	

Table 17. Tank Dimensions

Tank Size (gallons)	Diameter (in)	Height (in)
1200	76	66
75	23	50

4.5.2. Connection Details

The 1200-gallon cistern will connect to the 4" diameter downspout proposed per the separate structural retrofit plan for the auto shop structure. The downspout connection detail is shown in Figure 27. The 75-gallon rain barrel will connect to the 3" diameter downspout proposed for the garden education center structure. The downspout connection detail is shown in Figure 28.

Figure 27. 1200-gallon cistern downspout connection detail.

Figure 28. 75-gallon rain barrel connection detail.

4.6. Structural Design

4.6.1. Seismic Bracing for Cisterns

Both the 1200-gallon cistern and 75-gallon rain barrel will be anchored to a concrete foundation through a steel plate. The anchorage has been designed to resist seismic forces for a non-structural component based on ASCE 7-16 chapter 13. This chapter is typically used for small water carrying tanks like those being used on this site. To account for the maximum possible force on the tank in the anchorage design, the seismic force (F_p) was calculated assuming each tank was full. Table 18 shows the seismic forces, overturning moment, and tension force due to the overturning moment.

Seismic Force on 1200-Gallon Cistern		Seismic Force on 75-Gallon Rain Barrel	
Fp Governing (lb)	13238	Fp Governing (Ib) 84	8.64
Fv (lb)	3309.5	Fv (lb) 21.	2.16
Height to Center of Gravity (ft)	2.75	Height to Center of Gravity (ft) 2	.08
Overturning Moment (lb-ft)	36404	Overturning Moment (lb-ft) 17	768
Distance Between T-C Anchors			
(ft)	4.48	Distance Between T-C Anchors (ft) 2	2.5
Tension (lb)	8128.9	Tension (lb) 70)7.2

Table 18. Seismic Forces for Tanks

The overturning moment and tension force represent the seismic

demand on the anchorage. The anchorage arrangement was optimized for the seismic demand using Hilti Profis Software. HIT-HY 200 V3 + HIT-Z ½" diameter anchors on a ½" thick steel plate were selected to anchor both tanks. Both tanks are anchored to 6-inch-thick concrete slab which was sized so that the

anchors are located sufficiently far from the edge of the slab. Figures 29 and 30 below show the final anchorage arrangements and slab dimensions for each tank.

Figure 29. Seismic Bracing Detail for the 1200-gallon cistern.

Figure 30. Seismic Bracing Detail for the 75-gallon rain barrel.

4.6.2. Tank Foundations

As described above in the seismic bracing section, each tank will be anchored to a 6-inch-thick concrete slab sized for appropriate anchor spacing. IBC 2018 does not list any foundation requirements for non-building structures, so the 6inch slab is an adequate foundation. The same soil properties identified for the design of the Garden Education Center foundation were used to design these slabs. Each slab was checked for bearing capacity using both Terzaghi and Meyerhof approaches and determined to have satisfactory safety factors. Immediate settlement was considered for both slabs using the Timoshenko and Goodier Theory of Elasticity. This settlement was less than 0.1% of the height of the sand layer that the foundations rest on, indicating minimal settlement.

Figure 31. Tank Foundation Dimensions.

4.7. Design Alternatives

Eco-lions engineering is working under the assumption that soil remediation will be completed upon project implementation, therefore porous pavement and bioswales for additional rainwater collection for the pervious soil areas were considered. Upon discussion with LAEV community members this was not the most economical or desirable option and has been adapted to a future recommendation. Underground storage was initially considered to collect rainwater for the site. However above ground storage was ultimately selected for roof runoff capture to inspire at-home rainwater harvesting systems for visitors.

4.8. Future Recommendations

4.8.1. Design Volume based on Climate Projections

The recommended tank size is based upon LA County guidelines, but LAEV community members suggested the opportunity to hold as much rainfall as possible, beyond the 85th percentile, 24-hour rain event. The Eco Lions team developed a program to estimate the rainfall volume and peak rate for any area in Los Angeles, based upon historical data and future climate projections. The program utilizes 15-minute rainfall intensity data for any specified polygon area on an interactive map, to determine the most accurate collection and use volume. This will ensure that the sized storage tanks will hold as much water as needed for the current, site weather conditions. Climate projections will also forecast whether the cistern size will be viable in years to come.

4.8.2. Site Runoff Collection and Infiltration

Eco-Lions engineering only proposed a design to collect runoff from the rooftops of the Songs Site. In order for the LAEV community to reach its goal of collecting 100% of runoff from the restored site, there are several ways to collect water from the ground runoff as well. This can be achieved through the construction of detention basins or retention ponds, which can temporarily store water for irrigation or other non-potable uses. The community may also want to consider the eventual addition of an underground storage tank or cistern. This method would not require the loss of any site space like a detention basin or pond would and could allow for a larger capacity and duration of storing site runoff for non-potable uses.

4.8.3. Rebates and Incentives

There are several rebates and incentive programs in effect that would apply to the Songs at LAEV site. These rebated could be utilized to ease the cost of implementing the proposed rainwater harvesting system. SoCal Water\$mart is a private organization that offers residential rebates for collection cisterns. A qualifying cistern with a capacity of 1000 or more gallons can receive a rebate of \$350. The program requires that the cistern connect to an existing downspout and gutter system, is elevated under a solid foundation, must be purchased as an entire unit, have an overflow spigot, and be properly mounted to receive all water from the downspout. Rainplan, another private organization, offers a Green Spending Advance to qualifying sites with eligible projects including harvest and use systems. This loan program is designed to assist private retrofit projects to implement green property improvements while easing the out-of-pocket expenses prior to completion of the project. This payment plan may help the LA Ecovillage to implement the proposed system sooner.

AQUAPONICS

5.1. Design Layout

The aquaponics system is located along the south wall of the auto shop structure as shown in Figure 32.

Figure 32. Clip of Aquaponics System Location on Site Plan.

5.2. Process Block Diagram

5.3. Fish and Plant Integration

The fish to be integrated to the new aquaponics system are Blue Tilapia. The system is based upon the recommended starting number of 20 fish. Tilapia is the most common choice of fish in an aquaponics system because they are very low maintenance and effective. As a freshwater species, tilapia can tolerate crowding, temperature variation, and high levels of potassium, which is an important element to supplemental plant growth (Aquaculture Production Systems, 349). This species of tilapia can attain 0.75 lb by the end of the growing season and achieve an adult weight of 3-4lbs. Alternative freshwater species also commonly used in aquaponics systems include:

- Murray Cod
- Asian Sea Bass
- Common and Koi Carp
- Pacu Fish
- Crappies
- Rainbow Trout
- Largemouth Bass

There is a variety of plant life that can be grown in an aquaponics system that is sustainable and useful for the LAEV community. Plants that are best suited to an aquaponics system are those considered "nutrient hungry," meaning they grow very well in the nutrient rich environment that the aquaponics system creates. The three most common aquaponics crops are basil, tomatoes, and salad greens (David C. Love et. al). Some other plants that do exceptionally well in an aquaponics system include:

- Herbs
- Peppers
- Lettuce and cabbage
- Cucumbers
- Kale
- Strawberries

- Beans and peas
- Broccoli
- Cauliflower

It is noted the LAEV community primarily grows lettuce in the existing aquaponics system on site. The new aquaponics design will be able to grow a larger amount and wider variety of plant life among any of the crops listed above due to the new vertical design. This expanded production will help serve community members by providing fruits and vegetables year-round. Another recent aquaponics phenomenon of great interest to the LAEV community are microgreens. They are quick to harvest, high in nutrients, easy to grow, and in high demand. The most common, profitable microgreens include (Go Green Aquaponics, n.d.):

- Arugula
- Pea Shoots
- Mustard
- Radish
- Kale
- Coriander
- Basil

In addition to easy growth and harvest, they are a high-value crop. Many growers can produce upwards of 50lbs in a two-week cycle for a 60sf space. If this is priced at \$20 per pound, this can produce about \$2,000 per month (GroCycle, n.d.). LAEV community members were fond of the idea of microgreens, and they have been integrated into the system design.

5.4. System Selection and Media

There are three types of aquaponics growing techniques: media beds, nutrient film technique (NFT), or raft/deep water culture (DWC). The current LAEV aquaponics system is a media bed filter, which is most common for small scale systems. Eco-lions Engineering has determined the new design should also be of this type, as the maintenance is already familiar to the community and this technique is the most suitable for new aquaponics. Media grow beds allow for sufficient nitrification to reduce the risks of ammonia peaks caused by overfeeding and overstocking of fish. It easily meets the needs of nitrifying and mineralization necessary for plants to thrive, and self-filters solid west from the fish tank. The type of media best suited for the aquaponics system has been decided based on size, weight, shape, pH neutrality, porosity, and cost. Lava rock is the most optimal option as it has an angular shape, neutral pH, and high porosity. It also does not float. LAEV is also currently using it for their prototype system. Based upon the soil properties and existing supply, this makes lava rock the cheapest and most efficient media (Go Green Aquaponics, n.d.).

66

5.5. System Water and Aeration Design

It is important to consider the Dissolved Oxygen (DO) in aquaponics to maintain respiration for fish, nutrients for plants, and bacteria for converting fish waste into these plant-supporting nutrients. The amount of DO required in the system is dependent upon fish type, water temperature, and tank size. Generally, warm water fish require about 5mg/L of DO to maintain good health but some fish, like the Blue Tilapia used in our system, can thrive off lower levels. In general, plants require a DO of about 4-12mg/L for respiration. DO is maintained by the process of aeration, which creates water movement. Air pumps and air stones are the most common and reliable aeration process for aquaponics systems. They can provide the exact amount of oxygen needed per pump size and remain functioning even if the pump fails. Air stones are also one of the most economical options. The smaller the pores in the stones, the more oxygen will be delivered (Go Green Aquaponics, n.d.). For a 240gallon fish tank, 6" medium pore diffusers provide adequate DO, without the need to purchase too many stones. There are three steps in sizing an aerator:

- Calculate the amount of oxygen needed for the system based upon the daily feed rate.
- Determine the number of diffusers/air stones to supply the amount of oxygen needed.

67

3. Quantify the minimum CFM produced by an air pump that will supply the oxygen diffusion rate at the depth of the fish tank.

The oxygen injection formula is as follows:

Injection rate
$$\left(\frac{O_2}{hr}\right)$$

= diffuser(cfm) · wt air $\left(\frac{lb}{ft^3}\right) \cdot \frac{O_2}{air} \left(\frac{lb}{lb}\right) \cdot \text{SOTE}\left(\frac{lb}{depth(ft)}\right) \cdot d(ft) \cdot \text{FTE} \cdot T\left(\frac{min}{(hr)}\right)$

This calculation utilized a 0.5:1 oxygen to feed ratio, and 0.01 SOTE, Standard Oxygen Transfer Efficiency rate for the pore size. This was based upon standard conditions per 1ft of depth. 6" medium pore diffusers supply approximately 0.5cfm. This resulted in an oxygen injection of 0.005lbs of O2/hr.

The number of air stones was determined by dividing the weight of feed per hour by the weight of O2 per hour. Therefore, the minimum required volumetric flow at the fish tank depth is as follows (Urban Space Aquaponics, n.d.):

Pump Size
$$\left(\frac{L}{hr}\right)$$
 = number of stones \cdot diffuser (cfm)

This value was multiplied by a safety factor of 1.5 and adjusted to the elevation of LA Eco Village above sea level.

Aerator Size	Air Stone Size	Number of Air Stones
9000 L/H	6" medium pore diffusers	7

Table 19. Aeration Design Specifications.
The calculations are reflected in Appendix D. Additional requirements include a regulated temperature between 54- and 90-degrees Fahrenheit in order to prevent fish disease and death. This can be achieved with a water heater and proper tank insulation.

5.6. Operations and Maintenance

Aquaponics systems require regular maintenance to ensure the system is running properly and to avoid disease and death in the fish tank. The operation requirements for the proposed system can be seen in Table 20.

	- Temperature between 54- and 90-degrees Fahrenheit.
Water Requirements	- Dissolved Oxygen volume of 4-12 milligrams per liter of
	water.
	- pH level between 4 and 9.
	- Primary chemicals (nitrogen and phosphorous) must be
Fertilizer Requirements	checked every 2 to 4 weeks.
	- Secondary chemicals (potassium, calcium, sulfur,
	magnesium) must be checked every 2 to 4 weeks.
	- Minimum 0.5:1 feed to fish ratio.
Filtration Requirements	- Fish tank volume must be cycled completely through the
i miadon Nequilements	media bed volume 1-2 times per hour

Table 20. Aquaponics System Maintenance Requirements.

5.7. Hydraulics Design

The fish tank volume is designed match the grow bed volume with a 1:1 tank to bed ratio, and a 3:1 tank to fish ratio. Since tilapia can grow between 3-4lbs, they require about 12 gallons per fish (Aguaponics Advisor, n.d.). The microgreen media beds only require a depth of 1-4", therefore the two microgreen media meds were sized for a depth of 4" with an additional 1/2" of space to ensure opportunity to grow various species. The fruit/vegetable media bed is sized for 12", to also ensure opportunity to grow various species. This media bed is placed at the top of the system to avoid prohibiting plant height. Since microgreens only require 4 hours of sunlight and the structure is placed against the south facing wall of the existing auto shop wall, which receives direct sunlight, microgreen growth is not affected by the vertical stack design. Additionally, during early microgreen germination stages the plant grows best in a shaded or covered environment (Go Green Aquaponics n.d.). Therefore, this design provides more optimal sunlight for the fruit/vegetable bed, and more shading for the microgreens, supporting better growth. The aquaponics pump was sized with three main considerations:

- 1. Distance the water is lifted against gravity.
- 2. Volume of water to fill the grow beds in the amount of time the pump is running.
- 3. Fish tank turnover.

A general aquaponics rule of thumb is to cycle the fish tank volume through the media bed volume at least 1-2 times/hour (HowToAquaponics, n.d.). Therefore, the pump was sized based on the fish tank volume and a 15-minute timer system to turn on 4 times per hour, 5 minutes on and 10 minutes off. For optimal circulation of once per hour through the three media beds, the required volume flow rate is reflected in the tables below. To save energy, the pump can be sized for a circulation of once per hour, but because of the stacked design and head loss, based upon the pump curve the pump size would remain relatively close to the most optimal circulation flow rate. These alternatives are reflected in Appendix D.

PVC is the design material selected for piping. This is the cheapest alternative, and easiest to manipulate for system construction. Based upon an average pressure of about 20-100psi and 6-12ft/s flow velocity, the pipe size for this system should be between ½-¾". For a ¾" pipe, tilapia fingerlings may pass through the system, but this can be prevented by adding a screen. This will also be dependent on the fish source. These sizes are based on rigid PVC piping, and will require approximately 4 tee fittings, and 5 elbow fittings with a 0.85-1.06" diameter (FlexPVC, n.d.).

	Volume (gallons)	Area (ft^2)
Fish Tank	270 (holds 240)	18
Microgreens Media Beds (x2)	51	18
Fruit/Vegetable Media Beds (x1)	135	18
Tank Type	Depth/Bed Height (ft)	Total Headloss (ft)
Fish Tank	2	0
Microgreens Media Bed 1	0.375	2.375
Microgreens Media Bed 2	0.357	3.75
Fruit/Vegetable Media Bed	1	5.75
Pump Size	Pipe S	ize
800-1000 GPH	1/2-3/4	

Table 21. Hydraulic Design Specifications

5.8. Structural Design

5.8.1. Framing Design

The vertical aquaponics system will be supported by a wood frame structure. The frame will use No. 1 Douglas Firs Larch members, consistent with the members of Garden Education Center. Douglas Fir was selected for the benefits described in the Structural Materials section of the Learning Garden, as well as for the potential cost savings when purchasing bulk members of the same size. The conceptual framing design was to have the fish tank carried by simply supported beams and each media bed above carried by cantilever beams. Simply supported beams were selected to carry the fish tank due to its heavy weight. Cantilevers were selected to carry the media beds to increase accessibility for harvesting. The process used to determine the member sizes for the frame is as follows:

- Compute the maximum loads from each of the media beds and fish tank. These will be considered the dead loads on each "story" of the aquaponics system.
- Compute 1.4 times the dead load on each story, the first LRFD load combination. This will be used as the design load. Since the aquaponics system is not a building it does not have the other loads necessary to compute all LRFD combinations.
- 3. Determine a preliminary framing design using conservative member sizes.
- 4. Check the member capacities such as shear, bending, axial compression and deflection per AWC NDS regulations.
- 5. Compare the member capacities to the member demand.
- 6. Resize the member to optimize if the capacities are greater than the demand.

The beams carrying the media beds and fish tanks will be sheathed with Structural 1 Plywood panels. This material was selected to match the shear walls used in the Garden Education Center. By choosing the same material, the costs for the sheathing were reduced. The wood members will be waterproofed with epoxy. The summary of the final structural members and sheathing can be viewed in Table 22 below. The framing plan for the system can be viewed in Figure 34 below.

Structural Frame Material Details				
Member Name	Quantity	Nominal Dimensions Selected (ft)	Length (ft)	Material
Tall Columns	4	4 by 4	8	No. 1 Douglas Fir Larch
Short Columns	4	4 by 4	0.5	No. 1 Douglas Fir Larch
Beams	16	2 by 6	3	No. 1 Douglas Fir Larch
Girders	5	2 by 10	6	No. 1 Douglas Fir Larch

Table 22. Structura	l Framing an	d Sheathing fo	or Aquaponics	System.
---------------------	--------------	----------------	---------------	---------

Structural Sheathing Material Details				
Material	Area (sq ft)	Thickness (in)	Minimum Nail Bearing Length in Framing and Blocking (in)	Panel Nail Edge Spacing (in)
Plywood Sheathing Structural Pane	72 9	3/8	1.375	6

Figure 34. Aquaponics System Structural Framing Details.

5.8.2. Gravity and Seismic Bracing

The frame of the aquaponics system will be braced to resist the loads due to gravity. The aquaponics system is located along the CMU wall of the former auto-shop building. Each beam carrying a media bed will be braced to the CMU wall to resist the maximum overturning moment. The bracing details are shown in Table 23.

Bracing to CMU Wall Material Detail			
Maximum Moment on Beam (lb*in)	9517.952		
Anchor Type	HY 270 + threaded rod 5.8		
Anchor Diameter (in)	3/8		
Embedment Depth (in)	4		
No. of Anchors per Plate	4		
Steel Plate Size (in)	12 by 12		
Steel Plate Thickness (in)	0.4		

Table 23. Beam Bracing Specifications.

The frame of the aquaponics system will also be braced to resist the loads due to lateral seismic forces. The anchorage has been designed to resist seismic forces for a non-structural component based on ASCE 7-16 chapter 13. In this case the aquaponics system is a non-structural component of the former auto-shop building. To account for the maximum possible force on the system in the anchorage design, the seismic force (F_p) was calculated assuming media bed was full, and the vegetables were fully grown. Table 24 shows the seismic forces, overturning moment, and tension force due to the overturning moment.

Seismic Forces on Aquaponics System		
Governing Fp (lb)	1078	
Fv (lb)	718.5	
Height to Center of Mass (ft)	6	
Overturning Moment (lb*in)	77594	
Tension (lb)	1078	
Tension Demand for Anchors Carrying Load in Both Directions (lb)	2155	

Table 24. Aquaponics Seismic Forces.

The tension demand for anchors that carry seismic forces in both lateral directions was used as the demand on the anchorage. The anchorage arrangement was optimized for the seismic demand using Hilti Profis Software.

Each of the four edge columns will be anchored to an 8-inch-thick concrete slab using a steel ledger plate. The anchor specifications can be seen in Table 25. The concrete slab will be large enough so that the full capacity of the anchors can be utilized.

Seismic Anchors on Columns to Concrete Slab		
Anchor Type	HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36)	
Anchor Diameter (in)	1/2	
Embedment Depth (in)	6.33	
No. of Anchors Per Plate	2	
Steel Ledger Plate Length (in)	12	
Steel Plate Thickness (in)	1/2	

Table 25. Aquaponics Seismic Anchor Specifications

5.8.3. Foundation Design

As described above in the seismic bracing section, the aquaponics system frame will be anchored to an 8-inch-thick concrete slab sized for appropriate anchor spacing. IBC 2018 does not list any foundation requirements for non-building structures, so the 8-inch slab is an adequate foundation. The same soil properties identified for the design of the Garden Education Center foundation were used to design these slabs. Each slab was checked for bearing capacity using the Meyerhof approach and determined to have satisfactory safety factors. Immediate settlement was considered for both slabs using the Timoshenko and Goodier Theory of Elasticity. This settlement was less than 0.1% of the height of the sand layer that the foundations rest on, indicating minimal settlement.

5.9. Design Alternatives

The nutrient film technique (NFT) and deep-water culture (DWC) aguaponics system techniques were considered as options for the design of a larger scale aquaponics system. Though more efficient for larger systems, the media bed technique offers a larger variety of growable produce options desired by the LAEV and is still very efficient for the proposed size. It is also the technique currently used and most familiar to the LAEV community members and is the easiest and most lowmaintenance technique for beginners, making media bed aquaponics the best technique to educate visitors on at-home aquaponics systems. A peristaltic pump was also considered for the system. It is positive displacement and requires less energy to start and stop with continuous operation, however a timer system is more optimal for plant/fish health and growth. Finally, simply supported beams were considered to support the media beds which would allow for smaller beam sizing, but this option would decrease the ease of harvesting and produce a less aesthetically pleasing design.

5.10. Future Recommendations

LAEV community members were curious to see how interactive the newly designed aquaponics system could be. Since the community aims towards maximum energy efficiency and wishes to inspire visitors to build their own aquaponics systems, the Eco Lions team wanted to develop a design that is as hands-on as possible. As a substitute for an air pump and air stones, LAEV community members can also implement a manual paddlewheel for guests. The mechanical paddle-wheel design is generally used for larger ponds or systems but could also be implemented in a system of this size. Because of the lack of a timer and known flow rate, the DO must be checked regularly. But if LAEV utilized a DO meter or the colorimetric approach with a color meter, this could be viable and energy efficient option. Another, less hands-on, but energy efficient alternative would be to design the system so that the water exiting the media beds drops down into the fish tank in a manner that disturbs the surface and induces oxygen production.

Akinbile, O. R., & Adeniyi, A. A. (2014). Efficiency of Aquaponics System for Vegetable Production. PLOS ONE, 9(7), e102662.

American Lumber Standard Committee, Inc. (2012). National Design Specification®

(NDS®) for Wood Construction, 2012 Edition.

American Society of Civil Engineers. (2017). Minimum design loads and associated

criteria for buildings and other structures (ASCE 7-16).

American Wood Council. (2018). National Design Specification for Wood

Construction, Supplement: Design Values for Wood Construction.

American Wood Council. "Span Options Calculator for Wood Joists and Rafters."

https://awc.org/calculators/span-options-calculator-for-wood-joists-andrafters/.

American Wood Council. "2021 Special Design Provisions for Wind and Seismic (SDPWS)."

https://awc.org/publications/2021-sdpws/.

American Wood Council. (2015). Supplement No. 1-NDS for 2015 National Design

Specification[®] (NDS[®]) for Wood Construction: Design Values for Wood Construction.

ATC Hazards by Location. Applied Technology Council. Accessed April 3, 2023.

https://hazards.atcouncil.org/#/snow?lat=34.0728128&lng=-

<u>118.2907456&address=3554%20W%201st%20St%2C%20Los%20Angeles%2</u> C%20CA%2090004%2C%20USA

Aquaponics Advisor. (2021). How Many Tilapia Per Gallon in Aquaponics System?

Retrieved from https://aquaponicsadvisor.com/how-many-tilapia-per-gallon/.

AQQA. (n.d.). AQQA 300W/240-Gallon Submersible Aquarium Heater with LED

Temperature Controller for

Freshwater and Saltwater, with 3 Suction Cups, Safe Titanium Alloy. Amazon.

https://www.amazon.com/AQQA

Bachman, Robert, and Christopher Dowty. "NonstructuralComp-Bachman_Dowty-

July081.pdf." Professional Plastics, Inc.

Bowles, J.E. (1996). Foundation Analysis and Design (5th ed.). The McGraw-Hill

Companies, Inc., New York.

California Building Code. (2016). Chapter 3: Use and Occupancy Classification,

Section 303.4. UpCodes.

California Department of Conservation. 2023. CGS Seismic Hazards Program Liquefaction Zones. California Geospatial Information Officer (GIO). Available
at: https://gis.data.ca.gov/datasets/cadoc::cgs-seismic-hazards-programliquefaction-zones-1/explore?location=34.067894%2C-118.258313%2C12.65
City of Los Angeles Department of Public Works. (2017). Planning and Land
Development Handbook for Low Impact Development, 5th Edition. Los
Angeles, CA.

California Department of Water Resources. (n.d.). Groundwater Level Data for Site

340181N1182228W002.

https://wdl.water.ca.gov/WaterDataLibrary/GroundwaterBrowseData.aspx? LocalWellNumber=&SelectedCounties=&StationId=54695&StateWellN umber=&SelectedGWBasins=&SiteCode=340181N1182228W002

California Geological Survey. (n.d.). Seismic Hazards Program Liquefaction Zones.

https://gis.data.ca.gov/datasets/cadoc::cgs-seismic-hazards-programliquefaction-zones-1/explore?location=34.072669%2C-118.289649%2C17.83

California State Water Resources Control Board. 2023. Site Information for

T0603723677. GeoTracker. Available at:

https://geotracker.waterboards.ca.gov/profile_report?

orderby=s.sub_title&global_id=T0603723677&mytab=sitedocuments#s

Charlotte Pipe. (n.d.). Charlotte Pipe 3/4 in. PVC Schedule 40 90° S x S Elbow Fitting. Home Depot. <u>https://www.homedepot.com/p/Charlotte-Pipe-3-4-in-PVC-Schedule-40-90-S-x-S-Elbow-Fitting-PVC023000800HD/203812123</u>

Charlotte Pipe. (n.d.). Charlotte Pipe 3/4 in. Schedule 40 S x S x S Tee. Home Depot. https://www.homedepot.com/p/Charlotte-Pipe-3-4-in-Schedule-40-S-x-S-x-S-Tee-PVC024000800HD/203812197

City of Los Angeles. (2014). Low Impact Development (LID) Ordinance. Los Angeles,

CA.

City of Los Angeles. "Zoning Information and Map Access System (ZIMAS)." Los

Angeles Department of City Planning. City of Los Angeles, n.d.

http://zimas.lacity.org/.

Falk, J. H., & Dierking, L. D. (1995). Visitor Circulation in Informal Science Learning

Environments. Informal Science Review, 15(3), 1-8.

FlexPVC. (n.d.). Water Flow Chart #1. Retrieved from

https://flexpvc.com/Reference/WaterFlowBasedOnPipeSize.shtml.

FlexPVC. (n.d.). Water Flow Rates for Pipe Sizes with Excel Formulas, Using the

Hazen Williams Formula. Retrieved from

https://flexpvc.com/Reference/WaterFlowBasedOnPipeSize.shtml.

Go Green Aquaponics. (n.d. a). Guide to Aeration in Aquaponics Systems. Retrieved

from https://gogreenaquaponics.com/blogs/news/guide-to-aeration-in-

aquaponics-systems.

Go Green Aquaponics. (n.d.). Retrieved from <u>https://gogreenaquaponics.com/.</u>

Gonzalez, Marlen C., et al. "The Benefits of Gardening and Food Growing for Health

and Well-Being." National

Center for Biotechnology Information, U.S. National Library of Medicine, Dec.

2019, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977207/

Google. (n.d.). Los Angeles Eco-Village [Google Maps]. Retrieved from

https://www.google.com/maps/place/Los+Angeles+Eco-

Village/@34.0726563,-

<u>118.2908499,173m/data=!3m1!1e3!4m5!3m4!1s0x80c2c76689d94ea1:0x39a</u> ee60692c4d45f!8m2!3d34.0724649!4d-118.2907213. Google Maps. (n.d.). Retrieved April 3, 2023, from

https://www.google.com/maps/dir/3560+Beverly+Boulevard,+Los+Angeles,+ CA/3554+W+1st+St,+Los+Angeles,+CA+90004/@34.0730432,-118.2899983,17z/data=!4m14!4m13!1m5!1m1!1s0x80c2c768be311fbd:0x47 b0fc0f0e0956d6!2m2!1d-118.2866019!2d34.0738621!1m5!1m1!1s0x80c2c7668aba9a0b:0xae768a550 56c278b!2m2!1d-118.2907456!2d34.0728128!3e2

Graham, M.S. (2018). Roof slope guidelines. Professional Roofing, 58(4), 32-38.

National Roofing Contractors Association (NRCA).

GroCycle. (n.d.). Microgreens for Profit: How to Grow Microgreens as a Business.

Retrieved from <u>https://grocycle.com/microgreens-for-</u> profit/#:~:text=lf%20you've%20got%20a,a%2060%20square%20foot%20spac

<u>e</u>.

HowToAquaponic. "Aquaponics Pump: Choosing The Right Pump For Your System."

HowToAquaponic, n.d.,

https://www.howtoaquaponic.com/designs/aquaponics-pump/.

Hydrofarm. (n.d.). Active Aqua Submersible Water Pump. Amazon.

https://www.amazon.com/Hydrofarm-Active-Aqua-Submersible-Water/dp/B0049XENYS/ref=as_li_ss_tl?keywords=aquaponics%2Bpump&qid =1559550498&s=gateway&sr=8-5&th=1&linkCode=sl1&tag=aqua022-20&linkId=e2f7265e8a2591ac3755a48fa2a724a2&language=en_US

International Code Council. (2019). Chapter 26: Plastic, Section 2607. ICC Digital

Codes Library.

Los Angeles Almanac. (n.d.). Los Angeles Weather and Climate. Retrieved from

https://www.laalmanac.com/weather/we09aa.php.

Los Angeles County Department of Public Works. (2012). Low Impact Development

Standards Manual.

Los Angeles County Department of Public Works. (n.d.). Hydrology GIS. Retrieved

from https://dpw.lacounty.gov/wrd/hydrologygis/.

Los Angeles County Department of Public Works. (2006). Appendix C - Urban Storm

Drainage Criteria. In Hydrology Manual (pp. C-1 - C-39).

Los Angeles County Department of Public Works. (n.d.). HydroCalc Calculator

Software (Version 1.0.3).

Los Angeles Department of City Planning. (2015). Zoning Code Summary.

National Highway Institute. (2001). Manual on Subsurface Investigations by Mayne, Christopher, and DeJong

(Publication No. FHWH NHI-01-031).

Naturally Wood. "Laminated Veneer Lumber (LVL)." Accessed April 4, 2023.

https://www.naturallywood.com/products/laminated-veneer-lumber/.

Osman, A., & Lowery, B. (2019). Laminated Veneer Lumber (LVL) as a Construction

Material. Oklahoma State University Extension.

https://extension.okstate.edu/fact-sheets/laminated-veneer-lumber-lvl-as-a-

construction-material.html

Pentair Aquatic Eco-Systems. (n.d.). Sweetwater Air Diffusers.

https://pentairaes.com/sweetwater-air-diffusers.html

Professional Plastics, Inc. "Makrolon® SL SunLife - MAKROLON SL - Order Online."

Professional Plastics,

Inc. <u>https://www.professionalplastics.com/MAKROLONSL</u>.

ProTank. (n.d.). 75-Gallon Plastic Water Storage Tank. Retrieved from

https://www.protank.com/75gallon-plastic-water-storage-tank-p5291777.

ProTank. (n.d.). 1200-Gallon Plastic Water Storage Tank. Retrieved from

https://www.protank.com/1200gallon-plastic-water-storage-tank-p1613686.

Ross, P. J. (2011). Wood handbook: Wood as an engineering material (Chapter 6).

McGraw-Hill Education.

The Aquaponic Source. "Aquaponic Gardening Rules of Thumb." The Aquaponic

Source, n.d., <u>https://www.theaquaponicsource.com/aquaponic-gardening-</u> <u>rules-of-</u> <u>thumb/#:~:text=You%20want%20to%20flow%20the,per%20hour%20(gph)%2</u>

<u> 0pump</u>

"The Health Benefits of Gardening." UNC Health Talk. UNC Health, 24 Apr. 2018,

https://healthtalk.unchealthcare.org/health-benefits-of-gardening/

The Home Depot. (n.d.). Sheathing Plywood (Common: 15/32 in. x 4 ft. x 8 ft.; Actual:

0.438 in. x 48 in. x 96 in.). https://www.homedepot.com/p/Sheathing-Plywood-

Common-15-32-in-x-4-ft-x-8-ft-Actual-0-438-in-x-48-in-x-96-in-

20159/206827282

Tidwell, J. H. (2012). Aquaculture Production Systems. John Wiley & Sons.

Underwater Warehouse. (n.d.). Fiberglass Tank with Window, 270 gal, 72 x 36 x 24 in.

https://www.underwaterwarehouse.com/fiberglass-tank-with-window-270-gal-72-x-36-x-24-in/?gclid=Cj0KCQjwlumhBhClARIsABO6pyyZLEgoD5fp2j4Or9m1YM06jQzb6opvMZr4Jqts51ChKA21YpEfmlaAjsNEALw _wcB

UpCodes. (2022). Chapter 11: Storm Drainage, Los Angeles Plumbing Code 2022.

Urban Aquaponics. (n.d.). Oxygen: Sizing Your Aquaponic Air System. Retrieved from

https://www.urbanaquaponics.com/articles/design/616-oxygen-sizing-youraquaponic-air-system?129-Oxygen-Sizing-your-Aquaponic-Air-System=.

Urban Space Aquaponics. (2018, December 19). Step-by-Step Guide to Sizing an Air

Pump for Aquaponics. Retrieved from

https://urbanspaceaquaponics.com/2018/12/19/step-by-step-guide-to-sizingan-air-pump-for-aquaponics/.

U.S. Department of Energy Solar Decathlon. (2017). Swiss Living Challenge:

Engineering.

https://www.solardecathlon.gov/2017/assets/pdfs/sd2017_swissteam_narrativ e_engineering.pdf.

U.S. Department of Justice. (2010). Americans with Disabilities Act (ADA) Regulations

Manual.

USGS. (n.d.). The National Map: Viewer. [Online]. Accessed March 14, 2023.

https://apps.nationalmap.gov/viewer/.

Vigoro. (n.d.). 0.5 cu. ft. Bagged Decorative Stone Red Lava Landscape Rock. Home Depot.

https://www.homedepot.com/p/Vigoro-0-5-cu-ft-Bagged-Decorative-Stone-

Red-Lava-Landscape-Rock-440897/100427379

World Water Reserve. "Water Pumps for Aquaponics: How to Choose the Right One."

World Water Reserve, n.d., <u>https://worldwaterreserve.com/water-pumps-for-aquaponics/</u>.

APPENDIX A: Structural Calculations

APPENDIX A-1

GARDEN EDUCATION CENTER STRUCTURAL CALCULATIONS

GARDEN EDUCATION CENTER - DEAD, LIVE, RAIN, & SNOW LOADS

Building Information	
Building Occupancy Risk Category (Table 1.5-1 ASCE	1
7-16)	I
le by Risk Category (Table 1.5-2 ASCE 7-16)	1
li by Risk Category (Table 1.5-2 ASCE 7-16)	0.8
ls by Risk Category (Table 1.5-2 ASCE 7-16)	0.8
lw by Risk Category (Table 1.5-2 ASCE 7-16)	1

Roof Dead Load			
Matarial Turpa	Matarial Otv	Weight	
Material Type	Material, Oty.	(psf)	
Roof Paneling	polycarbonate	1.93	
Girders	2x12, 2	1.5	
Rafters	2x6, 9	6.0	
Utilities/Lights	N/A	2.0	
Solar Panels	N/A	2.0	
Total	-	13.43	
Rounded Total	-	13.5	

*based on wt. of 8mm(0.315")panel *assumed

*assumed

*assumed

*assuming 50 lb solar panel

Roof Live Load	
L0 (psf) (ASCE 7-16 Table 4.3-1)	20.0
Live Load Reduction (ASCE 7-16 Table 4.3-1)	Yes
At (sq ft)	16.2
Total Rise of Roof (in)	48.0
Roof Span in Direction of Slope (ft)	10.0
F	4.8
R1 (Equation 4.8-1 ASCE 7-16)	1.0
R2 (Equation 4.8-1 ASCE 7-16)	1.0
Lr (psf) (Equation 4.8-1 ASCE 7-16)	19.2

Snow Load		
Ground Snow Load (psf)	0.00	*https://hazards.atcouncil.org
Flat Roof Snow Load (psf) (Equation 7.3-1 ASCE 7-16)	0.00	
Roof Snow Load (psf) (Equation 7.4-1 ASCE 7-16)	0.00	
		_

Wall Dead Load		
Shear Wall (7/16 in thick plywood)	0.80	*ASCE 7-16
Non-Structural Wall (3/8 in thick plywood)	0.60	*ASCE 7-16 T12.2-1
2x6 studs (No. 1 DF-L)	1.35	*plf

Floor Dead Load		
Plywood Subflooring	2.50	*ASCE Table 4.2-1
Self-Wt of Joist	0.00	
Length of Floor Joist (ft)	12.0	
Spacing (in)	18.0	
Approximate self-weight (plf)	1.10	
Weight of singular joist (plf)	13.2	
Number of joists required	9.00	
Total Dead Load Self-Wt. (plf)	118.8	
Floor Vol(ft^3)	660.0	
Dead Load Self-Wt	5.56	
Total	8.06	
Floor Live Load		7
Floor Live Load	30	*ASCE 7-16 T4-1
Rain	Load	
i (in /hr) (60 min /100 ur Primary 10 Dlumhing (Cada 2022)	2.00

Rain Load					
i (in/hr) (60 min/100 yr Primary - LA Plumbing Code 2022)	2.00				
i (in/hr) (15 min/100 yr Secondary - ASCE 7-16 - NOAA	1.00				
A of the roof (ft^2)	153.2				
Primary Drainage System (Los Angeles Plumbing Code 2022)	3" Gutter at 1/16" per				
Thinkiy Drainage System (Los Angeles Frambing Code 2022)	foot slope				
Secondary Drainage System	Open Sided Roof				
Q on the roof (gpm) (Equation C8.3-1 ASCE 7-16)	3.19				
Lr (ft)	12				
Ai/400 <= Lr (Equation C8.3-2)	Yes				
Hydraulic head (in) (Negligible based on ASCE 7-16 C8.3)	0.00				
Static Head (in) (Open sided roof has no static head)	0.00				
R (psf) (equation 8.3-1 ASCE 7-16)	0.00				

GARDEN EDUCATION CENTER - WIND LOADS

North-South Direction					
Exposure Category	В				
h (ft)	14.0				
L (ft)	10.0				
B (ft)	12.0				
Elevation (ft) (USGS -					
https://apps.nationalmap.gov/viewer/)	285.6				
V (mph) (ATC Hazards Risk Cat. 1)	88.0				
Ke (Table 26.9-1)	1.00				
Kd (ASCE 7-16 Table 26.6-1)	0.85				
Kz, h=0-15' (ASCE 7-16 Table 26.10-1)	0.57				
Kzt (ASCE 7-16 26.8.2)	1.00				
qi=0.00256KzKdKeKztV^2	9.61				
L/B	0.83				
h/L	1.40				
Roof Angle	21.8				

MWFRS Walls	q (psf) at h (uses Kz)	Cp (ASCE 7- 16 Figure 27.3-1)	G (ASCE C26.11.1)	+/-(GCpi) (ASCE 7-16 Table 26.13-1)	Just q or qi GCp	Pressure s with - GCpi	Pressures with +Gcpi
Windward, h=0- 14'	9.61	0.80	0.85	0.18	6.53	8.26	8.26
Leeward L/B=0.833	9.61	-0.50	0.85	0.18	-4.08	-2.35	-2.35
Sidewalls	9.61	-0.70	0.85	0.18	-5.71	-3.99	-3.99

MWFRS Roof, h/L =1.4	q (psf) at h (uses Kz)	Cp (ASCE 7- 16 Figure 27.3-1)	G (ASCE C26.11.1)	+/-(GCpi) (ASCE 7-16 Table 26.13-1)	Just q or qi GCp	Pressure s with - GCpi	Pressures with +Gcpi
Windward	9.61 9.61	-0.63	0.85	0.18	-5.13	-3.40 3.17	-6.86
Leeward	9.61	-0.60	0.85	0.18	-4.90	-3.17	-6.63

	<i></i>
Total Loads In N-S (pst)
Walls, Windward, h=0-14'	8.26
Walls, Leeward	-2.35
Walls, Sidewalls	-3.99
Roof, Windward	-6.86
Roof, Leeward	-6.63

East-West Direction				
Exposure Category	В			
h (ft)	14.0			
L (ft)	12.0			
B (ft)	10.0			
Elevation (ft) (USGS - https://apps.nationalmap.gov/viewer/)	285.6			
V (mph) (ATC Hazards Risk Cat. 1)	88.0			
Ke (Table 26.9-1)	1.00			
Kd (ASCE 7-16 Table 26.6-1)	0.85			
Kz, h=0-15' (ASCE 7-16 Table 26.10-1)	0.57			
Kzt (ASCE 7-16 26.8.2)	1.00			
qi=0.00256KzKdKeKztV^2	9.61			
L/B	1.20			
h/L	1.17			
Roof Angle	21.8			
Roof Area (ft^2)	153.2			
Reduction Factor	0.96			

MWFRS Walls	q(psf) at h (uses Kz)	Cp (ASCE 7- 16 Figure 27.3-1)	G (ASCE C26.11.1)	+/-(GCpi) (ASCE 7-16 Table 26.13-1)	Just q or qi GCp	Pressure s with - GCpi	Pressures with +Gcpi
Windward, h=0- 14'	9.61	0.80	0.85	0.18	6.53	8.26	4.80
Leeward L/B=1.2	9.61	-0.46	0.85	0.18	-3.76	-2.03	-5.48
Sidewalls	9.61	-0.70	0.85	0.18	-5.71	-3.99	-7.44
Г							
MWFRS Roof, h/L = 1.167	q(psf) at h (uses Kz)	Cp (ASCE 7- 16 Figure 27.3-1)	G (ASCE C26.11.1)	+/-(GCpi) (ASCE 7-16 Table 26.13-1)	Just q or qi GCp	Pressure s with - GCpi	Pressures with +Gcpi
Windward, 0'-7'	9.61	-1.25	0.85	0.18	-10.24	-8.51	-11.97
Windward, 7'- 12'	9.61	-0.70	0.85	0.18	-5.71	-3.99	-7.44

Total Loads In E-W (psf)					
Walls, Windward, h=0-14'	8.26				
Walls, Leeward	-5.48				
Walls, Sidewalls	-7.44				
Roof, Windward, 0'-7'	-11.97				
Roof, Windward, 7'-14'	-7.44				

Worst Ca	se Load (psf)
-'	11.97

GARDEN EDUCATION CENTER - WIND LOADS CLADDING DESIGN

cladding design ch. 30 ASCE 7 SPDWS to check perpendicular strength requirement for wind on shear walls and on diaphragm

Wind Loads on Components and Cladding Parameters				
Building Type Main (ASCE 7-16 Section 30.1.1)	Part 1 - h<=60 ft and monoslope			
building Type Main (ASCE 7-10 Section 30.1.1)	roof			
Building Type Overhang (ASCE 7-16 Section 30.1.1)	Part 6 - overhangs			
Buidling Conditions (ASCE 7-16 Section 30.1.2)	Satisfies Section 26.2			
V (mph) (ATC Hazards Risk Cat. 1)	88			
Ke (Table 26.9-1)	1			
Kd (ASCE 7-16 Table 26.6-1)	0.85			
Kz, h=0-15' (ASCE 7-16 Table 26.10-1)	0.57			
Kzt (ASCE 7-16 26.8.2)	1			
qi=0.00256KzKdKeKztV^2	9.60503808			
Enclosure Classification	Enclosed			
Minimum Design Wind Pressures (psf) (ASCE 7-16 Section 30.2.2)	16			
Roof Angle (Degrees)	21.80140949			
Mean Roof Height (ft)	12			

Wind Pressures on Wall Cladding in N-S and E-W Directions									
Wall	qh at 12 ft	ab (pat)	。(ff)	Effective		GCn	GCni	p with -	p with
Section	(psf)	qii (psi)	a (II)	(ft^2)	+GCb	-GCb	GCpi	GCp (psf)	+GCp (psf)
				(11 2)					
4 N-S	9.60503808	16	3	72	0.85	-0.93	0.18	-17.76	10.72
4 E-W	9.60503808	16	3	48	0.9	-0.97	0.18	-18.4	11.52
5	9.60503808	16	3	36	0.95	-1.2	0.18	-22.08	12.32
Maximum Wall Cladding Wind Pressure (psf)				-22.08					

Wind Pressures on Roof Cladding in N-S and E-W Directions									
Roof Section	qh at 12 ft (psf)	qh (psf)	a (ft)	Effective Wind Area (ft^2)	+GCp	-GCp	GCpi	p with - GCp (psf)	p with +GCp (psf)
1	0	16	3	18	0.37	-1.25	0.18	-22.88	3.04
2	0	16	3	54	0.35	-1.35	0.18	-24.48	2.72
3	0	16	3	72	0.3	-2.1	0.18	-36.48	1.92
Maximum Roof Cladding Wind Pressure (psf)			-36.48						

Check that W	Check that Wall and Roof Cladding can Resist Perpendicular Wind Pressures								
Wall Cla	dding	Roof Clac	ding						
Material	Plywood Panels	Material	Polycarbonate						
Thickness (in)	0.375	Thickness (in)	0.315						
Nomial Uniform Load Capacity for 24 in Spacing (psf)	30	Flexural Strength (psi)	13500						
Acceptable?	Yes	Acceptable?	Yes						

<

External Pressure Coefficient, (GCp) - Walls

GARDEN EDUCATION STRUCTURE - LRFD LOAD COMBINATIONS

Load Summary	Roof (psf)
Dead (D)	13.5
Live (L)	0
Roof Live (Lr)	19.2
Rain (R)	0
Snow (S)	0
Wind (W)	11.97
Seismic (Ev)	4.37
Seismic (Eh)	10.49
Seismic (Emh)	24.22
Seismic (Em)	19.85

LRFD Load Combinations per ASCE 7-16	Roof (psf)
1.4D	18.9
1.2D+1.6L+0.5Lr	25.8
1.2D+1.6L+0.5S	16.2
1.2D+1.6L+0.5R	16.2
1.2D+1.6Lr+L	46.92
1.2D+1.6S+L	16.2
1.2D+1.6R+L	16.2
1.2D+1.6Lr+0.5W	52.90
1.2D+1.6S+0.5W	22.18
1.2D+1.6R+0.5W	22.18
1.2D+W+L+0.5Lr	37.77
1.2D+W+L+0.5S	28.17
1.2D+W+L+0.5R	28.17
0.9D+W	24.12
1.2D+Ev+Eh+L+0.2S	31.06
0.9D-Ev+Eh	18.27
1.2D+Ev+Emh+L+0.2S	44.78
0.9D-Ev+Emh	32.00
Maximum Load Combination	53

GARDEN EDUCATION STRUCTURE - BUILDING WEIGHT CALCULATIONS

	East and West Walls									
Γ	Distance from	Height at	Angle of Roof	Angle of Roof	Hoight at x (ft)					
	Origin, x (ft)	Origin (ft)	(°)	(Rad)	neight at x (it)					
	0.5	10	21.8	0.38	10.20					
	2	10	21.8	0.38	10.80					
	3.5	10	21.8	0.38	11.40					
	5	10	21.8	0.38	12.00					
	6.5	10	21.8	0.38	12.60					
	8	10	21.8	0.38	13.20					
	9.5	10	21.8	0.38	13.80					
	10	10	21.8	0.38	14.00					

Mambar	X-Sectional	Haight (ft)	Volume	
wember	Area (ft^2)	Height (It)	(ft^3)	
S1	0.057	10.000	0.573	
S2	0.057	10.200	0.584	
S3	0.057	10.800	0.619	
S4	0.057	11.400	0.653	
S5	0.057	12.000	0.687	
S6	0.057	12.600	0.722	
S7	0.057	13.200	0.756	Total Volume
S8	0.057	13.800	0.791	(ft^3)
S9	0.057	14.000	0.802	6.19

Roof	
Roof Dead Load (psf)	13.5
Area of Roof (ft^2)	153.2
Roof Wt. (Ibs)	2069
Roof Wt. (kips)	2.07

Member Name	Dim. (ft)	Length (ft)	Width (ft)	Height (ft)	Area (ft^2)	Weight (psf)	Density (lb/ft^3)	Volume (ft^3)	Weight (Ibs)	Qty.	Total Weight (Ibs)
Rafters	2x6										
Edge Rafters	2x6										
Girders	2x12										
Columns/Studs	2.4										
(North)	ZXO	0.125	0.458	14.00			33.00	0.802	26.47	9.00	238.2
Columns/Studs	274										
(South)	2x0	0.125	0.458	10.00			33.00	0.573	18.91	9.00	170.2
Floor Joist	2x6	0.125	0.458	12.00			33.00	0.688	22.69	11.00	249.6
Shear Wall											
Sheathing	0.03				239.70		37.50	7.49	280.90		280.9
Non-Structural											
Sheathing	0.03				190.00		37.50	5.94	222.66		222.7
Columns/Studs											
(East and West)							33.00	6.19	204.19		204.2
Roof Rafters	2x6	0.125	0.458	10.77			33.00	0.62	20.35	9.00	183.1
Roof Girders	4x10	0.292	0.771	12.00			33.00	2.70	89.03	2.00	178.1
Roof Sheathing		10.00	12.00		120.00	1.93					231.6
Wall Cladding	0.042				429.70		55.00	17.90	984.73		984.7
								TOTAL	WT. API	PROX.	5012.0

New Seismic Wt.

GARDEN EDUCATION STRUCTURE - SEISMIC DESIGN CALCULATIONS

Seismic Design Parameters	
Building Occupancy Risk Category	
I _e (Table 1.5-2)	1
Site Class (11.4.3 ASCE 7-16)	D
S _s (https://hazards.atcouncil.org)	2.022
S ₁ (https://hazards.atcouncil.org)	0.721
F _a (11.4.4 and Table 11.4-1 ASCE 7-	1.2
16)	
F _v (Table 11.4-2 ASCE 7-16)	1.7
S _{ms} (Equation 11.4-1 ASCE 7-16)	2.426
S _{m1} (Equation 11.4-2 ASCE 7-16)	1.226
S _{DS} (Equation 11.4-3 ASCE 7-16)	1.618
S _{D1} (Equation 11.4-4 ASCE 7-16)	0.817
T_{L} (s) (https://hazards.atcouncil.org)	8
SDC (Tables 11.6-1 and 11.6-2 ASCE	D
Analytical Procedure (Table 12.6-1	ELF

Seismic Weight Calcs.					
Wt. of Roof (kips)	2.07				
No. of External Studs	8.00				
No. of Internal Studs	28.0				
Total No. of Studs	36.0				
Density of 2x6 stud (lb/cu. foot)	33.0				
Vol. of North Wall Studs (cu. foot)	7.22				
Vol. of South Wall Studs (cu. foot)	5.16				
Vol. of East Wall Studs (cu. foot)	6.19				
Vol. of WestWall Studs (cu. foot)	6.19				
Wt. of Studs (lbs)	816.7				
Wt. of Studs (kips)	0.82				
Surface Area of North Wall (sq. ft.)	168.0				
Surface Area of South Wall (sq. ft.)	120.0				
Surface Area of East Wall (sq. ft.)	120.0				
Surface Area of West Wall (sq. ft.)	120.0				
Wt. of 8mm Polycarbonate Paneling (Ib	0.35				
Wt. of Polycarbonate Paneling (lbs)	183.7				
Wt. of Polycarbonate Paneling (kips)	0.18				
Wt. of Shear Walls (kips)	0.28				
Wt. of Non-Structural Sheathing (kips)	0.22				
Wt. of Non-Structural Cladding (kips)	0.98				
Seismic Weight (kips)	3.31				

Seismic Load Effects and Combinations (Section 12.4				
ASCE 7-16)				
SFRS	A15			
R (Table 12.2-1 ASCE 7-16)	6.5			
Cd (Table 12.2-1 ASCE 7-16)	4			
p (Section 12.4.3.2 ASCE 7-16)	1.3			
Overstrength Factor (Table 12.2-1 ASC	3			
Ev (psf) (Equation 12.4-4a ASCE 7-16)	4.3686			
Eh (psf) (Equation 12.4-3 ASCE 7-16)	10.49351947			
Emh (psf) (Equation 12.4-7 ASCE 7-16)	24.21581415			
Em (psf) (Equation 12.4.6 ASCE 7-16)	19.84721415			

Seismic Base Shear Analysis per ELF					
H _{avg} (ft)	12				
C _t (Table 12.8-2 ASCE 7-16)	0.02				
x (Table 12.8-2 ASCE 7-16)	0.75				
T _a (s) (Equation 12.8-7 ASCE 7-16)	0.13				
C _s (12.8-2)	0.2489				
C _s (12.8-3)	0.9749				
C _s (12.8-5)	0.0712				
C _s (12.8-6)	0.0555				
Governing C _s (12.8.1.1 ASCE 7-16)	0.2489				
W (k)	3.313179897				
V _b (k) (Equation 12.8-1 ASCE 7-16)	0.824650476				
Adjusted V_b (k) (11.4.8 ASCE 7-16)	1.236975714				

Vertical Distribution of Seismic Forces per ELF (Section 12.8.3 ASCE 7-16)						
Story	k (Equation 12.8-12 ASCE 7-16)	Wx (k)	Hx (ft)	Wx(Hx^k)	Cvx	Fx (k)
Roof	1.00	3.31	12.0	39.8	1.00	1.24

Horizontal Distribution of Forces per ELF (Section			
12.8.4 ASCE 7-16)			
Story	V (k)		
Roof	1.24		

Overturning Moment (Section 12.8.5 ASCE 7-16)
<i>M</i> (<i>k*ft</i>) 14.8	

Shear Wall Sizes							
Wall	Quantity	Height (ft)	Base (ft)	h/b	h/b Acceptable for Reduced Shear?	2b/h	Reduced Base (ft)
North Wall	1	14	4	3.50	Yes	0.571429	2.285714
South Wall	2	10	3	3.33	Yes	0.6	1.8
West Wall	1	13.2	4	3.30	Yes	0.606061	2.424242
East Wall	1	13.2	4	3.30	Yes	0.606061	2.424242

Seismic Shear Strength Requirements						
Direction	Base Shear	Sum of Shear Wall Length	Shear Strength	1.5*Shear Strength		
Direction	(k)	(ft)	Requirement (plf)	Requirement (plf)		
N-S	1.2	3.6	343.6	515.4		
E-W	1.2	4.8	255.1	382.7		

Shear Wall Material Parameters				
Material	Plywood Sheathing			
Wood Specification	STRUCTURAL 1			
Thickness (in)	0.375			
Minimum Nail Bearing Length in Framing and Blocking (in)	1.375			
Panel Nail Edge Spacing (in)	6			
Vs (plf)	645			
Ga (k/in)	14			

Shear Wall Chord Material Parameters				
Member name	Stud/Column			
Material	No. 1 Douglas Fir Larch			
Nominal Dimensions	2 by 6			
Width (in)	1.5			
Depth (in)	5.5			
Area of Cross Section (in^2)	8.25			
E (psi) (NDS Table 4a)	1700000			

Seismic Hold Down Tension Requirements								
Wall	Quantity	Reduced Base (ft)	Height (ft)	Base Shear (k)	Overturnin g Moment (k*ft)	Tension Demand (k)		
North Wall	1.00	2.29	14.00	1.24	6.73	2.94		
South Walls	2.00	1.80	10.00	1.24	3.78	2.10		
East Wall	1.00	2.42	13.20	1.24	8.16	3.37		
West Wall	1.00	2.42	13.20	1.24	8.16	3.37		
Seismic Hold Down Mate	rial							
---	---------------------							
Installation	Post Pour							
Connection Materials	Wood to Concrete							
SST Holdown Name	HTT4							
Anchor Rod Diameter (in)	0.625							
Wood Fasteners (in)	(18) #19 by 1.5" SD							
Min Wood Member Size (in)	2 by 6							
Allowable Tension Load (lb)	4455							
Deflection at Highest Allowable Load (in)	0.112							

Story Drift Determination (Section 12.8.6 ASCE 7-16)				
Story	Deflection from Elastic Analysis	Deflection to Calculate Story Drift	Story Drift (in)	Allowable Drift (in) (0.02hxx Table 12.12-1 ASCE 7-16)
Roof	0	0	0.72	2.88

Shear Wall Deflection					
Wall	Deflection from Elastic	Deflection to Calculate	Deflection (in)	Allowable Deflection (in) (0.02hxx Table	Deflection
	Analysis	Story Drift		12.12-1 ASCE 7-16)	Acceptable:
North Wall	0.6620483	2.6481932	2.648193239	3.36	Yes
South Walls	0.4297389	1.7189555	1.718955503	2.4	Yes
East Wall	0.452534	1.810136	1.810135986	3.168	Yes
West Wall	0.452534	1.810136	1.810135986	3.168	Yes

P-Delta Effects (Section 12.8.7 ASCE 7-16)			
Px	2.07		
Delta	2.65		
Theta	0.01		
Consider P-Delta effects?	No		
Beta	1.00		
Maximum Theta	0.13		
Exceed Maximum Theta?	No		

Diaphragm Material Parameters			
Material Polycarbonate Paneling			
Thickness (in) 0.315			
Flexural Yield Strength (psi) 13500			
Shear Yield Strength (psi) 6000			
Fasterner Spacing (in) 6			

Fpx (k) Fpx (k) Fpx (k) Govering
Stony (Facultary (Facultary (Facultary
Story (Equation (Equation Equation Equation
12.10-1) 12.10-2) 12.10-3)
Roof 1.24 1.07 2.14 1.24

Diaphrag	m Fastener Shear Force
Dire eti e e	Loads on Diaphragm
Direction	from Shear walls (lb/ft)
N-S	123.7
E-W	154.6

Collector Eler	nents
Material	No. 1 Douglas Fir Larch
Nominal Size	2 by 4
Deflection Limit	L/360
Maximum Horizontal Span (ft) (AWC	7
Max Span Calculator)	7
Quantity	2 per collector
Locations	above all windows and doors

GARDEN EDUCATION STRUCTURE - SIZING INTERIOR RAFTERS

1. Interior Rafters (Reference: Example 6.19 Sawn-Beam Design Using LRFD, Design of Wood Structures 7th Edition)

Assumptions:

Material	LVL (No. 1 Douglas Fir Larch)
Size	2x6

Dimension	(ft)	(in)
L	10.77	129.24
W	0.125	1.5
h	0.458333333	5.5
spacing	1.5	18
tributary width	1.5	18

	(ft^2)	(in^2)
Tributary Area	16.155	2326.32

a. LOADS

Load	Roof (psf)	Roof (plf)
Dead (D)	13.5	20.25
Live (L)	0	0
Roof Live (Lr)	19.2	28.8
Rain (R)	0	0
Snow (S)	0	0
Wind (W)	11.97	17.95
Seismic (Ev)		
Seismic (Eh)		0
Worst Case	53.00	79.50
Distributed Dead Load, wd (p	lf)	20.25
Distributed Live Load wl (plf)		28.8

LRFD Load Combinations		
1.4D	28.4	
1.2D+1.6L+0.5Lr	38.7	
1.2D+1.6L+0.5S	24.3	
1.2D+1.6L+0.5R	16.2	
1.2D+1.6Lr+L	70.4	
1.2D+1.6S+L	24.3	
1.2D+1.6R+L	24.3	
1.2D+1.6Lr+0.5W	79.4	
1.2D+1.6S+0.5W	33.3	
1.2D+1.6R+0.5W	33.3	
1.2D+W+L+0.5Lr	56.6	
1.2D+W+L+0.5S	42.2	
1.2D+W+L+0.5R	42.2	
0.9D+W	36.2	
1.2D+Ev+Eh+L+0.2S	-	
0.9D-Ev+Eh	-	
Governing Load, wu (plf)	0	

b. MOMENT DEMAND	
Moment Demand, Mu (k-in)	0.00
Moment Demand, Mu (ft-lb)	0.0

c. BENDING]
Reference Bending Design Value, Fb (psi)	1000	NDS Supplementary Table 4a
Reference Shear Design Value, Fv (psi)	180	NDS Supplementary Table 4a
Modulus of Elasticity, E (in^4)	1,700,000	NDS Supplementary Table 4a
Specific Gravity, G	0.5	NDS Supplementary Table 4a
Repetitive Factor, Cr	1.15	Design of Wood Structures 7th Edition
Sizing Factor, Cf	1.2	Design of Wood Structures 7th Edition
Moisture Content, Cm	1.0	Design of Wood Structures 7th Edition
Buckling Stiffness, Ct	1.0	Design of Wood Structures 7th Edition
Beam Stability, Cl	1.0	Design of Wood Structures 7th Edition
Incising Factor, Ci	1.0	Design of Wood Structures 7th Edition
Format Conversion Factor for Bending, Kf	2.5	

Nominal Bending Design Value, Fbxn (psi)	2540
Adjusted Bending Design Value, Fb' (psi)	2103
Adjusted Bending Design Value, Fb' (ksi)	2.10
Required Section Modulus, S (in^3)	0.00

Sizing	Member (Compa	aring S)	
Size	S (in^3)	OK?	Source
2x6	7.56	YES	NDS Supplementary Table 1b
2x5	5.06	YES	NDS Supplementary Table 1b

Check Sizing Factor	
Sizing Factor. Cf (from Supp. Table)	1.3
OK?	YES

Area of Section, A (in^2)8.25NDS Supplementary Table 1aMoment of Inertia20.80Design of Wood Structures 7th Edition

New Bending Design Value, Fb' (ksi)

2.	28
2.	28

MOMENT CHECK	
Moment Capacity, M' (k-in)	17.22
Moment Demand, Mu (k-in)	0.00
OK?	YES

SHEAR CHECK		
Buckling Stiffness, Ct	1.0	
Moisture Content, Cm	1.0	
Incising Factor, Ci	1.0	
Resistance Factor for Shear, φν	0.75	
Conversion Factor for Shear, Kf	2.88	
λ	0.80	

Design of Wood Structures 7th Edition Design of Wood Structures 7th Edition

Nominal Shear Design Value, Fvn (psi)	518
Adjusted Shear Design Value, F'vn (psi)	311
Adjusted Shear Design Value, F'vn (ksi)	0.311

Shear Demand, Vu (lbs)	0
Shear Demand, Vu (kips)	0.000
Shear Capacity, V'n (kips)	1.71
OK?	YES

DEFLECTION CHECK		
Buckling Stiffness, Ct	1.0	
Moisture Content, Cm	1.0	
Incising Factor, Ci	1.0	
Adjusted Modulus of Elasticity, E' (psi)	1700000	
Design δ, live (in)	0.247	
Allowable δ, live (in)	0.359	
OK? (Live Load Deflection)	YES	
Design δ, total (in)	0.416	
Allowable δ, total (in)	0.5385	
OK? (Dead Load Deflection)	YES	

GARDEN EDUCATION STRUCTURE - SIZING EDGE RAFTERS

2. Edge Rafters (Reference: Example 6.19 Sawn-Beam Design Using LRFD, Design of Wood Structures 7th Edition)

Assumptions:

Material	No. 1 Douglas Fir Larch	
Size	2x6	
Dimension	(ft)	(in)
L	10.77	129.24
W	0.125	1.5
h	0.458333333	5.5
spacing	0.5	6
tributary width	0.25	3
	(((* 40)

	(tt^2)	(in^2)
tributary area	2.6925	387.72

a. LOADS

×	_ L = 10. 77 ft.	
		wo, z
m		m
Load	Roof (psf)	Roof (plf)
Dead (D)	13.5	10.125
Live (L)	0	0
Roof Live (Lr)	19.2	14.4
Rain (R)	0	0
Snow (S)	0	0
Wind (W)	11.96573507	8.974301304
Seismic (Ev)		0
Seismic (Eh)		0
Worst Case	51.10286754	38.32715065
Distributed Dead Loa	ad, wd (plf)	3.375

Distributed Dead Load, wd (plf)	3.375
Distributed Live Load, wl (plf)	4.8

LRFD Load Combinations		
1.4D	4.725	
1.2D+1.6L+0.5Lr	6.45	
1.2D+1.6L+0.5S	0	
1.2D+1.6L+0.5R	0	
1.2D+1.6Lr+L	0	
1.2D+1.6S+L	0	
1.2D+1.6R+L	0	
1.2D+1.6Lr+0.5W	0	
1.2D+1.6S+0.5W	0	
1.2D+1.6R+0.5W	0	
1.2D+W+L+0.5Lr	0	
1.2D+W+L+0.5S	0	
1.2D+W+L+0.5R	0	
0.9D+W	0	
1.2D+Ev+Eh+L+0.2S		
0.9D-Ev+Eh		
Governing Load, wu (plf)	6.45	

b. MOMENT DEMAND	
Moment Demand, Mu (k-in)	1.12
Moment Demand, Mu (ft-lb)	93.5

c. BENDING		
Reference Bending Design Value, Fb (psi)	1000	NDS Supplementary Table 4a
Reference Shear Design Value, Fv (psi)	180	NDS Supplementary Table 4a
Modulus of Elasticity, E (in^4)	1,700,000	NDS Supplementary Table 4a
Specific Gravity, G	0.5	NDS Supplementary Table 4a
Repetitive Factor, Cr	1.15	Design of Wood Structures 7th Edition
Sizing Factor, Cf (initially assumed)	1.2	Design of Wood Structures 7th Edition
Moisture Content, Cm	1.0	Design of Wood Structures 7th Edition
Buckling Stiffness, Ct	1.0	Design of Wood Structures 7th Edition
Beam Stability, Cl	1.0	Design of Wood Structures 7th Edition
Incising Factor, Ci	1.0	Design of Wood Structures 7th Edition

Nominal Bending Design Value, Fbxn (psi)		2880
Adjusted Bending Design Value, Fb' (psi)		2385
Adjusted Bending Design Value, Fb' (ksi)		2.38
Required Section Modulus, S (in^3)	0.47	

	Sizing Member	(Comparing S)]
Size	S (in^3)	A (in^2)	OK?	
2x6	7.56	8.25	YES	NDS Supplementary Table 1b
2x5	5.06	6.75	YES	NDS Supplementary Table 1b
2x4	3.06	5.25	YES	NDS Supplementary Table 1b

Check Sizing Factor	
Sizing Factor. Cf (from Supp. Table)	1.3
OK?	YES

Area of Section, A (in^2)	5.25	NDS Supplementary Table 1a
Moment of Inertia	20.80	Design of Wood Structures 7th Edition

New Bending Design Value, Fb' (ksi) 2.58

MOMENT CHECK	
Moment Capacity, M' (k-in)	19.53
Moment Demand, Mu (k-in)	1.12
OK?	YES

SHEAR CHECK		
Buckling Stiffness, Ct	1.0	
Moisture Content, Cm	1.0	
Incising Factor, Ci	1.0	
Resistance Factor for Shear, ϕv	0.75	
Conversion Factor for Shear, Kf	2.88	
λ	0.80	

Nominal Shear Design Value, Fvn (psi)	518
Adjusted Shear Design Value, F'vn (psi)	311
Adjusted Shear Design Value, F'vn (ksi)	0.311

Shear Demand, Vu (lbs)	35
Shear Demand, Vu (kips)	0.035
Shear Capacity, V'n (kips)	1.09
OK?	YES

DEFLECTION CHECK			
Buckling Stiffness, Ct	1.0		
Moisture Content, Cm	1.0		
Incising Factor, Ci	1.0		
Adjusted Modulus of Elasticity, E' (psi)	1700000		
Design δ, live (in)	0.041		
Allowable δ, live (in)	0.359		
OK? (Live Load Deflection)	YES		
Design δ, total (in)	0.012		
Allowable δ, total (in)	0.5385		
OK? (Dead Load Deflection)	YES		

GARDEN EDUCATION STRUCTURE - SIZING GIRDERS

3. Girders

Material	LVL (No. 1 Douglas Fir Larch) 2x12		
5120			
Dimension	(ft)	(in)	
L	12	144	
w			
h			
spacing			
tributary width, int.	1.5	18	
tributary width, ext.		9	
	(ft^2)	(in^2)	
tributary area	18	2592	

a. LOADS		
Distributed Dead Load, wD (plf)	72.7	
Distributed Live Load, wL (plf)	103.4	
Int. Governing Load for Rafters, wu (plf)	0.00	
Ext. Governing Load for Rafters, wu (plf)	6.45	
Tributary Width (ft)	5.39	
Distributed Load (plf)	285.4	
b. MOMENT DEMAND		
Moment Demand, Mu (k-in)	61.65	
Moment Demand, Mu (ft-Ib)	5137.3	

c. BENDING]
Reference Bending Design Value, Fb (psi)	1000	NDS Supplementary Table 4a
Reference Shear Design Value, Fv (psi)	180	NDS Supplementary Table 4a
Modulus of Elasticity, E (in^4)	1,700,000	NDS Supplementary Table 4a
Specific Gravity, G	0.50	NDS Supplementary Table 4a
Repetitive Factor, Cr	1.15	Design of Wood Structures 7th Edition
Sizing Factor, Cf	1.00	Design of Wood Structures 7th Edition
Moisture Content, Cm	1.00	Design of Wood Structures 7th Edition
Buckling Stiffness, Ct	1.00	Design of Wood Structures 7th Edition
Beam Stability, Cl	1.00	Design of Wood Structures 7th Edition
Incising Factor, Ci	1.00	Design of Wood Structures 7th Edition
Format Conversion Factor for Bending, Kf	2.54	

Nominal Bending Design Value, Fbxn (psi)2541Adjusted Bending Design Value, Fb' (psi)1753

Adjusted Bending Design Value, Fb' (ksi)	1.75
--	------

Required Section Modulus, S (in^3)

Sizing Member (Comparing S)			
Size	S (in^3)	OK?	Source
4x10	49.9	YES	YES
6x8	51.6	YES	YES

35.2

Check Sizing Factor	
Sizing Factor. Cf (from Supp. Table)	1.2
OK?	YES

Area of Section, A (in^2)	32.4	NDS Supplementary Table 1a
Moment of Inertia (in^4)	230.8	NDS Supplementary Table 1a

New Bending Design Value, Fb' (ksi)

2.	10

MOMENT CHECK	
Moment Capacity, M' (k-in)	105.0
Moment Demand, Mu (k-in)	61.6
OK?	YES

SHEAR CHECK			
Buckling Stiffness, Ct	1.00		
Moisture Content, Cm	1.00		
Incising Factor, Ci	1.00		
Resistance Factor for Shear, ϕv	0.75		
Conversion Factor for Shear, Kf	2.88		
λ	0.80		

Design of Wood Structures 7th Edition Design of Wood Structures 7th Edition

Nominal Shear Design Value, Fvn (psi)	518
Adjusted Shear Design Value, F'vn (psi)	311
Adjusted Shear Design Value, F'vn (ksi)	0.311

Shear Demand, Vu (lbs)	1537
Shear Demand, Vu (kips)	1.537
Shear Capacity, V'n (kips)	6.71
OK?	YES

DEFLECTION CHECK	
Buckling Stiffness, Ct	1.00
Moisture Content, Cm	1.00
Incising Factor, Ci	1.00
Adjusted Modulus of Elasticity, E' (psi)	1700000

Design δ, live (in)	0.123
Allowable δ , live (in)	0.400
OK? (Live Load Deflection)	YES
Design δ, total (in)	0.209
Allowable δ, total (in)	0.600
OK? (Dead Load Deflection)	YES

GARDEN EDUCATION STRUCTURE - SIZING CEILING JOISTS

4. Cieling Joists (Example 7.8 Sawn Lumber Column Using LRFD, Design of Wood Structures 7th Edition)

DL (psf)	LL (psf)	Tributary Area (ft^2)	Reduced Live Load, Lr (psf)	Governing Live Load, LL (psf)	Dead Point Load, PD (kips)	Live Point Load, PL (kips)	Combined Point Load, Pu (kips)
13.5	20	#REF!	19.2	19.2	#REF!	#REF!	#REF!
			Trial 1				7
Properties			inai i				-
Size						2 x 6	
l (ft)						2	
ϕ s = resist	tance facto	or for stability				0.85	
$\phi c = resis$	tance facto	or for compre	ession			0.90	
Fc (psi)						1550	
Conversion	n Factor fo	r Shear, Kf				1.76	
λ = time ef	fect factor					0.80	
Size Factor	r, CF					1.10	
Repetitive	Factor, Cr					1.15	
Moisture C	Content, Cr	n				1.00	
Buckling S	tiffness, Ct	t				1.00	
Beam Stab	oility, Cl					1.00	
Incising Fa	ctor, Ci					1.00	
						1.00	
						660000	
ax (in)						5.50	
ay(in)						1.3U 0.2E	
$A(III^2)$	a and crue	ching interac	tion factor f	orcolumns		0.25	
C – DUCKIII	ig and cru	sning interac				0.00	
Fcn = Nor	ninal Comr	pression Desi	an Value (p	si)		2728	7
			gii value (p	517		2720	_
Emin,n = E	: min*Kf (ks	si)				1161.6	7
Emin,n = a	djusted LF	RFD modulus	of elasticity	for column	buckling	987.36	
							-
Column Ca	apacity (l/[D)max = (Ke*	l)/dy]
Ke (unbrac	ced factor '	?)				1	
l (in)						24	
dy						1.5	
Column Ca	apacity (I/E	D)max				16	

Emin,n E'min = Emin(Cm)(Ct)(CT)(Ci) FcEn = nominal Euler critical buckling stress for columns = Fcn* = limiting LRFD compressive design value in column (ksi)	1161600 660000 2.119219 2.160576
Ecn' = compression value	
FcEn/Fcn*	0.980858
1+(FcEn/Fcn*)/2c	1.613036
(1+(FcEn/Fcn*)/2c)^2	2.601886
(FcEn/Fcn*)/c	1.226073
СР	0.440086
Fcn' (ksi)	0.348548
Pn = compresion = Fcn'*A	2.875519
CHECK (Pn>Pu?)	#REF!

Use 2 x 6 columns No. 1 DF-L

GARDEN EDUCATION STRUCTURE - SIZING WALL STUDS (N/S)

North and South Stud Walls. (Example 7.19 Combined Bending and Compression in a Stud Wall Using LRFD)

11.97

Design Values in Accordance with NDS.

Properties		
Width of Wall (ft)	12	
Width of Adjacent Wall (ft)	10	
Tributary Width of framing to wall (ft)	5	
Length of Studs (ft)	10	

1. Gravity Loads	
Roof Dead Load (psf)	13.5
Roof Live Load (psf)	19.2

Lataral	Laraa	14/10	حل)
Laterai	гогсе,	vv (p:	SI)

Applicable LRFD load	combinations	λ
1.4D	18.9	0.6
1.2D+1.6L+0.5Lr	25.8	0.8
1.2D+1.6Lr+0.5W	52.90	0.8
1.2D+W+L+0.5Lr	37.77	1
Max Load Combo (psf)	53	

2. Select a Trial Size.	2x6
Actual thickness (in)	1.5
Actual depth (in)	5.5
Material	DF-L No.1
dx (in)	5.5
dy (in)	1.5

Nominal Values		
Kf (bending)	2.54	NDA Supplement Table 4A
Kf (parallel compression)	2.4	
Kf (perpendicular compression)	1.67	
Kf (modulus of elasticity)	1.76	
Fb (psi)	1000	NDA Supplement Table 4A
Fbn (psi)	2540	
Fc (psi)	1500	
Fcn (psi)	3600	NDA Supplement Table 4A
Fc (psi)	625	
Fc n (psi)	1043.75	NDA Supplement Table 4A
Emin (ksi)	620000	

Emin,n (ksi)	1091200	NDA Supplemen
ϕ s = resistance factor	0.85	
Moisture Content, Cm	1.0	
Buckling Stiffness, Ct	1.0	
Incising Factor, Ci	1.0	
λ	0.8	
с	0.8	
ϕc = resistance factor for compression	0.9	
Ср	0.454	
СЬ	1.25	

Size Factors	
Cf for bending	1.3
Cf for compression parallel to grain	1.1

Section	Properties
A (in^2)	8.25
S (in^3)	7.56

Load Case 1: Gravity Loads	
Tributary Width of framing to wall (ft)	5
Dead Loads	
Roof Dead Load, wD (plf)	67.5
Live Loads	
Roof Live Load, wL (plf)	96

Load Combinations (kips	s)
1.4D	0.095
1.2D+1.6L+0.5Lr	0.129
1.2D+1.6Lr+0.5L	0.235
Max Load Combo (kips)	0.235

Column Capacity about weak axis (le/d)	0	because of sheathing
Column Capcity about the x-axis (le/d),max	21.8	
E'min,n	927.5	

FcEn (ksi)	1.60
F*cn (ksi)	2.85
FcEn/F*cn	0.56
1+(FcEn/Fcn*)/2c	1.35
(1+(FcEn/Fcn*)/2c)^2	1.83
(FcEn/Fcn*)/c	0.70
СР	0.29
Fcn' (ksi)	1.62

Pn = compresion = Fcn'*A	13.348962
CHECK (Pn>Pu?)	YES

Bearing of Stud on	Wall Plates
Bearing length, lb (in)	1.50
СЬ	1.25
F'c n (ksi)	1.17
P'n (kips)	9.69
CHECK(P'n>Pu?)	YES

Vertical Loads OK.

Load Case 2: Gravity Loads + Lateral	Forces	
BENDING		
Wind Load (psf)	11.97	
Raft Spacing (in)	18.00	
Raft Spacing (ft)	1.50	
Distributed Wind Load, wW (plf)	17.95	
0.5 Wind Load (plf)	8.97	
Moment Capacity for Wind Load, Mu (ft-lb)	224.4	
Moment Capacity for Wind Load, Mu (in-k)	2.69	
fbu (ksi)	0.36	
<i></i>	-	_
CL	1	
Lamda	1	
Repetitive Factor, Cr	1.15	
ϕb = resistance factor for bending	0.85	
CF	1.30	
F'bn (ksi)	3.23	
M'n (in-k)	24.40	
CHECK (M'n > Mu?)	YES	C

AXIAL		
Combo 1: 1.2wD + 1.6wL+ 0.5wW	243.6	
Combo 2: 1.2wD + 1.0W+ 0.5WL	146.9	
Rafter Tributary Width (in)	1.50	
Pu for Combo 1, Pu (kips)	0.365	
fcu for Load Combo 1 (ksi)	0.044	
Pu for Combo 2, Pu (kips)	0.220	
fcu for Load Combo 2 (ksi)	0.027	
λ for Load Combo 1	0.80	
λ for Load Combo 2	1.00	
Slenderness Ratio (le/d), MAX = (le/d)x	21.82	
FcEn	1.60	
Combo 1: 1.2wD + 1.6wL+ 0.5wW		
Ср	0.45	

F'cn	1.62	
Pn'	13.35	
CHECK (Pn'>Pu?)	YES	
Combo 2: 1.2wD + 1.0W+ 0.5WL		
F*cn=Fcn(φc)(λ)(CM)(Ct)(CF)(Ci)	3.564	
FcEn/F*cn	0.44938678	
1+(FcEn/Fcn*)/2c	0.905866737	
(1+(FcEn/Fcn*)/2c)^2	0.820594546	
(FcEn/Fcn*)/c	0.561733475	
СР	0.397082823	
Fcn' (ksi)	1.415203183	
Pcn'	11.67542626	
CHECK (Pcn'>Pu?)	YES	OK

COMBINED STRESS		1
Simplified Interaction Formula		
FcExn = FcEn	1.601614483	
(fcuF'cn)^2+fbxuF'bxn(1−fcu/FcExn)≤1.0	1	
Combo 1: 1.2wD + 1.6wL+ 0.5wW		
fcu (ksi)	0.044286237	
F'cu	1.17421875	
Wind Load (psf)	11.97	
Distributed Wind Load, wW (plf)	17.94860261	
Mu from Wind (in-k)	2.692290391	
fbxu (ksi)	0.356123068	
F'bxn (ksi)	3.227705	
(fcu/F'cn)^2	0.001422458	
(1/(1-fcu/FcExn))	1.028437317	
(fbxu/F'bxn)	0.110333214	
Axial Stress Check	0.114893253	
CHECK Axial Stress < 1?	YES	Oł
Combo 2: 1.2wD + 1.0W+ 0.5WL		
fcu (ksi)	0.026717928	
F'cn	1.618056	
fbxu (ksi)	0.356123068	
F'bxn (ksi)	3.227705	
(fcu/F'cn)^2	0.000272658	
(1/(1-fcu/FcExn))	1.016964878	
(fbxu/F'bxn)	0.110333214	
Axial Stress Check	0.112477662	
CHECK Axial Stress < 1?	YES	

Use 2x6 Columns No.1 DF-L

GARDEN EDUCATION STRUCTURE - SIZING WALL STUDS (E/W)

East and West Stud Walls. (Example 7.19 Combined Bending and Compression in a Stud Wall Using LRFD)

Design Values in Accordance with NDS.

Properties	
Width of Wall (ft)	10
Width of Adjacent Wall (ft)	12
Tributary Width of framing to wall (ft)	6
Length of Studs (ft)	10

1. Gravity Loads	
Roof Dead Load (psf)	13.5
Roof Live Load (psf)	19.2
Lateral Force, W (psf)	11.97

Applicable LRFD load co	ombinations	λ
1.4D	18.9	0.6
1.2D+1.6L+0.5Lr	25.8	0.8
1.2D+1.6Lr+0.5W	52.90	0.8
1.2D+W+L+0.5Lr	37.77	1
Max Load Combo (psf)	53	

2. Select a Trial Size.	2x6
Actual thickness (in)	1.5
Actual depth (in)	5.5
Material	DF-L No.1
dx (in)	5.5
dy (in)	1.5

Nominal Values		7
Kf (bending)	2.54	NDA Supplement Table 4A
Kf (parallel compression)	2.4	
Kf (perpendicular compression)	1.67	
Kf (modulus of elasticity)	1.76	
Fb (psi)	1000	NDA Supplement Table 4A
Fbn (psi)	2540	
Fc (psi)	1500	
Fcn (psi)	3600	NDA Supplement Table 4A
Fc (psi)	625	
Fc n (psi)	1043.75	NDA Supplement Table 4A
Emin (ksi)	620000	
Emin,n (ksi)	1091200	NDA Supplement Table 4A

φ s = resistance factor	0.85
Moisture Content, Cm	1.0
Buckling Stiffness, Ct	1.0
Incising Factor, Ci	1.0
λ	0.8
с	0.8
φ c = resistance factor for compression	0.9
Ср	0.454
Cb	1.25

Size Factors	
Cf for bending	1.3
Cf for compression parallel to grain	1.1

	Section Properties
A (in^2)	8.25
S (in^3)	7.56

Load Case 1: Gravity Loads	
Tributary Width of framing to wall (ft)	6

Dead Loads		
Roof Dead Load, wD (plf)	81	
Live Loads		
Roof Live Load, wL (plf)	115.2	

Load Combinations (kips)	
1.4D	0.113
1.2D+1.6L+0.5Lr	0.155
1.2D+1.6Lr+0.5L	0.282
Max Load Combo (kips)	0.282

Column Capacity about weak axis (le/d)	0.00	because of sheathing
Column Capcity about the x-axis (le/d),max	21.82	
E'min,n	927.52	
FcEn (ksi)	1.60	
F*cn (ksi)	2.85	
FcEn/F*cn	0.56	
1+(FcEn/Fcn*)/2c	1.35	
(1+(FcEn/Fcn*)/2c)^2	1.83	
(FcEn/Fcn*)/c	0.70	
СР	0.29	
Fcn' (ksi)	1.62	
Pn = compresion = Fcn'*A	13.35	
CHECK (Pn>Pu?)	YES	

Bearing of Stud on Wall Plates		
Bearing length, lb (in)	1.50	
Cb	1.25	
F'c n (ksi)	1.17	
P'n (kips)	9.69	
CHECK (P'n>Pu?)	YES	Vertical Loads OK.

Load Case 2: Gravity Loads + Lateral F	orces	
BENDING		
Wind Load (psf)	11.97	
Raft Spacing (in)	18.00	
Raft Spacing (ft)	1.50	
Distributed Wind Load, wW (plf)	17.95	
0.5 Wind Load (plf)	8.97	
Moment Capacity for Wind Load, Mu (ft-lb)	224.36	
Moment Capacity for Wind Load, Mu (in-k)	2.69	
fbu (ksi)	0.36	
CL	1.00	
Lamda	1.00	
Repetitive Factor, Cr	1.15	
φ b = resistance factor for bending	0.85	
CF	1.30	
F'bn (ksi)	3.23	
M'n (in-k)	24.40	
CHECK (M'n > Mu?)	YES	OK
AXIAL		
1° (combo 1 · 1 2) wD + 1 6 wl + 0 5 w/W	200 10	
	270.47	
Combo 2: 1.2wD + 1.0W+ 0.5WL	172.75	
Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in)	172.75 1.50	
Combo 1: 1.2wD + 1.0wL + 0.5wV Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips)	172.75 1.50 0.44	
Combo 2: 1.2wD + 1.0WL + 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi)	270.47 172.75 1.50 0.44 0.05	
Combo 2: 1.2wD + 1.0WL + 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips)	172.75 1.50 0.44 0.05 0.26	
Combo 2: 1.2wD + 1.0WL + 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi)	172.75 1.50 0.44 0.05 0.26 0.03	
Combo 2: 1.2wD + 1.0WL + 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1	172.75 1.50 0.44 0.05 0.26 0.03 0.80	
Combo 2: 1.2wD + 1.0WL + 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1 λ for Load Combo 2	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1 λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1 λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1 λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp F'cn	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45 1.62	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp F'cn Pn'	270.47 172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45 1.62 13.35	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp F'cn Pn' CHECK (Pn'>Pu?)	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45 1.62 13.35 YES	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 1 λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp F'cn Pn' CHECK (Pn'>Pu?) Combo 2: 1.2wD + 1.0W+ 0.5WL	270.47 172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45 1.62 13.35 YES	
Combo 1: 1.2wD + 1.0wE + 0.5wW Combo 2: 1.2wD + 1.0W+ 0.5WL Rafter Tributary Width (in) Pu for Combo 1, Pu (kips) fcu for Load Combo 1 (ksi) Pu for Combo 2, Pu (kips) fcu for Load Combo 2 (ksi) λ for Load Combo 2 Slenderness Ratio (le/d), MAX = (le/d)x FcEn Combo 1: 1.2wD + 1.6wL+ 0.5wW Cp F'cn Pn' CHECK (Pn'>Pu?) Combo 2: 1.2wD + 1.0W+ 0.5WL F*cn=Fcn(φ c)(λ)(CM)(Ct)(CF)(Ci) F = (5+)	172.75 1.50 0.44 0.05 0.26 0.03 0.80 1.00 21.82 1.60 0.45 1.62 13.35 YES 3.564	

1+(FcEn/Fcn*)/2c	0.906	
(1+(FcEn/Fcn*)/2c)^2	0.821	
(FcEn/Fcn*)/c	0.562	
СР	0.397	
Fcn' (ksi)	1.415	
Pcn'	11.675	
CHECK (Pcn'>Pu?)	YES	ОK

COMBINED STRESS		
Simplified Interaction Formula		
FcExn = FcEn	1.60	
(fcuF′cn)^2+fbxuF′bxn(1-fcu/FcExn)≤1.0	1.00	
Combo 1: 1.2wD + 1.6wL+ 0.5wW	1	
fcu (ksi)	0.05	
F'cu	1.17	
Wind Load (psf)	11.97	
Distributed Wind Load, wW (plf)	17.95	
Mu from Wind (in-k)	2.69	
fbxu (ksi)	0.36	
F'bxn (ksi)	3.23	
(fcu/F'cn)^2	0.00	
(1/(1-fcu/FcExn))	1.03	
(fbxu/F'bxn)	0.11	
Axial Stress Check	0.12	
CHECK Axial Stress < 1?	YES	OK
Combo 2: 1.2wD + 1.0W+ 0.5WL		
fcu (ksi)	0.03	
F'cn	1.62	
fbxu (ksi)	0.36	
F'bxn (ksi)	3.23	
(fcu/F'cn)^2	0.00	
(1/(1-fcu/FcExn))	1.02	
(fbxu/F'bxn)	0.11	
Axial Stress Check	0.11	
CHECK Axial Stress < 1?	YES	

Use 2x6 Columns No.1 DF-L

GARDEN EDUCATION STRUCTURE - SIZING FLOOR JOISTS

- 490 02		_
Properties		
LL (psf)	30	ASCE 7-16
DL (psf)	8.06	
L (ft)	12	
Joist Size	2x8	
Trial Joist Species and Grade	No.1 DF-L	
Joist Spacing (in) n	18	
		_
Tabulated Design Table (NDS Tables 4A a	nd 1B)	
Bending, Fb (psi)	1200	
Shear Parallel to Grain, Fv (psi)	95	
Compression Perpendicular to Grain, FcJ (psi)	625	
Modulus of Elasticity, E (psi)	1800000	
lxx (in^4)	47.63	
Sxx (in^3)	13.14	
b (in)	1.5	
d (in)	7.25	
Area (in^2)	10.88	

https://www.huduser.gov/publications/pdf/res2000_3.pdf Page 52

Lumber Property Adjustments and Adjusted Design Values (NDS 5.2.3 and 5.2.4) Load duration factor, Cd 0.9 1.15 Cr CF 1.1 CL 1 2 СН Cb 1 Fb' 1366.2 Fv' 171 625 Fc| E' 1800000

1. Calculate the Applied Load, W

W = (joist spacing)(D+L)(plf)	57.08

2. Determine Bending Stress

$Mmax = wL^2/8$ (ft-lb)	1027.5
Fb = M/S (psi)	938.3561644

3. Determine Horizontal Shear Stress

	240 5
Vmax = wL/2	342.5
fv = 3V/2A	47.21966912

4. Determine Bearing Stress

R1 = R2 = Vmax	342.5
fc = R/Ab	114.1666667

5. Determine minimum Modulus of Elasticity due to deflection criteria.

pmax, live = 5wL^4/384El -> Emin = ?	141482/E
pall, live = L/360	0.4
pmax <pall (solve="" e,min)<="" for="" td=""><td>353705</td></pall>	353705

6. Determine minimum modulus of elasticity due to vibration.

Deflection check is assumed to provide adequate vibration control.

7. Determine minimum required unadjusted

Bending, Fb (psi)	
Fb,min	824.2039213

Horizontal Shear fv <fv'< th=""><th></th></fv'<>	
Fv, min	26.23314951

Bearing fc <fc '< th=""><th></th></fc '<>	
Fc ,min	114.1666667

Minimum unadjusted tabulated properties required		
Bending, Fb (psi)	824.2039213	
Shear Parallel to Grain, Fv (psi)	26.23314951	
Compression Perpendicular to Grain, Fc (psi)	114.1666667	
Modulus of Elasticity, E (psi)	353705	

CHECK (pmax > pall)	
Fb	YES
Fv	YES
Fc	YES
E'	YES

Use 2x6 Columns No.1 DF-L

GARDEN EDUCATION STRUCTURE - FOUNDATION DESIGN

Soil Properties		
Classification	SM	
Ν	23.3	blows
moist unit weight	120.0	pcf
С	0.0	psf
approx. friction angle	39.0	degrees

	Bearing Capacity Calculations		7
В	earing Capacity Calcs - Terzaghi		
а	5.1		
Nq	70.2		
Nc	85.6		
Ny	198.8		
Кру	y 298.0		
Shape	SC	sy	
strip	1	1	
round	1.3	0.6	
square	1.3	0.8	
В	1	ft	(Table 18
L	12	ft	
D	1	ft	
q_bar	120		
q_ult	20351.1	psf	
wall load	601.5	psf	
q_allow	721.5	•	
F.S.	28.2		

Bearing Capacity Calcs - Meyerhoff		
Nq	55.6	
Nc	67.6	
Ny	76.7	
2tan(friction angle)(1-sin(f	0.2	
Кр	4.4	
sc	1.1	
sq	1.0	
sy	1.0	
dc	1.4	
dq	1.2	
dy	1.2	
q_ult	14136.9	psf
wall load	601.5	psf
q_allow	721.5	
F.S.	19.6	

309.7)

	Immediate Settlement Calculation	าร
В	1.0	ft
В'	0.5	ft
L	12.0	ft
L'	6.0	ft

Μ	12.0
Н	5.0
Ν	10.0

11	0.8
12	0.1

u	0.3	
d_borings	27.0	
o'v	3240.0	
CN	0.8	
N60	23.3	
CE	1.1	
N55	25.5	
Es	12945.5	
	9436.4	
	11190.9	kPa
ls	0.8	
	10.0	

L/B	12.0
D/B	1.0
lf	0.9
m	4.0
qo	41.8
delta_H	0.0049

GARDEN EDUCATION STRUCTURE - FOUNDATION DESIGN

Soil Properties		
Classification	SM	
Ν	23.3	blows
moist unit weight	120.0	pcf
С	0.0	psf
approx. friction angle	39.0	degrees

	Bearing Capacity Calculations		7
B	Bearing Capacity Calcs - Terzaghi		
а	5.1		
Nq	70.2		
Nc	85.6		
Ny	198.8		
Кру	298.0		
Shape	SC	sy	
strip	1	1	
round	1.3	0.6	
square	1.3	0.8	
В	1	ft	(Table 18
L	12	ft	
D	1	ft	
q_bar	120		
q_ult	20351.1	psf	
wall load	601.5	psf	
q_allow	721.5	-	
F.S.	28.2		

Bearing Capacity Calcs - Meyerhoff		
Nq	55.6	
Nc	67.6	
Ny	76.7	
2tan(friction angle)(1-sin(f	0.2	
Кр	4.4	
SC	1.1	
sq	1.0	
sy	1.0	
dc	1.4	
dq	1.2	
dy	1.2	
q_ult	14136.9	psf
wall load	601.5	psf
q_allow	721.5	
F.S.	19.6	

309.7)

	Immediate Settlement Calculatio	ns	
В	1.0	ft	
В'	0.5	ft	
L	10.0	ft	
L'	5.0	ft	

М	0.8
Н	0.1
Ν	0.2

1	0.8
12	0.2

u	0.3	7
d_borings	27.0	
o'v	3240.0	
CN	0.8	
N60	23.3	
CE	1.1	
N55	25.5	
Es	12945.5	
	9436.4	
	11190.9	kPa
ls	0.835	
L/B	10.0	

	10.0
D/B	1.0
lf	0.9
m	4.0
qo	50.1
delta_H	0.0059

APPENDIX A-2

RAINWATER COLLECTION CISTERNS STRUCTURAL CALCULATIONS

RAIWATER COLLECTION CISTERNS - SEISMIC DESIGN

Seismic Design Parameters for Site	
Building Occupancy Risk Category (Table 1.5-1 ASCE 7-16)	l
I _e (Table 1.5-2)	1
Site Class (11.4.3 ASCE 7-16)	D
S_s (https://hazards.atcouncil.org/#/seismic?lat=34.0728128&lng=-	
118.2907456&address=3554%20W%201st%20St%2C%20Los%20Angel	
es%2C%20CA%2090004%2C%20USA)	2.022
S_1 (https://hazards.atcouncil.org/#/seismic?lat=34.0728128&lng=-	
118.2907456&address=3554%20W%201st%20St%2C%20Los%20Angel	
es%2C%20CA%2090004%2C%20USA)	0.721
F _a (11.4.4 and Table 11.4-1 ASCE 7-16)	1.2
F _v (Table 11.4-2 ASCE 7-16)	1.7
S _{ms} (Equation 11.4-1 ASCE 7-16)	2.426
S _{m1} (Equation 11.4-2 ASCE 7-16)	1.226
S _{DS} (Equation 11.4-3 ASCE 7-16)	1.618
S _{D1} (Equation 11.4-4 ASCE 7-16)	0.817
T_{L} (s) (https://hazards.atcouncil.org/#/seismic?lat=34.0728128&lng=-	
118.2907456&address=3554%20W%201st%20St%2C%20Los%20Angel	
es%2C%20CA%2090004%2C%20USA)	8
SDC (Tables 11.6-1 and 11.6-2 ASCE 7-16)	D

1200-Gallon Cistern Dimensions	
Diameter (in)	76
Height (in)	66
Height (In)	00

1200-Gallon Cistern Seismic Weight		
Empty Weight (lb)	217	
Volume (gal)	1200	
Full Weight (lb)	10227.00033	

Seismic Force of 1200-Gallon Cistern		
SDC (Section 13.1.2 ASCE 7-16)	D	
Ip (Section 13.1.3 ASCE 7-16)	1	
Rp (Table 13.6-1 ASCE 7-16)	1.5	
ap (Table 13.6-1 ASCE 7-16)	1	
Overstrength Factor (Table 13.6-1 ASCE 7-16)	2	
z/h	1	
Fp (Ib) (Equation 13.3-1 ASCE 7-16)	13237.83	
Fp (Ib) (Equation 13.3-2 ASCE 7-16)	26475.66	
Fp (Ib) (Equation 13.3-3 ASCE 7-16)	4964.19	

Fp Governing (Ib)	13237.83
Fv (lb) (Section 13.3.1.2 ASCE 7-16)	3309.46
Height to Center of Gravity Full (ft)	2.75
Overturning Moment (lb*ft)	36404.03
Distance Between Anchors (ft)	4.48
Tension (lb)	8128.91

	75-Gallon Rain Barrel Dimensions	
Diameter (in)		23
Height (in)		50

75-Gallon Rain Barrel Seismic Weight		
Empty Weight (lb)	30	
Volume (gal)	75	
Full Weight (lb)	655.6250208	

Seismic Force of 75-Gallon Rain Barrel		
SDC (Section 13.1.2 ASCE 7-16)	D	
Ip (Section 13.1.3 ASCE 7-16)	1	
Rp (Table 13.6-1 ASCE 7-16)	1.5	

ap (Table 13.6-1 ASCE 7-16)	1
Overstrength Factor (Table 13.6-1 ASCE 7-16)	2
z/h	1
Fp Garden Education Center Cistern (lb) (Equation 13.3-1 ASCE 7-16)	848.64
Fp Garden Education Center Cistern (lb) (Equation 13.3-2 ASCE 7-16)	1697.28
Fp Garden Education Center Cistern (lb) (Equation 13.3-3 ASCE 7-16)	318.24
Fp Garden Education Center Cistern Governing (lb)	848.64
Garden Education Center Cistern Fv (Ib) (Section 13.3.1.2 ASCE 7-16)	212.16
Height to Center of Gravity Full (ft)	2.08
Overturning Moment (lb*ft)	1768.00
Distance Between Anchors (ft)	2.50
Tension (lb)	707.20

RAINWATER COLLECTION - 1200 GALLON TANK FOUNDATION DESIGN

Minimum Slab Area Based on Anchorage		
Plate Diameter (in)	80	
Diameter with added foot (in)	92	
Square Slab Dimensions (ft)	7.67	
Rounded Slab Dimensions (ft)	7.75	
Slab Depth (ft)	0.5	

Soil Properties		
Soil Classification	SM	
Ν	23.3	blows
moist unit weight	120.0	pcf
с	0.0	psf
approx. friction angle'	39.0	degrees

Bearing Capacity Calculations		
Bearing Capacity Calcs - Terzaghi		
a	5.1	
Nq	70.2	
Nc	85.6	
Ny	198.8	
Кру	298.0	
shape	SC	sy
strip	1	1
round	1.3	0.6
square	1.3	0.8
В	7.75	ft
L	7.75	ft
D	0.5	ft
q_bar	60.0	psf
q_ult	78170.2	psf
q_actual	170.3	psf
q_allow	26056.7	psf
F.S.	3	
Acceptable?	Yes	
Bearing Capacity Calcs - Meyerhoff		
Nq	55.6	
Nc	67.6	
Ny	76.7	
2tan(friction angle)(1-		
sin(friction angle))^2	0.2	
Кр	4.4	

sc	1.9	
sq	1.4	
sy	1.4	
dc	1.0	
dq	1.0	
dy	1.0	
q_ult	56864.9	psf
q_actual	170.3	psf
q_allow	18955.0	psf
F.S.	3.0	
Acceptable?	Yes	
Immediate Settle	ement Calcs	
В	7.8	ft
В'	3.9	ft
L	7.8	ft
L'	3.9	ft
Μ	1.0	
Н	38.8	
Ν	10.0	
11	0.5	
12	0.0	
u	0.3	
d_borings	27.0	
 o'v	3240.0	
CN	0.8	
N60	23.3	
CE	1.1	
N55	25.5	
Es	12945.5	
	9436.4	
	11190.9	kPa
ls	0.5	
L/B	1.0	
D/B	0.1	
If	0.8	
m	4.0	
qo	170.3	psf
delta_H	0.089	İn
Acceptable?	Yes	

RAINWATER COLLECTION - 75 GALLON TANK FOUNDATION DESIGN

Minimum Slab Area Based on Anchorage		
Plate Diameter (in)	30	
Diameter with added foot (in)	42	
Square Slab Dimensions (ft)	3.5	
Rounded Slab Dimensions (ft)	3.5	
Slab Depth (ft)	0.5	

Soil Properties				
Classification	SM			
Ν	23.3	blows		
moist unit weight	120	pcf		
с	0	psf		
approx. friction angle'	39.0	degrees		

Bearing Capacity Calculations				
Bearing Capacity Calcs - Terzaghi				
a	5.1			
Nq	70.2			
Nc	85.6			
Ny	198.8			
Кру	298.0			
shape	SC	sy		
strip	1	1		
round	1.3	0.6		
square	1.3	0.8		
В	3.5	ft		
L	3.5	ft		
D	0.5	ft		
q_bar	60	psf		
q_ult	37612.0	psf		
q_actual	53.5	psf		
q_allow	12537.3	psf		
F.S.	3			
Acceptable?	Yes			
Bearing Capacity Calcs - Meyerhoff				
Nq	55.6			
Nc	67.6			
Ny	76.7			
2tan(friction angle)(1-				
sin(friction angle))^2	0.2			
Кр	4.4			

sc	1.9	
sq	1.4	
sy	1.4	
dc	1.1	
dq	1.0	
dy	1.0	
q_ult	28808.6	psf
q_actual	53.5	psf
q_allow	9602.9	psf
F.S.	3.0	
Acceptable?	Yes	
Immediate Set	tlement Calcs	
В	3.5	ft
В'	1.8	ft
L	3.5	ft
L'	1.8	ft
Μ	1.0	
Н	17.5	
Ν	10.0	
11	0.5	
12	0.0	
u	0.3	
d_borings	27.0	
0'V	3240.0	
CN	0.8	
N60	23.3	
CE	1.1	
N55	25.5	
Es	12945.5	
	9436.4	
	11190.9	kPa
ls	0.5	-
L/B	1.0	
D/B	0.1	
lf	0.8	
m	4.0	
ao	53.5	psf
delta H	0.013	in
Acceptable?	Yes	

APPENDIX A-3

AQUAPONICS SYSTEM STRUCTURAL CALCULATIONS
AQUAPONICS - FRAMING DESIGN

Structural Frame Material Details							
		Nominal					
Member Name	Quantity	Dimensions	Height (ft)	Material			
		Selected (ft)					
Tall Edge Columns	2	4 by 4	8	No. 1 Douglas Fir Larch			
Tall Interior Columns	2	4 by 4	8	No. 1 Douglas Fir Larch			
Short Edge Columns	2	4 by 4	0.5	No. 1 Douglas Fir Larch			
Short Interior Columns	2	4 by 4	0.5	No. 1 Douglas Fir Larch			
Media Bed 1 Edge Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 1 Interior Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 1 Girders	1	2 by 10	6	No. 1 Douglas Fir Larch			
Media Bed 2 Edge Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 2 Interior Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 2 Girders	1	2 by 10	6	No. 1 Douglas Fir Larch			
Media Bed 3 Edge Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 3 Interior Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Media Bed 3 Girders	1	2 by 10	6	No. 1 Douglas Fir Larch			
Fish Tank Girders	2	2 by 10	6	No. 1 Douglas Fir Larch			
Fish Tank Edge Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			
Fish Tank Interior Beams	2	2 by 6	3	No. 1 Douglas Fir Larch			

Media Bed Beam Sizing

Member Name	Dimensions Required (ft)	Quantity	Nominal Dimensions Selected (ft)	Length (in)	Width (in)	Height (ft)
Media Bed 1 Edge Beams	3 ft long	2	2 by 6	5.5	1.5	3
Media Bed 1 Interior Beams	3 ft long	2	2 by 6	5.5	1.5	3
Media Bed 2 Edge Beams	3 ft long	2	2 by 6	5.5	1.5	3
Media Bed 2 Interior Beams	3 ft long	2	2 by 6	5.5	1.5	3
Media Bed 3 Edge Beams	3 ft long	2	2 by 6	5.5	1.5	3
Media Bed 3 Interior Beams	3 ft long	2	2 by 6	5.5	1.5	3

Fish Tank Beam Sizing

Member Name	Dimensions Required (ft)	Quantity	Nominal Dimensions Selected (ft)	Length (in)	Width (in)	Height (ft)
Fish Tank Edge Beams	3 ft long	2	2 by 6	5.5	1.5	3
Fish Tank Interior Beams	3 ft long	2	2 by 6	5.5	1.5	3

No. 1 Douglas Fir Larch Design Parameters

Fb (NDS Table 4A) (psi)	1000
Ft (NDS Table 4A) (psi)	675
Fv (NDS Table 4A) (psi)	180

INCLUDE STRUCTURAL SHEATHING

72 ft^2

Plywood Structural Sheathing Panel strucutral 10.375 in thickness

CHECK BEARING AT ALL CONNECTIONS

Material	Moment of Inertia (in^4) (NDS)	Section Modulus (in^3) (NDS)	E (psi) (NDS)	Spacing (in)	Tributary Width (in)	Tributary Width (ft)	Tributary Area (in^2)
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	12	1	432
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	24	2	864
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	12	1	432
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	24	2	864
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	12	1	432
No. 1 Douglas Fir Larch	20.8	7.563	2E+06	24	24	2	864
Material	Moment of Inertia (in^4) (NDS)	Section Modulus (in^3) (NDS)	E (psi) (NDS)	Spacing (in)	Tributary Width (in)	Tributary Width (ft)	Tributary Area (in^2)
No. 1 Douglas Fir Larch	20.8	7.146	2E+06	24	12	1	432
No. 1 Douglas Fir Larch	20.8	7.146	2E+06	24	24	2	864

Beam Gravity Braci	ng to CMU Wall
Maximum Moment on Beam (lb*in)	9517.952
Anchor Type	HY 270 + threaded rod 5.8
Anchor Diameter (in)	3/8
Embedment Depth (in)	4
No. of Anchors per Plate	4
Steel Plate Size (in)	12 by 12
Steel Plate Thickness (in)	0.4

Tributary Area (ft^2)	Gravity Load Beams (psf)	Gravity Load on Beams (plf)	Beam Type	Beam Max Shear (Ib)	Beam Max Moment (Ib*ft)	Beam Max Deflection (in)
3	36.43733333	36.43733333	Cantilever	109.312	163.968	0.018029061
6	36.43733333	72.87466667	Cantilever	218.624	327.936	0.036058121
3	36.43733333	36.43733333	Cantilever	109.312	163.968	0.018029061
6	36.43733333	72.87466667	Cantilever	218.624	327.936	0.036058121
3	88.12918519	88.12918519	Cantilever	264.3875556	396.5813333	0.043606002
6	88.12918519	176.2583704	Cantilever	528.7751111	793.1626667	0.087212004
Tributary	Gravity Load	Gravity Load on	D T	Beam Max	Beam Max	Beam Max
Area (ft^2)	Beams (psf)	Beams (plf)	веат туре	Shear (lb)	Moment (lb*ft)	Deflection (in)
3	179.3866667	179.3866667	mply Supporte	269.08	201.81	0.00924582
6	179.3866667	358.7733333	mply Support	538.16	403.62	0.01849164

Max Bending Stress (psi)	Bending Design Value Fbn' (psi)	Bending Acceptable?	Shear Design Value Fvn' (psi)	Shear Acceptable?	Allowable Deflection (in)	Deflection Acceptable?
260.1634272	1883.284291	Yes	233.28	Yes	0.1	Yes
520.3268544	1883.284291	Yes	233.28	Yes	0.1	Yes
260.1634272	1883.284291	Yes	233.28	Yes	0.1	Yes
520.3268544	1883.284291	Yes	233.28	Yes	0.1	Yes
629.2444797	1883.284291	Yes	233.28	Yes	0.1	Yes
1258.488959	1883.284291	Yes	233.28	Yes	0.1	Yes
Max Bending Stress (psi)	Bending Design Value Fbn' (psi)	Bending Acceptable?	Shear Design Value Fvn' (psi)	Shear Acceptable?	Allowable Deflection (in)	Deflection Acceptable?

233.28

233.28

Yes

Yes

0.1

0.1

Yes

Yes

Yes

Yes

338.8916877

677.7833753

1893.048983

1893.048983

Fc1 (NDS Table 4A) (psi) 625						
Fc (NDS Table 4A) (psi) 1500	f					
2 by 6 Beam Design Parameters For Bending						
Cf (NDS Table 4A)	1.30					
FbCf	1300.00					
Cm (NDS Table 4A)	0.85					
Cfu (NDS Table 4A)	1.15					
Cc (Design of Wood Structures 7th ed. Ch. 6)	1.00					
Cl (Design of Wood Structures 7th ed. Ch. 6)	1.00					
Kf (Design of Wood Structures 7th ed. Ch. 6)	2.54					
Bending Resistance Factor (Design of Wood Structures 7th	0.85					
Fbn (Design of Wood Structures 7th ed. Ch. 6)	2540.00					
Ct (Design of Wood Structures 7th ed. Ch. 4)	1.00					
Cr (Design of Wood Structures 7th ed. Ch. 4)	1.15					
Time Effect Factor (Design of Wood Structures 7th ed. Ch.	0.60					
Ci (Design of Wood Structures 7th ed. Ch. 4)	1.00					
CL Simply Supported	1.00					
lu (in)	36.00					
lu/d	6.55					
le	47.88					
RB	10.82					
E' min n (psi) (Design of Wood Structures 7th ed. Ch. 6.3 -	1700000.00					
FbEn	17429.94					
Fbxn (Same as Fbn for sawn lumbar)	2540.00					
Fbxn*	1646.13					
CL Cantilever	0.99					

2 by 6 Beam Design Parameters For Shear	
Shear Resistance Factor (Design of Wood Structures 7th ed. Ch. 6)	0.75
Kf (Design of Wood Structures 7th ed. Ch. 6)	2.88
Fvn	518.4
Time Effect Factor (Design of Wood Structures 7th ed. Ch.	0.6
4) Cm (NDS Table 4A)	1
Ct (Design of Wood Structures 7th ed. Ch. 4)	1
Ci (Design of Wood Structures 7th ed. Ch. 4)	1
Cvr (Design of Wood Structures 7th ed. Ch. 6)	1

Girder Sizing						
Member Name	nber Name Dimensions Required (ft)		Nominal Dimensions Selected (ft)	Length (in)	Width (in)	Height (ft)
Media Bed 1 Girders	6 ft long	1	2 by 8	7.25	1.5	6
Media Bed 2 Girders	6 ft long	1	2 by 8	7.25	1.5	6
Media Bed 3 Girders	6 ft long	1	2 by 8	7.25	1.5	6
Fish Tank Girders	6 ft long	2	2 by 8	7.25	1.5	6

Material	Moment of Inertia (in^4) (NDS)	Section Modulus (in^3) (NDS)	E (psi) (NDS)	Spacing (in)	Tributary Width (in)	Tributary Width (ft)	Tributary Area (in^2)
No. 1 Douglas Fir Larch	47.63	13.14	2E+06	36	36	3	2592
No. 1 Douglas Fir Larch	47.63	13.14	2E+06	36	36	3	2592
No. 1 Douglas Fir Larch	47.63	13.14	2E+06	36	36	3	2592
No. 1 Douglas Fir Larch	47.63	13.14	2E+06	36	18	1.5	1296

Tributary Area (ft^2)	Gravity Load (psf)	Gravity Load (plf)	Member Type	Max Shear (lb)	Max Moment (Ib*ft)	Max Deflection (in)
18	36.43733333	109.312	mply Supporte	327.936	491.904	0.039366414
18	36.43733333	109.312	mply Supporte	327.936	491.904	0.039366414
18	88.12918519	264.3875556	mply Supporte	793.1626667	1189.744	0.095213609
9	179.3866667	269.08	mply Support	807.24	1210.86	0.096903494

Max Bending Stress (psi)	Bending Design Value Fbn' (psi)	Bending Acceptable?	Shear Design Value Fvn' (psi)	Shear Acceptable?	Allowable Deflection (in)	Deflection Acceptable?
449.2273973	1519.5042	Yes	233.28	Yes	0.2	Yes
449.2273973	1519.5042	Yes	233.28	Yes	0.2	Yes
1086.524201	1519.5042	Yes	233.28	Yes	0.2	Yes
1105.808219	1519.5042	Yes	233.28	Yes	0.2	Yes

2 by 8 Girder Design Parameters For Bending				
Cf (NDS Table 4A)	1.2			
FbCf	1200			
Cm (NDS Table 4A)	0.85			
Cfu (NDS Table 4A)	1.15			
Cc (Design of Wood Structures 7th ed. Ch. 6)	1			
Cl (Design of Wood Structures 7th ed. Ch. 6)	1			
Kf (Design of Wood Structures 7th ed. Ch. 6)	2.54			
Bending Resistance Factor (Design of Wood Structures 7th	0.85			
ed. Ch. 6)	0.00			
Fbn (Design of Wood Structures 7th ed. Ch. 6)	2540			
Ct (Design of Wood Structures 7th ed. Ch. 4)	1			
Cr (Design of Wood Structures 7th ed. Ch. 4)	1			
Time Effect Factor (Design of Wood Structures 7th ed. Ch.	0 (
4)	0.6			
Ci (Design of Wood Structures 7th ed. Ch. 4)	1			
CL Simply Supported	1			

2 by 8 Girder Design Parameters For Shear	
Shear Resistance Factor (Design of Wood Structures 7th	0.75
Kf (Design of Wood Structures 7th ed. Ch. 6)	2.88
Fvn	518.4
Time Effect Factor (Design of Wood Structures 7th ed. Ch. 4)	0.6
Cm (NDS Table 4A)	1
Ct (Design of Wood Structures 7th ed. Ch. 4)	1
Ci (Design of Wood Structures 7th ed. Ch. 4)	1
Cvr (Design of Wood Structures 7th ed. Ch. 6)	1

Column Sizing						
Member Name	Dimensions Required (ft)	Quantity	Nominal Dimensions Selected (ft)	Length (in)	Width (in)	Height (ft)
Tall Edge Columns	8 ft tall	2	4 by 4	3.5	3.5	8
Tall Interior Columns	8 ft tall	2	4 by 4	3.5	3.5	8
Short Edge Columns	0.5 ft tall	2	4 by 4	3.5	3.5	0.5
Short Interior Columns	0.5 ft tall	2	4 by 4	3.5	3.5	0.5

4 by 4 Column Design Parameters for Compression	
Kf (Design of Wood Structures 7th ed. Ch. 4)	2.4
Fcn (psi) (Design of Wood Structures 7th ed. Ch.6)	3600
Compression Resistance Factor (Design of Wood Structures	0.9
Time Effect Factor (Design of Wood Structures 7th ed. Ch.	0.6

Material	Moment of Inertia (in^4) (NDS)	Section Modulus (in^3)(NDS)	E (psi) (NDS)	Spacing (in)	Tributary Width (in)	Tributary Width (ft)	Tributary Area (in^2)
No. 1 Douglas Fir Larch	12.51	7.146	2E+06	24	12	1	1152
No. 1 Douglas Fir Larch	12.51	7.146	2E+06	24	24	2	2304
No. 1 Douglas Fir Larch	12.51	7.146	2E+06	24	12	1	72
No. 1 Douglas Fir Larch	12.51	7.146	2E+06	24	24	2	144

Tributary	Gravity Load on	Gravity Load on	Member	Compressive Design Value	Compression Parallel	Compressive Design Value
Area (ft^2)	Connecting Girders (plf)	Column (lb)	Туре	Grain with Buckling (psi)	Acceptable?	to Grain for Bearing (psi)
8	752.0915556	752.0915556	ned at both er	1572.505	Yes	
16	752.0915556	1504.183111	ned at both er	1572.505	Yes	
0.5	269.08	269.08	ned at both er	2332.8	Yes	
1	269.08	538.16	ned at both er	2332.8	Yes	

Cf (NDS Table 4A)	1.5
FcCf	2250
Cm (NDS Table 4A)	0.8
Ct (Design of Wood Structures 7th ed. Ch. 4)	1
Cp Short (Design of Wood Structures 7th ed. Ch. 6)	1
Ie/d Tall Columns	27.4285714
Kf Stability	1.76
Stability Resistance Factor	0.85
E min (psi)	1700000
E min n	2992000
E'min n	2034560
СТ	1
с	0.8
FcEn	2222.98198
Fcn*	2332.8
Cp Tall (Design of Wood Structures 7th ed. Ch. 6)	0.67408479
Ci (Design of Wood Structures 7th ed. Ch. 4)	1

AQUAPONICS - SEISMIC DESIGN

Seismic Design Parameters for Site	
Building Occupancy Risk Category Autoshop (Table 1.5-1 ASCE 7-16)	II
I _e (Table 1.5-2)	1
Site Class (11.4.3 ASCE 7-16)	D
S _s (https://hazards.atcouncil.org)	2.022
S1 (https://hazards.atcouncil.org)	0.721
F _a (11.4.4 and Table 11.4-1 ASCE 7-16)	1.2
F _v (Table 11.4-2 ASCE 7-16)	1.7
S _{ms} (Equation 11.4-1 ASCE 7-16)	2.426
S _{m1} (Equation 11.4-2 ASCE 7-16)	1.226
S _{DS} (Equation 11.4-3 ASCE 7-16)	1.618
S _{D1} (Equation 11.4-4 ASCE 7-16)	0.817
T _L (s) (https://hazards.atcouncil.org)	8
SDC (Tables 11.6-1 and 11.6-2 ASCE 7-16)	D

Seismic Weight Calculation	
Fish Tank Weight (lb)	2306.4
Media Bed 1 Weight (lb)	468.48
Media Bed 2 Weight (lb)	468.48
Media Bed 3 Weight (lb)	1133.09
2 by 6 Weight (lb)	54
2 by 8 Weight (lb)	36
4 by 4 Weight (lb)	60.16
Conservative Wood Frame Weight (lb)	150.16
Wp (lb)	2220.21

esign of Non-Structural Component (Ch. 13 ASCE 7-16 for Aquar	oonics anchored to
SDC (Section 13.1.2 ASCE 7-16)	D
Ip (Section 13.1.3 ASCE 7-16)	1
Rp (Table 13.5-1 ASCE 7-16)	2.5
ap (Table 13.5-1 ASCE 7-16)	1
Overstrength Factor (Table 13.5-1 ASCE 7-16)	2
z/h	0
Fp (lb) (Equation 13.3-1 ASCE 7-16)	574.7678
Fp (lb) (Equation 13.3-2 ASCE 7-16)	5747.678
Fp (lb) (Equation 13.3-3 ASCE 7-16)	1077.69
Governing Fp (lb)	1077.69
Fv (lb) (Section 13.3.1.2 ASCE 7-16)	718.4598
Height to center of mass	6
Overturning Moment (lb*ft)	6466.138

Overturning Moment (lb*in)	77593.66
Tension and Compresion Couple (lb)	1077.69
Tension Demand for Anchors Carrying Load in Both Directions (Ib)	2155.379

Seismic Anchors on Columns to Concrete Slab		
Anchor Type	554 Gr.36)	
Anchor Diameter (in)	1/2	
Embedment Depth (in)	6.33	
No. of Anchors Per Plate	2	
Steel Ledger Plate Length (in)	12	
Steel Plate Thickness (in)	1/2	

AQUAPONICS - FOUNDATION DESIGN

Total Structure Weight	
Structural framing Density (pcf)	33.00
Beam Volume (cu ft)	2.75
Girder Volume (cu ft)	2.89
Column Volume (cu ft)	2.89
Structural Frame Weight (lb)	281.59
Structural Sheating Weight (psf)	0.40
Structural Sheathing Area (ft^2)	72.00
Structural Sheathing Weight (lb)	28.80
Media Bed 1 Weight (lb)	468.48
Media Bed 2 Weight (lb)	468.48
Media Bed 3 Weight (lb)	1133.09
Fish Tank Weight (lb)	2306.40
Total (lb):	4686.84

Soil Properties		
Classification	SM	
Ν	23.3 blows	
moist unit weight	120.0 pcf	
C	0.0 psf	
approx. friction angle'	39.0 degrees	

Bearing Capacity Calculations			
Bearing Capacity Calcs -	Ferzaghi		
a	5.1		
Nq	70.2		
Nc	85.6		
Ny	198.8		
Кру	298.0		
shape	SC	sy	
strip		1	1
round		1.3	0.6
square		1.3	0.8
В	4.5	ft	
L	8	ft	
D	0.666666667	7 ft	
q_bar	80	psf	
q_ult	48558.8	psf	
q_actual	130.2	psf	
g_allow	16186.3	psf	
F.S.		3	
Acceptable?	Yes		

Bearing Capacity Calcs - N	1eyerhoff	
Nq	55.6	
Nc	67.6	
Ny	76.7	
2tan(friction angle)(1-sin(friction angle))^2	0.2	
Кр	4.4	
SC	1.5	
sq	1.2	
sy	1.2	
dc	1.1	
dq	1.0	
dy	1.0	
q_ult	32337.3	psf
q_actual	130.2	psf
q_allow	10779.1	psf
F.S.		3
Acceptable?	Yes	
Immediate Settlement	Calcs	
В	4.5	ft
В'	2.3	ft
L	8.0	ft
L'	4.0	ft
M	1.8	
Н	22.5	
Ν	10.0	
11	0.6	
12	0.0	
u	0.3	
d_borings	27.0	
o'v	3240.0	
CN	0.8	
N60	23.3	
CE	1.1	
N55	25.5	
Es	12945.5	
	9436.4	
	11190.9	kPa
ls	0.6	
L/B	1.8	
D/B	0.1	
If	0.8	
m	4.0	
qo	130.2	psf
delta_H	0.049	in
Acceptable?	Ye	es

APPENDIX B: Hilti PROFIS Seismic and Gravity Bracing

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax: Design:	 Concrete - Apr 17, 2023	E-Maii: Date:	4/18/2023
Fastening point:		200.	4/10/2020
Specifier's comments:			
1 Input data		are search	
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z 1/2	200 R V3 100 H1 V7 200 R V3 100	NE NY 200 A V.) HOL HE AY 200 A
Item number:	2018443 HIT-Z 1/2" x 4 1/2" (e 200-R V3 (adhesive)	lement) / 2334276 HIT-HY	
Effective embedment depth:	$h_{ef,opti}$ = 2.907 in. ($h_{ef,limit}$ = 3.75	0 in.)	
Material:	DIN EN ISO 4042		
Evaluation Service Report:	ESR-4868		
Issued I Valid:	11/1/2022 11/1/2024		
Proof:	Design Method ACI 318-19 / C	hem	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t =	= 0.500 in.	
Anchor plate ^R :	l _x x l _y x t = 80.000 in. x 80.000 i	in. x 0.500 in.; (Recommended plate thickne	ess: not calculated)
Profile:	Square HSS (AISC), HSS4X4X.25; (L x W x T) = 4.000 in. x 4.000 in. x 0.250 in.		
Base material:	cracked concrete, 4000, f _c ' = 4,000 psi; h = 6.000 in., Temp. short/long: 32/32 °F		
Installation:	hammer drilled hole, Installation condition: Dry		
Reinforcement:	tension: not present, shear: no	t present; no supplemental splitting reinforc	ement present
	edge reinforcement: none or <	No. 4 bar	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Apr 17, 2023	Date:		4/18/2023
Fastening point:				
1.1 Design result	s			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_{y} = 0; V_{y} = 0;$	no	98
		$M_x = 437,000; M_y = 0; M_z = 0;$		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	621	0	0	0
2	967	0	0	0
3	1,220	0	0	0
4	1,313	0	0	0
5	1,220	0	0	0
6	967	0	0	0
7	621	0	0	0
8	275	0	0	0
9	22	0	0	0
10	0	0	0	0
11	22	0	0	0
12	275	0	0	0
max. concrete co	ompressive strain:		0.03 [‰]	

114 [psi]

7,524 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

max. concrete compressive stress:

resulting tension force in (x/y)=(-0.000/20.613):

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	1,313	8,695	16	OK
Pullout Strength*	1,313	7,108	19	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	7,524	7,724	98	OK

* highest loaded anchor **anchor group (anchors in tension)

resulting compression force in (x/y)=(-0.000/-37.467): 7,524 [lb]

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _{sa}	$\ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.14	94,200

Calculations

N_{sa} [lb] 13,377

Results

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
13,377	0.650	8,695	1,313

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ_{a}	N _p [lb]	
1.000	10,936	
Calculations		

N _{pn} [lb]	
10,936	

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
10,936	0.650	7,108	1,313

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

3.3 Concrete Breakout Failure

N _{cbg}	$= \begin{pmatrix} A_{Nc} \\ \overline{A_{Nc0}} \end{pmatrix} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc}	see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0}$	= 9 h _{ef} ²	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp},\text{N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\psi_{\text{ c,N}}$
2.907	0.000	17.158	11.091	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
6.026	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ec1},N}$	$\Psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
836.89	76.08	1.000	0.203	1.000	1.000	5,330
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
11,883	0.650	7,724	7,524	-		

www.hilti.com

Company		Dago:	5
Company.		Faye.	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com				
Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	6	
Design: Fastening point:	Concrete - Apr 17, 2023	Date:	4/18/2023	
6 Installation da	ata			
Profile: Square HSS (0.250 in.	AISC), HSS4X4X.25; (L x W x T) = 4.000 in. x 4.000 in. x	Anchor type and diameter: HIT-HY 200 V3 + HIT-Z 1/2 Item number: 2018443 HIT-Z 1/2" x 4 1/2" (element) / 2334276 HIT-HY 200-R V3 (adhesive)		
Hole diameter in the f	ixture (pre-setting) : d _f = 0.562 in.	Maximum installation torque: 354 in.lb		
Hole diameter in the f	ixture (through fastening) : d _f = 0.625 in.	Hole diameter in the base material: 0.562 in.		
Plate thickness (input): 0.500 in.	Hole depth in the base material: 3.907 in.		
Recommended plate thickness: not calculated		Minimum thickness of the base mate	rial: 5.157 in.	
Drilling method: Ham Cleaning: Compresse	ner drilled d air cleaning of the drilled hole according to instructions			

1/2 Hilti HIT-Z Carbon steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

for use is required

19.000

13.909

000 5.091 40.000

9。

.10

.8

www.hilti.com

Company:		Page:	7
Address:		Specifier:	1
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

Coordinates Anchor [in.]

Anchor	x	У	с _{-х}	C _{+x}	c_y	c _{+y}	Anch	or x	У	C _{-x}	C+x	c_y	c _{+y}
1	38.000	-0.000	-	-	44.000	-	7	-38.000	-0.000	-	-	44.000	-
2	32.909	19.000	-	-	63.000	-	8	-32.909	-19.000	-	-	25.000	-
3	19.000	32.909	-	-	76.909	-	9	-19.000	-32.909	-	-	11.091	-
4	0.000	38.000	-	-	82.000	-	10	0.000	-38.000	-	-	6.000	-
5	-19.000	32.909	-	-	76.909	-	11	19.000	-32.909	-	-	11.091	-
6	-32.909	19.000	-	-	63.000	-	12	32.909	-19.000	-	-	25.000	-

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax: Design:	 Concrete - Apr 17, 2023	E-Mail: Date:	4/18/2023
Fastening point:		Duc.	4/10/2023
Specifier's comments:			
1 Input data			
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z 1/2	200 A V3 HAN HIT AV 200 A V3 HAN	17 47 200 Å 17 1 100 HT 17 200 Å
Item number:	2018443 HIT-Z 1/2" x 4 1/2" (e 200-R V3 (adhesive)	lement) / 2334276 HIT-HY	
Effective embedment depth:	$h_{ef,opti}$ = 2.750 in. ($h_{ef,limit}$ = 3.75	0 in.)	
Material:	DIN EN ISO 4042		
Evaluation Service Report:	ESR-4868		
Issued I Valid:	11/1/2022 11/1/2024		
Proof:	Design Method ACI 318-19 / C	hem	
Stand-off installation:	e_{b} = 0.000 in. (no stand-off); t =	= 0.500 in.	
Anchor plate ^R :	l _x x l _y x t = 30.000 in. x 30.000 i	n. x 0.500 in.; (Recommended plate thickne	ess: not calculated)
Profile:	Square HSS (AISC), HSS4X4X.25; (L x W x T) = 4.000 in. x 4.000 in. x 0.250 in.		
Base material:	cracked concrete, 4000, f _c ' = 4,000 psi; h = 6.000 in., Temp. short/long: 32/32 °F		
Installation:	hammer drilled hole, Installa	tion condition: Dry	
Reinforcement:	tension: not present, shear: no	t present; no supplemental splitting reinforc	ement present
	edge reinforcement: none or <	No. 4 bar	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com				
Company:		Page:		2
Address: Phone I Fax	I	Specifier: F-Mail:		
Design:	Concrete - Apr 17, 2023	Date:		4/18/2023
Fastening point:				
1.1 Design results				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]

1 Combination 1 $N = 0; V_x = 0; V_y = 0;$ no	24
$M_x = 21,220; M_y = 0; M_z = 0;$	

2 Load case/Resulting anchor forces

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	758	0	0	0
2	758	0	0	0
max. concrete co max. concrete co resulting tension resulting compre	ompressive strain: ompressive stress: force in (x/y)=(-0.00 ssion force in (x/y)=	00/-0.000): =(0.000/-13.992)	0.03 [‰] 149 [psi] 1,517 [lb] : 1,517 [lb]	

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ∮ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	758	8,695	9	OK
Pullout Strength*	758	7,108	11	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	1,517	6,374	24	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _{sa}	$\ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.14	94,200

Calculations

N_{sa} [lb] 13,377

Results

N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]
13,377	0.650	8,695	758

3.2 Pullout Strength

N _{pn}	$= N_p \lambda_a$	refer to ICC-ES ESR-4868
φ N _{pn}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ_{a}	N _p [lb]
1.000	10,936
Calculations	

N_{pn} [lb] 10,936

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
10,936	0.650	7,108	758

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

3.3 Concrete Breakout Failure

N _{cbg}	$= \left(\frac{A_{NC}}{A_{NC0}}\right) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg}	$n \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc}	see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp},\text{N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
2.750	0.000	0.000	44.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
5.050	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
136.12	68.06	1.000	1.000	1.000	1.000	4,903
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
9,806	0.650	6,374	1,517			

www.hilti.com

Company		Dago:	5
Company.		Faye.	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com			
Company: Address: Phone I Fax:	I	Page: Specifier: E-Mail:	6
Design: Fastening point:	Concrete - Apr 17, 2023	Date:	4/18/2023
6 Installation da	ata		
		Anchor type and diameter: HIT-HY 200	V3 + HIT-Z 1/2
Profile: Square HSS (AISC), HSS4X4X.25; (L x W x T) = 4.000 in. x 4.000 in. x 0.250 in.		Item number: 2018443 HTL-Z 1/2" x 4 1/2" (element) / 2334276 HIT-HY 200-R V3 (adhesive)	
Hole diameter in the fi	xture (pre-setting) : d _f = 0.562 in.	Maximum installation torque: 354 in.lb	
Hole diameter in the fi	xture (through fastening) : d _f = 0.625 in.	Hole diameter in the base material: 0.562 in.	
Plate thickness (input)	: 0.500 in.	Hole depth in the base material: 3.750	in.
Recommended plate thickness: not calculated		Minimum thickness of the base material: 5.000 in.	
Drilling method: Hamr	ner drilled		
Cleaning: Compresse	d air cleaning of the drilled hole according to instructions		

1/2 Hilti HIT-Z Carbon steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

for use is required

www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 17, 2023	Date:	4/18/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Design:	Concrete - Apr 27, 2023	E-Mail. Date:	4/27/2023
Fastening point:	50101010 / 101 21, 2020	Duo.	4/21/2020
Specifier's comments:			
1 Input data			
Anchor type and diameter:	HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 1/2	
Item number:	2198023 HAS-V-36 1/2"x8" (6 200-R V3 (adhesive)	element) / 2334276 HIT-HY	
Effective embedment depth:	$h_{ef,opti}$ = 6.333 in. ($h_{ef,limit}$ = 6.7	50 in.)	
Material:	ASTM F1554 Grade 36		
Evaluation Service Report:	ESR-4868		
Issued I Valid:	11/1/2022 11/1/2024		
Proof:	Design Method ACI 318-19 /	Chem	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t	= 0.500 in.	
Anchor plate ^R :	$l_x x l_y x t = 12.000 \text{ in. } x 6.000$	n. x 0.500 in.; (Recommended plate thickness	s: not calculated)
Profile:	no profile		
Base material:	cracked concrete, 4000, $f_c' =$	4,000 psi; h = 8.000 in., Temp. short/long: 32/	′32 °F
Installation:	hammer drilled hole, Install	ation condition: Dry	
Reinforcement:	tension: not present, shear: n	ot present; no supplemental splitting reinforce	ement present
	edge reinforcement: none or	< No. 4 bar	
Seismic loads (cat. C, D, E, or F	Tension load: yes (17.10.5.3	(a))	
	Shear load: yes (17.10.6.3 (a))	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Apr 27, 2023	Date:		4/27/2023
Fastening point:				
1.1 Design results	S			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 2,107; V_x = 0; V_y = 0;$	yes	22
		$M_x = 0; M_y = 0; M_z = 0;$	-	

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compres	ssion)				≜ y
Anchor	Tension force	Shear force	Shear force x	Shear force y		
1	1,053	0	0	0		
2	1,053	0	0	0	○ ²	↓ Tonsion
max. concrete c max. concrete c resulting tension resulting compre	compressive strain: compressive stress: n force in (x/y)=(-0.0 ession force in (x/y)=	- - 00/0.000): 2 =(0.000/0.000): 0	[‰] [psi] ,107 [lb] [lb]			

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	1,053	6,172	18	OK
Bond Strength**	2,107	9,656	22	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	2,107	12,750	17	OK

* highest loaded anchor **anchor group (anchors in tension)

			Page: Specifier:	3
I.			E-Mail:	
Concrete	e - Apr 27, 2023		Date:	4/27/2023
refer to ICC-	ES ESR-4868			
ACI 318-19	Table 17.5.2			
f _{uta} [psi]				
58,000	_			
ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]		
0.750	6,172	1,053		
	 Concrete ACI 318-19 f _{uta} [psi] 58,000 \$\$,000	 Concrete - Apr 27, 2023 refer to ICC-ES ESR-4868 ACI 318-19 Table 17.5.2 f _{uta} [psi] 58,000 ∳ steel ∳ N _{sa} [lb] 0.750 6,172	↓ Concrete - Apr 27, 2023 refer to ICC-ES ESR-4868 ACI 318-19 Table 17.5.2 ƒ _{uta} [psi] 58,000 ♦ steel ♦ N _{sa} [lb] N _{ua} [lb] 0.750 6,172 1,053	Page: Specifier: E-Mail: Date: refer to ICC-ES ESR-4868 ACI 318-19 Table 17.5.2 f _{ute} [psi] 58,000 \$6 steel \$\mathbf{\mathbf{N}} N_{sa}[lb] \$\$ N_{ua}[lb] 0.750 6,172 1,053

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

3.2 Bond Strength

N_{ag}	$= \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-19 Eq. (17.6.5.1b)
φ N _{ag}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
A_{Na0}	$= (2 c_{Na})^2$	ACI 318-19 Eq. (17.6.5.1.2a)
c _{Na}	$= 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2b)
$\psi_{\text{ec,Na}}$	$= \left(\frac{1}{1 + \frac{e_{N}}{c_{Na}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.5.3.1)
$\psi_{\text{ ed},\text{Na}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{c_{Na}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.5.4.1b)
$\psi_{\text{cp,Na}}$	= MAX $\left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.5.5.1b)
N_{ba}	$= \lambda_{a} \cdot \tau_{k,c} \cdot \alpha_{N,seis} \cdot \pi \cdot d_{a} \cdot h_{ef}$	ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{overhead}$	τ _{k,c} [psi]
2,327	0.500	6.333	00	1.000	1,190
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ_{a}	$\alpha_{\rm N,seis}$	_
0.000	0.000	18.536	1.000	0.990	
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\Psi_{\text{ed,Na}}$		
7.239	354.41	209.62	1.000		
$\Psi_{ m ec1,Na}$	$\psi_{ec2,Na}$	$\psi_{cp,Na}$	N _{ba} [lb]		
1.000	1.000	1.000	11,715		
Results					
N _{aq} [lb]	ϕ_{bond}	$\phi_{seismic}$	φ N _{ag} [lb]	N _{ua} [lb]	
19,807	0.650	0.750	9,656	2,107	-

www.hilti.com

Company:		Page:	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

3.3 Concrete Breakout Failure

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc}	see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0}$	$= 9 h_{ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{C_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
6.333	0.000	0.000	∞	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
18.536	17	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{\text{ec2},\text{N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
550.91	360.93	1.000	1.000	1.000	1.000	17,134
Results						
N _{cbg} [lb]	ф _{concrete}	$\phi_{seismic}$	φ N _{cbg} [lb]	N _{ua} [lb]		
26,153	0.650	0.750	12,750	2,107		

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Apr 27, 2023	Date:	4/27/2023

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the maximum tension / shear that can be transmitted to the strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 27, 2023	Date:	4/27/2023
Fastening point:			
6 Installation d	ata		
		Anchor type and diameter: HIT-	HY 200 V3 + HAS-V-36

Profile: no profile	(ASTM F1554 Gr.36) 1/2 Item number: 2198023 HAS-V-36 1/2"x8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)
Hole diameter in the fixture: $d_f = 0.562$ in.	Maximum installation torque: 360 in.lb
Plate thickness (input): 0.500 in.	Hole diameter in the base material: 0.562 in.
Recommended plate thickness: not calculated	Hole depth in the base material: 6.333 in.
Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions	Minimum thickness of the base material: 7.583 in.
for use is required	

1/2 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	 Compressed air with required accessories to blow from the bottom of the hole Proper diameter wire brush 	 Dispenser including cassette and mixer Torque wrench

Anchor	x	У	с _{-х}	c _{+x}	C_y	c _{+y}
1	5.000	0.000	-	-	-	-
2	-5.000	0.000	-	-	-	-

www.hilti.com			
Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com			
Company: Address: Phone I Fax:	I	Page: Specifier: E-Mail:	1
Design: Fastening point:	Masonry - Apr 27, 2023	Date:	4/27/2023
Specifier's comments:			
1 Input data			.
Anchor type and diameter:	HY 270 + threaded rod 5.8 3	3/8	
Item number:	385418 HAS 5.8 3/8"x4-3/8" 270 (adhesive)	(element) / 2194247 HIT-HY	NH 270
Effective embedment depth:	h _{ef} = 3.375 in.		
Material:	5.8		
Evaluation Service Report:	ESR-4143		
Issued I Valid:	3/1/2021 1/1/2022		
Proof:	Design Method ASD Masonry	у	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t	t = 0.400 in.	
Anchor plate ^R :	$l_x x l_y x t = 12.000 \text{ in. } x 12.000$) in. x 0.400 in.; (Recommended plate thickness	not calculated)
Profile:	no profile		
Base material:	Grout-filled CMU, L x W x H:	16.000 in. x 8.000 in. x 8.000 in.;	
	Joints: vertical: 0.375 in.; hor Base material temperature: 6	izontal: 0.375 in. i8 °F	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Face installation

no

Geometry [in.]

Installation:

Seismic loads

www.hilti.com

Company:		Page:	2
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Masonry - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 0; V_y = 0;$	no	38
		$M_{y} = 4,759; M_{y} = 0; M_{z} = 0;$		

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	0	0	0
2	459	0	0	0
max. compressiv	/e strain:	(0.03 [‰]	
may comprosi	in atrana.			

 max. compressive stress:
 40 [psi]

 resulting tension force in (x/y)=(0.000/5.000):
 459 [lb]

 resulting compression force in (x/y)=(0.000/-5.368):
 459 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

www.hilti.com			
Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Masonry - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

3 Tension load (Most utilized anchor 2)

	Load P _s [lb]	Capacity P _t [lb]	Utilization $\beta_{P} = P_{s}/P_{t}$ [%]	Status
Steel strength	459	2,640	18	ОК
Bond strength	459	1,240	38	OK

3.1 Steel strength

P _{ts} = ESR Value	refer to ICC-ES ESR-4143
$P_{t,s} \ge P_s$	

Results

P _{t,s} [lb]	P _s [lb]
2,640	459

3.2 Bond strength

$\begin{array}{l} P_{t,b,\text{Base}} & = ESR \; Valu \\ P_{t,b} & = P_{t,b,\text{Base}} \cdot \\ P_{t,b} & \geq P_{s} \end{array}$	$f_{red,E} \cdot f_{red,s} \cdot f_{red,Temp} \cdot$	re f _{red,Bedjoint}	fer to ICC-ES ESR	-4143		
Variables						
c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]		
4.000	12.000	4.000	13.500	68		
Results						
P _{t,b} [lb]	P _{t,b,Base} [lb]	P _s [lb]	$f_{red,E}$	$f_{red,S}$	f _{red,Temp}	f _{red,Bedjoint}
1,240	1,240	459	1.000	1.000	1.000	1.000

	Page:	4
	Specifier:	
	E-Mail:	
Masonry - Apr 27, 2023	Date:	4/27/2023
	 Masonry - Apr 27, 2023	Page: Specifier: E-Mail: Masonry - Apr 27, 2023 Date:

4 Shear load (Most utilized anchor 2)

	Load V _s [lb]	Capacity V _t [lb]	Utilization $\beta_V = V_s/V_t$ [%]	Status
Overall strength	N/A	N/A	N/A	N/A

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces
 and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While
 installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar
 joints.
- The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- · Drilling method (hammer, rotary) to be in accordance with the approval!
- · Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- Warnings/Notes OST in Masonry HNA!

Fastening meets the design criteria!

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 I

 Design:
 Masonry - Apr 27, 2023

 Fastening point:
 Date:

Profile: no profile

Hole diameter in the fixture: $d_f = 0.438$ in. Plate thickness (input): 0.400 in.

Drilling method: Drilled in hammer mode

Anchor type and diameter: HY 270 + threaded rod 5.8 3/8 Item number: 385418 HAS 5.8 3/8"x4-3/8" (element) / 2194247 HIT-HY 270 (adhesive) Maximum installation torque: 72 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 3.375 in. Minimum thickness of the base material: 7.625 in.

Hilti HIT-V threaded rod with HIT-HY 270 injection mortar with 3.375 in embedment h_ef, 3/8, Steel galvanized, Hammer drilled installation per ESR-4143

www.hilti.com			
Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Masonry - Apr 27, 2023	Date:	4/27/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

APPENDIX C: Runoff Calculations

SITE HYDROLOGY STUDY - RATIONAL METHOD

Rainfall Values		
rainfall intensity, I (in/hr)	0.04	*21 hour 85th parcontila
24 hour 85th pctl	1	24-nour ostri percentile
Site Area (ft^2)	10986.4	
Impervious Percent (%)	19.8%	

Location	Area (ft^2)	Runoff Coefficient, C
Remediated Soil Area	8816.1	0.1
Songs Building Roof	2050.3	0.9
Shed Roof	120.0	1.00

Total Site Runoff			
Location	$O = C^{*}i^{*}A (ft^{3}/hr)$	V 24 hour (ft^3)	V, 24 hour
		v, 2 mour (nº 0)	(gal)
Open Soil Space (SW)	3.1	73.5	549.5
Songs Building Roof	6.4	153.8	1150.2
Shed Roof	0.4	10.0	74.8
	Total Runoff (ft^3)	237.2	1774.6

Rainwater Collection Volume			
Location $Q = C^*i^*A(ft^3/hr) = V, 24 hour(ft^3)$			
Songs Building Roof	6.4	153.8	1150.2
Shed Roof	0.4	10.0	74.8
	Design Volume (ft^3)	163.8	1225.0

	Cubic Feet (ft^3)	Gallons
Total Site Runoff	237.2	1774.6
Collection Design Volume	163.8	1225.0

	Cubic Feet per	Gallons Per Minute
	Second (cfs)	(gpm)
Peak Flow Rate	0.0176	7.90

	Rainwater Collection Volume (gallons)	Tank Size (gallons)
Songs Building Roof	1087.9	1200
Shed Roof	72.8	75

Table 3-2

Rational runoff coefficients (ASCE, 1975; Viessman, et al., 1996; and Malcom, 1999)

Description of Surface	Rational Runoff Coefficients, C
Unimproved Areas	0.35
Asphalt	0.95
Concrete	0.95
Brick	0.85
Roofs, inclined	1.00
Roofs, flat	0.90
Lawns, sandy soil, flat (<2%)	0.10
Lawns, sandy soil, average (2-7%)	0.15
Lawns, sandy soil, steep (>7%)	0.20
Lawns, heavy soil, flat (<2%)	0.15
Lawns, heavy soil, average (2-5%)	0.20
Lawns, heavy soil, steep (>7%)	0.30
Wooded areas	0.15

CAPTURE AND USE FEASIBILITY - ESTIMATED TOTAL WATER USE

Design Volume (ft^3)	163.8 *from hydrology study
Pervious Area (acres)	0.20
Planting Factor	0.30 *medium planting type
ET_7	21.7 *for LA county

1225.0

(i) Determine Design Volume in Gallons $V_{design} = design \ volume \ in \ gallons \cdot \frac{7.48 \ gal}{ft^3}$

V_design (gal)

(ii) Determine Planting Area, PA

$D\Lambda - normious acroado$	$43560 ft^2$
rA – pervious ucreuge	acre
Planting Area (ft^2)	8816.1

(iii) Determining Planter Factor, PF

 $PF = planting \ factor \cdot PA$

Planter Factor (ft^2) 2644.8

(iv) Determine 7-month ETWU

 $ETWU_7 = ET_7 \cdot 0.62 \cdot PF$

ETWU_7 (gal) 35583.5

APPENDIX D: Hydrology Report

APPENDIX E: Aquaponics Calculations

AQUAPONICS CALCULATIONS

Tank Sizing	
Blue Tilapia wt (lbs)	4
Recommended (# fish)	20
gal/tilapia (1:3 ratio)	12
Tank Size (gal)	240
Media Bed Size (1-2) (gal)	25.2
Media Bed Size (top) (gal)	134.64
Fish Tank Dimensions	
Length (ft)	6
Width (ft)	3
Area (ft^2)	18
Denth (ft)	2
Volume (ft^3)	36
Volume (gal)	269.28
Iedia Bed (1-2) Dimensions	
Length (ft)	6
Width (ft)	3
Area (ft^2)	18
Depth (ft)	0.375
Volume (ft^3)	6.75
Volume (gal)	50.49
Aedia Bed (ton) Dimensions	
Length (ft)	6
Width (ft)	3
Area (ft^2)	18
Depth (ft)	1
Volume (ft^3)	18
Volume (gal)	134.64

Sch 40 Pipe Size 1/2" 3/4" 1" 1.25"

1.5" 2" 2.5" 3"

4" 5" 6" 8"

System Height (ft)	
fish tank	2
fish tank - media bed 1	2
media bed 1	0.375
media bed 1 - media bed 2	1
media bed 2	0.375
media bed 2 - media bed 🤇	1
media bed 3	1
Total	7.75

Headloss (ft)	
Media Bed 1 (bottom)	2.375
Media Bed 2	3.75
Media Bed 3 (top)	5.75

Pump Sizing						
Fish Tank Vol (gal)	240.00					
turnover (#/hr) *15min	4.00					
Fish Tank max GPH	960.00					
turnover (#/hr) *15min	2.00					
Fish Tank min GPH	480.00					
Media Bed (1-2) Vol (gal)	25.25					
# media beds	2.00					
40% water volume (gal)	20.20					
Media Bed (top) Vol (gal)	134.64					
40% water volume (gal)	53.86					
Total Media Bed Vol (gal)	74.05					
turnover (#/hr) *15min	4.00					
Media Bed max GPH	296.21					
turnover (#/hr) *15min	2.00					
Media Bed min GPH	148.10					

		Assume Gravity to Low Pressure. <i>I</i> suction side o	About 6f/s flow velocity, also f pump	Assume Average Press 12f/s flov	sure. (20-100PSI) About v velocity
ID (range)	OD	GPM (with minimal pressure loss & noise)	GPH (with minimal pressure loss & noise)	GPM (with minimal pressure loss & noise)	GPH (with minimal pressure loss & noise)
.5060"	.85"	7 gpm	420 gph	14 gpm	840 gph
.7585"	1.06"	11 gpm	660 gph	23 gpm	1,410 gph
1.00-1.03"	1.33"	16 gpm	960 gph	37 gpm	2,220 gph
1.25-1.36"	1.67"	25 gpm	1,500 gph	62 gpm	3,750 gph
1.50-1.60"	1.90"	35 gpm	2100 gph	81 gpm	4,830 gph
1.95-2.05"	2.38"	55 gpm	3300 gph	127 gpm	7,650 gph
2.35-2.45"	2.89"	80 gpm	4800 gph	190 gpm	11,400 gph
2.90-3.05"	3.50"	140 gpm	8400 gph	273 gpm	16,350 gph
3.85-3.95"	4.50"	240 gpm	14,400 gph	480 gpm	28,800 gph
 4.95-5.05"	5.563"	380 gpm	22,800 gph	750 gpm	45,000 gph
5.85-5.95"	6.61"	550 gpm	33,000 gph	1100 gpm	66,000 gph
7.96"	8.625"	950 gpm	57,000 gph	1900 gpm	114,000 gph

ACTIVE AQUA SUBMERSIBLE PUMP COMPARISON CHART

GALLONS PER HOUR (LPH) VOLUME

Hydrofarm Active Aqua Pump						
Pump Size	800-1000 GPH					
Pipe Quality Checks						
Max Flow Rate (GPH)	1000.00					
Max Flow Rate (ft^3/hr)	133.69					
Max Flow Rate (ft^3/s)	0.04					
Pipe Inner Diameter (ft)	0.08					
Pipe Area (ft ²)	0.01					
Velocity (ft/s)	6.81					

Aeration Calculations					
Tank Volume (gal)	240.00				
Fish Density (lb/gal) *1:3 ratio	0.33				
Fish Consumption @ 1:1 FTE (lbs/day)	1.60				
Fish Consumption @ 1:1 FTE (lbs/hr)	0.07				
Fish Consumption @ 0.5:1 FTE (lbs/day)	0.80				
Fish Consumption @ 0.5:1 FTE (lbs/hr)	0.03				
Oxygen Injection (Ibs O2/time transferred) = CFM (ft3/min)	of device * lbs of air/ft3 * lbs of oxygen/lb of air * (SOTE				
* Depth) * F	TE * Time				
Diffuser *6" medium pore air stone (cfm)	0.50				
wt air	0.08				
lbs O2/lbs air	0.23				
SOTE	0.01				
Depth	2.00				
FTE	0.50				
Time (min/hr)	60.00				
Oxygen Injection (lbs O2/time transferred)	0.01				
#air stones @ sea level *0:5:1 FTE @ 20% fish mass	6.44				
LA elevation (ft)	305.00				
#air stones @ site	6.52				
min CFM required	3.50				
safety factor	1.50				
actual min CFM required	5.25				
actual min L/hr required	8919.81				

APPENDIX F: Topographic Survey

APPENDIX G: Site Drawings

APPENDIX H: Cost Estimates

Item Details	Amount	Units	Means Cost (\$/unit)	1	「otal w/o O&P	Incl O&P (\$/unit)	Total w/ O&P	то	DAY'S COST
Shear Walls (1/2" thick plywood)	239.7	SF	1.152	\$	276.16	1.536	\$ 368.21	\$	278.67
Non-Structural Wall (3/8' plywood)	190.0	SF	0.82	\$	155.80	1.11	\$ 210.90	\$	157.21
Floor Sheathing	120.0	SF	0.94	\$	112.80	1.24	\$ 148.80	\$	113.82
Polycarbonate Roof Sheathing	144.0	SF	2.77	\$	398.88	3.63	\$ 522.72	\$	402.50
Plain Wood Window (1 4x6)	1.0	EA.	869.5	\$	869.50	980	\$ 980.00	\$	877.40
Casement Windows (3 5x6)	3.0	EA.	929.5	\$	2,788.50	1050	\$ 3,150.00	\$	2,813.83
2 Smooth Wood Doors (3x7 pair)	1.0	EA.	256.5	\$	256.50	315	\$ 315.00	\$	258.83
Gravity Load Collectors	48.0	LF	4.6	\$	220.80	6	\$ 288.00	\$	222.81
Seismic Holddowns	10.0	EA.	22.83	\$	228.30		\$ -	\$	230.37
Gutter, K-type, plain	10.0	LF	5.13	\$	51.30	7.05	\$ 70.50	\$	51.77
Gutter Guard (filter)	1.0	EA.	2.72	\$	2.72	3.3	\$ 3.30	\$	2.74
3" Dia. Copper Downspout	1.0	EA.	8.51	\$	8.51	10.25	\$ 10.25	\$	8.59
Rebar (no 4)	8.0	EA.	21	\$	168.00	27	\$ 216.00	\$	169.53
Foundation (concrete footing)	21	SFCA	12.4	\$	260.40	15.4	\$ 323.40	\$	262.76
Rafter, 9 (2x6)	100.0	LF	1.07	\$	107.00	1.48	\$ 148.00	\$	163.15
Studs, 36 (2x6)	468.0	LF	1.34	\$	627.12	1.88	\$ 879.84	\$	956.19
Girders, 2 (4x10)	24.0	LF	5.77	\$	138.48	7.1	\$ 170.40	\$	211.14
Floor Joists, 11 (2x6)	132.0	LF	0.96	\$	126.72	1.3	\$ 171.60	\$	193.21
Exterior Wall	429.7	SF	2.64	\$	1,134.46	3.49	\$ 1,499.73	\$	1,729.75
							Total	\$	9,104.27

Item Details	Amount	Units	Means Cost (\$/unit)	Total w/o O&P	Incl O&P (\$/unit)	Total w/ O&P	TOI	DAY'S COST
Excavation	108.11	C.Y.	3.5	378.39	4.2	454.06		381.82
Loading	108.11	C.Y.	17.6	1902.74	19.5	2108.15		1920.02
Hauling	108.11	C.Y.	6	648.66	7.6	821.64		654.55
Fill	113.74	C.Y.	3.4	386.72	4.7	534.58		390.23
						Total	\$	3,346.62

Item Details	Amount	Units	Means Cost (\$/unit)	Т	「otal w/o O&P	Incl O&P (\$/unit)	Total w/ O&P	то	DAY'S COST
1200 gallon cistern								\$	1,453.50
75 gallon rain barrel								\$	496.44
Hose	2	EA.						\$	49.98
6" concrete slab for cistern	1.1	C.Y.	16.27	\$	18.10	24.5	\$ 27.25	\$	27.59
6" concrete slab for barell	0.2	C.Y.	16.27	\$	2.71	25.5	\$ 4.25	\$	2.74
Anchor (small)	2	EA.	7	\$	14.00	10.1	\$ 20.20	\$	14.13
Steel Plate	6.3	S.F.	33.5	\$	209.38	36.5	\$ 228.13	\$	211.28
Anchor (large)	12	EA.	7	\$	84.00	10.1	\$ 121.20	\$	84.76
Steel Plate	44.4	S.F.	33.5	\$	1,488.89	36.5	\$ 1,622.22	\$	1,502.41
3" elbows	7	EA.	16.6	\$	116.20	23	\$ 161.00	\$	117.26
4" elbows	7	EA.	19.1	\$	133.70	25.5	\$ 178.50	\$	134.91
3" piping	10	L.F.	1.3	\$	13.00	1.7	\$ 17.00	\$	13.12
4" piping	12	L.F.	1.5	\$	18.00	1.9	\$ 22.80	\$	18.16
Gutter Guard (filter)	1.0	EA.	2.72	\$	2.72	3.3	\$ 3.30	\$	2.74
		-		-			Total	÷	4 129 02

Item Details	Amount	Units	Means Cost (\$/unit)	Т	otal w/o O&P	Incl O&P (\$/unit)	Total w/ O&P	то	DAY'S COST
Tilapia	20		-					\$	30.00
Fish Tank	270	GAL	-					\$	1,310.00
Media Tanks (1-2)	51	GAL	-					\$	1,214.00
Media Tank 3	135		-					\$	877.00
Piping (3/4" pvc)	14	LF	1.3	\$	18.20	1.7	\$ 23.80	\$	18.04
Pump	1	EA.	-					\$	66.99
Air Stones	7		-					\$	102.62
Heater			-					\$	65.99
Media (Lava Stone)	142.2	GAL	-					\$	326.82
Elbow Fittings	7		-					\$	5.53
Tee Fittings	4		-					\$	3.28
Aerator (1000 L/H)	1	EA.						\$	36.99
Concrete Slab	0.8	C.Y.	16.27	\$	12.86	24.5	\$ 19.36	\$	8.43
Structural									
Girders (2x10)	30	LF	2	\$	60.00	2.72	\$ 81.60	\$	39.35
Columns (4x4)	34	LF	2.85	\$	96.90	3.92	\$ 133.28	\$	63.55
Beams (2x6)	48	LF	1.3	\$	62.40	1.86	\$ 89.28	\$	40.93
Anchor	2	EA.	7	\$	14.00	10.1	\$ 20.20	\$	13.87
Steel Plate	0.5	SF	33.5	\$	16.75	36.5	\$ 18.25	\$	16.60
Waterproofing	1680	SF	0.98	\$	1,646.40	1.2	\$ 2,016.00	\$	1,631.58
Shear Walls (1/2" plywood sheathing)	72	SF	0.96	\$	69.12	1.28	\$ 92.16	\$	45.33
							Total	\$	5 916 90

APPENDIX I: CEQA Checklist

Instructions

Pages 1-3 are only needed when preparing a "checklist" IS. If the checklist will be used in the CEQA environmental document, proceed directly to Page 4 and use that as the beginning of the checklist and follow the guidance in the annotated outlines. Remove instructions before finalizing.

CEQA Environmental Checklist

PROJECT DESCRIPTION AND BACKGROUND

Project Title: Songs at LAEV

Lead agency name: Eco-Lions Engineering **Address:** 1 LMU Dr, Los Angeles, CA 90045

Contact person: Kristin Hernandez Phone number: (310) 338 - 2700

Project sponsor's name: Joseph Reichenberger

Address: 1 LMU Dr, Los Angeles, CA

Project Location: 3554 W 1st St, Los Angeles, CA 90004

General plan description: The current site is a Brownfield site, but the project is made with the assumption that remediation will be complete upon implementation, and currently existing asphalt will be removed. An existing café will also be demolished. This will make the site completely pervious, aside from the existing retrofitted auto shop/community hub, and newly implemented garden shed structure.

Zoning: C1.5

Description of project:

The existing "Songs at LAEV" site is being re-developed to include an above-ground rainwater storage and use system, aquaponics system, and re-designed learning garden with a shed structure. There are no off-site features necessary for implementation.

Surrounding land uses and setting:

The site is located within the Los Angeles Eco-Village neighborhood, made up of the two blocks of Bimini and White House Place in the northern end of the Koreatown area. The "Songs at LAEV" site is located on the corner of West 1st St, adjacent to the community housing co-op. The surrounding area is metropolitan, and there is a school located across the street from the community.

Other public agencies whose approval is required (e.g. permits, financial approval, or participation agreements):

LA County Department of Public Health, LA Department of Public Works

NATIVE AMERICAN CONSULTATION

Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code (PRC) section 21080.3.1? Yes No

If yes, ensure that consultation and heritage resource confidentiality follow PRC sections 21080.3.1 and 21080.3.2 and California Government Code 65352.4

Note: Conducting consultation early in the CEQA process allows tribal governments, lead agencies, and project proponents to discuss the level of environmental review, identify and address potential adverse impacts to tribal cultural resources, and reduce the potential for delay and conflict in the environmental review process. (See Public Resources Code section 21080.3.2.) Information may also be available from the California Native American Heritage Commission's Sacred Lands File per Public Resources Code section 5097.96 and the California Historical Resources Information System administered by the California Office of Historic Preservation. Please also note that Public Resources Code section 21082.3(c) contains provisions specific to confidentiality.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project. Please see the checklist beginning on page 4 for additional information.

Aesthetics	Agriculture and Forestry
Air Quality	Biological Resources
Cultural Resources	Energy
⊠ Geology/Soils	Greenhouse Gas Emissions
Hazards and Hazardous Materials	Hydrology/Water Quality
Land Use/Planning	Mineral Resources
Noise	Population/Housing
Public Services	Recreation
Transportation	Tribal Cultural Resources
Utilities/Service Systems	☐ Wildfire
Mandatory Findings of Significance	

DETERMINATION

On the basis of this initial evaluation (choose one):

imes	I find that the proposed project COULD NOT have a significant effect on the
	environment, and a NEGATIVE DECLARATION will be prepared.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

- I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- | I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Kristin Hernandez

Print Name

4/4/2023 Date

CEQA Environmental Checklist

DIST-CO-RTE: N/A

PM/PM: N/A

EA/Project No.:CIVL461

This checklist identifies physical, biological, social and economic factors that might be affected by the proposed project. In many cases, background studies performed in connection with the projects indicate no impacts. A NO IMPACT answer in the last column reflects this determination. Where there is a need for clarifying discussion, the discussion is included either following the applicable section of the checklist or is within the body of the environmental document itself. The words "significant" and "significance" used throughout the following checklist are related to CEQA, not NEPA, impacts. The questions in this form are intended to encourage the thoughtful assessment of impacts and do not represent thresholds of significance.

Instructions

Click on "Choose an item" under the CEQA Determination column to select the appropriate significance determination from the drop-down list. If discussions will be included after each resource table, follow the guidance provided in the annotated outlines.

AESTHETICS

Except as provided in Public Resources Code Section 21099, would the project:

Question	CEQA Determination
a) Have a substantial adverse effect on a scenic vista?	No Impact
b) Substantially damage scenic resources, including, but	No Impact
not limited to, trees, rock outcroppings, and historic	
buildings within a state scenic highway?	
c) In non-urbanized areas, substantially degrade the	No Impact
existing visual character or quality of public views of the	
site and its surroundings? (Public views are those that	
are experienced from a publicly accessible vantage	
point). If the project is in an urbanized area, would the	
project conflict with applicable zoning and other	
regulations governing scenic quality?	
d) Create a new source of substantial light or glare which	No Impact
would adversely affect day or nighttime views in the	
area?	

AGRICULTURE AND FOREST RESOURCES

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of

Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment Project; and the forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

Question	CEQA Determination
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?	No Impact
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?	No Impact
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?	No Impact
 d) Result in the loss of forest land or conversion of forest land to non-forest use? 	No Impact
 e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use? 	No Impact

AIR QUALITY

Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project:

Question	CEQA Determination
a) Conflict with or obstruct implementation of the applicable air quality plan?	No Impact
b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non- attainment under an applicable federal or state ambient air quality standard?	No Impact
c) Expose sensitive receptors to substantial pollutant concentrations?	No Impact
 d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people? 	No Impact

BIOLOGICAL RESOURCES

Would the project:

Question	CEQA Determination
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife, U.S. Fish and Wildlife Service, or NOAA Fisheries?	No Impact
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?	No Impact
c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?	No Impact
 d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? 	No Impact
 e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? 	No Impact
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?	No Impact

CULTURAL RESOURCES

Question	CEQA Determination
a) Cause a substantial adverse change in the significance	No Impact
of a historical resource pursuant to in §15064.5?	
b) Cause a substantial adverse change in the significance	No Impact
of an archaeological resource pursuant to §15064.5?	
c) Disturb any human remains, including those interred	No Impact
outside of dedicated cemeteries?	-

<u>ENERGY</u>

Would the project:

Question	CEQA Determination
a) Result in potentially significant environmental impact due	No Impact
to wasteful, inefficient, or unnecessary consumption of	
energy resources, during project construction or	
operation?	
b) Conflict with or obstruct a state or local plan for	No Impact
renewable energy or energy efficiency?	

GEOLOGY AND SOILS

Question	CEQA Determination
a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:	No Impact
 i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42. 	
ii) Strong seismic ground shaking?	Less Than Significant with Mitigation Incorporated
iii) Seismic-related ground failure, including liquefaction?	Less Than Significant Impact
iv) Landslides?	No Impact
b) Result in substantial soil erosion or the loss of topsoil?	No Impact
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?	Less Than Significant Impact
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?	Less Than Significant Impact
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?	No Impact
f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	No Impact

GREENHOUSE GAS EMISSIONS

Would the project:

Question	CEQA Determination
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?	No Impact
 b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases? 	No Impact

HAZARDS AND HAZARDOUS MATERIALS

Question	CEQA Determination
a) Create a significant hazard to the public or the	No Impact
environment through the routine transport, use, or	
disposal of hazardous materials?	
 b) Create a significant hazard to the public or the 	No Impact
environment through reasonably foreseeable upset and	
accident conditions involving the release of hazardous	
materials into the environment?	
c) Emit hazardous emissions or handle hazardous or	No Impact
acutely hazardous materials, substances, or waste within	
one-quarter mile of an existing or proposed school?	
d) Be located on a site which is included on a list of	No Impact
hazardous materials sites compiled pursuant to	
Government Code Section 65962.5 and, as a result,	
would it create a significant nazard to the public or the	
environment?	
e) For a project located within an airport land use plan or,	No Impact
where such a plan has not been adopted, within two	
miles of a public airport of public use airport, would the	
project result in a safety fidzaru or excessive fioise for	
f) Impoint implementation of or physically interfere with an	No Import
adopted emergency response plan or emergency	NO IMPACI
evacuation plan?	
a) Expose people or structures, either directly or indirectly	No Impact
to a significant risk of loss injury or death involving	
wildland fires?	

HYDROLOGY AND WATER QUALITY

Would the project:

Question	CEQA Determination
a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?	No Impact
b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such the project may impede sustainable groundwater management of the basin?	No Impact
 c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would: (i) result in substantial erosion or siltation on- or off-site: 	No Impact
 (i) result in substantial crosser of singlet of on one, (ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite; 	No Impact
 (iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or 	No Impact
(iv) impede or redirect flood flows?	No Impact
d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?	No Impact
 e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan? 	No Impact

LAND USE AND PLANNING

Question	CEQA Determination
a) Physically divide an established community?	No Impact
 b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? 	No Impact
MINERAL RESOURCES

Would the project:

Question	CEQA Determination
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?	No Impact
b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?	No Impact

<u>NOISE</u>

Would the project result in:

Question	CEQA Determination
a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	No Impact
 b) Generation of excessive groundborne vibration or groundborne noise levels? 	No Impact
c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?	No Impact

POPULATION AND HOUSING

Would the project:

Question	CEQA Determination
a) Induce substantial unplanned population growth in an	No Impact
area, either directly (for example, by proposing new	
homes and businesses) or indirectly (for example,	
through extension of roads or other infrastructure)?	
b) Displace substantial numbers of existing people or	No Impact
housing, necessitating the construction of replacement	
housing elsewhere?	

PUBLIC SERVICES

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the following public services:

Question	CEQA Determination
a) Fire protection?	No Impact
b) Police protection?	No Impact
c) Schools?	No Impact
d) Parks?	No Impact
e) Other public facilities?	No Impact

RECREATION

Question	CEQA Determination
a) Would the project increase the use of existing	No Impact
neighborhood and regional parks or other recreational	
facilities such that substantial physical deterioration of	
the facility would occur or be accelerated?	
b) Does the project include recreational facilities or require	No Impact
the construction or expansion of recreational facilities	
which might have an adverse physical effect on the	
environment?	

TRANSPORTATION

Would the project:

Question	CEQA Determination
a) Conflict with a program, plan, ordinance, or policy	No Impact
addressing the circulation system, including transit,	
roadway, bicycle and pedestrian facilities?	
b) Would the project conflict or be inconsistent with CEQA	No Impact
Guidelines section 15064.3, subdivision (b)?	
c) Substantially increase hazards due to a geometric	No Impact
design feature (e.g., sharp curves or dangerous	
intersections) or incompatible uses (e.g., farm	
equipment)?	
d) Result in inadequate emergency access?	No Impact

TRIBAL CULTURAL RESOURCES

Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

Question	CEQA Determination
a) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical	No Impact
resources as defined in Public Resources Code section	
 b) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource 	No Impact
Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.	

UTILITIES AND SERVICE SYSTEMS

Would the project:

Question	CEQA Determination
 a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects? 	No Impact
b) Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?	No Impact
c) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?	No Impact
 d) Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals? 	No Impact
e) Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?	No Impact

WILDFIRE

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:

Question	CEQA Determination
a) Substantially impair an adopted emergency response	No Impact
plan or emergency evacuation plan?	
b) Due to slope, prevailing winds, and other factors,	No Impact
exacerbate wildfire risks, and thereby expose project	
occupants to, pollutant concentrations from a wildfire or	
the uncontrolled spread of a wildfire?	
c) Require the installation or maintenance of associated	No Impact
infrastructure (such as roads, fuel breaks, emergency	
water sources, power lines or other utilities) that may	
exacerbate fire risk or that may result in temporary or	
ongoing impacts to the environment?	
d) Expose people or structures to significant risks, including	No Impact
downslope or downstream flooding or landslides, as a	
result of runoff, post-fire slope instability, or drainage	
changes?	

MANDATORY FINDINGS OF SIGNIFICANCE

Question	CEQA Determination
a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?	No Impact
 b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)? 	No Impact
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?	No Impact

APPENDIX J: Mentor and Client Correspondence

LAEV CAPSTONE MENTOR AND CLIENT CORRESPONDENCE

November 11, 2022 Mentor Meeting with Dr. Brianna Pagán

•Attendees: Kendall Gilbert, Kristin Hernandez, Gia Morelli, Brianna Pagán, Marina Rios.

•Outcomes: Brainstorming project ideas and planning community outreach to find a client.

December 8, 2022 Client Meeting with Lois Arkin

Attendees: Lois Arkin, Kendall Gilbert, Kristin Hernandez, Gia Morelli, Marina Rios.
Outcomes: Introduction to Los Angeles Eco-village, overview for potential sites and design points to include in project scope.

January 16, 2023 Client Meeting with Lois Arkin

Attendees: Lois Arkin, Kendall Gilbert, Kristin Hernandez, Gia Morelli, Marina Rios.
Outcomes: Finalizing design ideas and project scope in relation to community needs.

January 28, 2023 Site Visit at the LAEV

Attendees: Lois Arkin, Kendall Gilbert, Kristin Hernandez, James Jeon, Marina Rios.
Outcomes: Site tour and inspection of Song's site, introductions to some key community members.

February 14, 2023 Advisory Meeting with Dr. Joseph Reichenberger and Dr. Negin Tauberg

•Attendees: Kendall Gilbert, Kristin Hernandez, Gia Morelli, Marina Rios, Joseph Reichenberger, Negin Tauberg.

•Outcomes: Finalizing deliverables expected for future submittals, approving project scope and design elements with project requirements.

March 14, 2023 Mentor Meeting with Dr. Joseph Reichenberger and Dr. Brianna Pagán

•Attendees: Kendall Gilbert, Kristin Hernandez, Gia Morelli, Brianna Pagán, Joseph Reichenberger, Marina Rios.

•Outcomes: Discussing scope for site utilities and runoff collection, adjusting brownfield site assumptions.

LAEV CAPSTONE MENTOR AND CLIENT CORRESPONDENCE

March 17, 2023 Mentor Meeting with Dr. Maria Elena Giner

Attendees: Kendall Gilbert, Maria Giner, Kristin Hernandez, Gia Morelli, Marina Rios.
Outcomes: Mentor introduction, overview of first submittal, recieving feedback on preliminary design report to make adjustments for second submittal.

March 24, 2023 Mentor Meeting with Dr. Brianna Pagán

Attendees: Kendall Gilbert, Kristin Hernandez, Gia Morelli, Brianna Pagán.
Outcomes: Discussion of scope for geospatial hydrology assistant project, introduction to softwares and packages to include in final code.

March 24, 2023 Mentor Meeting with Dr. Maria Elena Giner

Attendees: Kendall Gilbert, Maria Giner, Kristin Hernandez, Gia Morelli, Marina Rios.
Outcomes: Discussions of new site plan, discussion of minor adjustments for new assumptions and design changes.

March 24, 2023 Client Meeting with Gideon Susman and Lois Arkin

•Attendees: Lois Arkin, Kendall Gilbert, Kristin Hernandez, Gia Morelli, Marina Rios, Gideon Susman.

•Outcomes: Overview of first submittal and current design elements, recieving feedback on design changes to improve utility of designs for the LAEV community, clarifying community objectives.

March 31, 2023 Mentor Meeting with Dr. Maria Elena Giner

•Attendees: Kendall Gilbert, Maria Giner, Kristin Hernandez, Gia Morelli, Marina Rios.

•Outcomes: Discussion on presentation of ideas, finalizing site plan, final feedback on design report for second submittal due 4/4.

ECO-LIONS ENGINEERING WOULD LIKE TO THANK THE ABOVE LISTED MENTORS, CLIENTS, AND LAEV COMMUNITY MEMBERS FOR THEIR GUIDANCE AND SUPPORT THROUGHOUT THIS PROJECT. From: Maria Elena Giner mariaelena.giner@ibwc.gov @

Subject: RE: First Draft of Capstone Design Report

Date: April 15, 2023 at 4:46 PM

To: Mireles Rios, Marina mmirele2@lion.lmu.edu, Morelli, Gianna gmorelli@lion.lmu.edu

Cc: Gilbert, Kendall kgilbe11@lion.lmu.edu, Hernandez, Kristin kherna42@lion.lmu.edu

EXTERNAL EMAIL: Do not open attachments or click on links if you do not recognize the sender.

This message classified as Personal

Hi Ladies,

This was an excellent draft. I am attaching my comments. Hopefully you find these helpful. I have time on Sunday (pretty flexible so name a time) or Monday after 6pm PT. Also thank you for the well wishes.

Warm regards,

Dr. Maria-Elena Giner, P.E. (She/Her/Hers)

Commissioner (U.S. Section) International Boundary and Water Commission, United States and Mexico United States Section 4191 N. Mesa Street El Paso, TX 79902-1423 (915) 832-4100 mariaelena.giner@ibwc.gov

https://ibwc.gov/home.html

in

"Pleasure in the job puts perfection in the work." - Aristotle

MG

Subject: LA EcoVillage Second Progress Submittal

- Date: April 15, 2023 at 6:24 PM
 - To: Morelli, Gianna gmorelli@lion.lmu.edu, Gilbert, Kendall kgilbe11@lion.lmu.edu, Mireles Rios, Marina mmirele2@lion.lmu.edu, Hernandez, Kristin kherna42@lion.lmu.edu
 - Cc: Reichenberger, Joseph Joseph.Reichenberger@lmu.edu

Hi ladies,

Please see attached for my input (red markups) throughout the pdf report (majority in Chapter 3) to incorporate for the final submittal.

Marina, for the presentation it would be good to show a loading criteria table for the garden structure as well as some visual snapshots e.g., floor plan, roof plan (showing typical rafter size/spacing and girder size, wall lengths), section views of door/windows and slope of roof, etc.

If you have any questions, feel free to contact me.

Best,

Negin A. Tauberg, Ph.D., P.E. Visiting Assistant Professor Department of Civil Engineering & Environmental Science Seaver College of Science and Engineering LMU|LA Loyola Marymount University Pereira Hall 132 1 LMU Drive Los Angeles, CA 90045-2659 Office: <u>310-338-5880</u>

From: Tauberg, Negin <Negin.Tauberg@Imu.edu>
Sent: Thursday, March 16, 2023 1:14 PM
To: Morelli, Gianna <gmorelli@lion.Imu.edu>; Gilbert, Kendall <kgilbe11@lion.Imu.edu>;
Mireles Rios, Marina <mmirele2@lion.Imu.edu>; Hernandez, Kristin
<kherna42@lion.Imu.edu>
Cc: Reichenberger, Joseph <Joseph.Reichenberger@Imu.edu>
Subject: Re: LA Ecovillage First Submittal

Hi ladies,

Please see attached for some markups (in red) for your project (mostly for section 3). This pdf includes Professor Reichenberger's input in the yellow rectangles as well.

Best,

Negin A. Tauberg, Ph.D., P.E.
 Visiting Assistant Professor
 Department of Civil Engineering & Environmental Science
 Seaver College of Science and Engineering
 LMU|LA Loyola Marymount University

Pereira Hall 132 1 LMU Drive Los Angeles, CA 90045-2659 Office: <u>310-338-5880</u> NΤ

Sent: Monday, February 20, 2023 10:31 PM To: Morelli, Gianna <gmorelli@lion.lmu.edu>; Gilbert, Kendall <kgilbe11@lion.lmu.edu>; Mireles Rios, Marina <mmirele2@lion.lmu.edu>; Hernandez, Kristin <kherna42@lion.lmu.edu> Cc: Reichenberger, Joseph <Joseph.Reichenberger@lmu.edu> Subject: Re: LA Ecovillage First Submittal

Hello team,

From an overall view of your draft, I see that you have the main design considerations included and summarized, so that's good; but you do have plenty of design work to do (design details in some sections not started/pending).

Keep working on finalizing the various design tasks. I will mentor Marina on the shed structure design and getting information from Appendix E calcs summarized into the main report.

In your overall site/tank designs, also refer to ASCE 7-16 Chapter 13 for seismic anchorage of applicable items (for example, a tank that weighs more than 400# needs to be seismically anchored).

Best,

Negin A. Tauberg, Ph.D., P.E. Visiting Assistant Professor Department of Civil Engineering & Environmental Science Seaver College of Science and Engineering LMU|LA Loyola Marymount University Pereira Hall 132 1 LMU Drive Los Angeles, CA 90045-2659 Office: <u>310-338-5880</u>

From: Morelli, Gianna <gmorelli@lion.lmu.edu>
Sent: Monday, February 20, 2023 9:59 PM
To: Reichenberger, Joseph <Joseph.Reichenberger@lmu.edu>; Tauberg, Negin
<Negin.Tauberg@lmu.edu>
Cc: Gilbert, Kendall <kgilbe11@lion.lmu.edu>; Mireles Rios, Marina
<mmirele2@lion.lmu.edu>; Hernandez, Kristin <kherna42@lion.lmu.edu>
Subject: LA Ecovillage First Submittal

Dr. Reichenberger and Dr. Tauberg,

Please find our first submittal PDR attached to this email. Dr. Tauberg has agreed to fulfill the QA/QC form requirement for this submittal.

Thank you for your help so far and we look forward to your feedback as we continue to develop this exciting project.

Best Gia Morelli Senior Undergraduate Student Civil Engineering Frank R. Seaver College of Science and Engineering

Mobile509.869.0104Emailgmorelli@lion.lmu.edu

LA EcoVillage Lions_FDR.pdf APPENDIX K: Presentation and Poster Board

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

SIRUCIURAL	WATERIALS SEL	ECTION	
		SFRS Member	
Roof Rafters	No. 1 Douglas Fir	Shear Wall Panels	Plywood
Roof Girders	No. 1 Douglas Fir	Non-Structural Panels	Plywood
Wall Studs	No. 1 Douglas Fir	Roofing/Floori	
Roof Studs	No. 1 Douglas Fir	Roof Sheathing	Polycarbonate Paneling
	No. 1 Dougharth	Floor Sheathin	g Plywood
Foor Joists	No. 1 Douglas Fir	Foundation	Reinforced Concrete

Valada (math	LRFD Load Combinations per ASCE	7-16 Roof (psf)
veignt (psr)	1.4D	18.9
13.5	1.2D+1.6L+0.5Lr	25.8
0	1 2D+1.6L+0.53	16.2
0	1.2D+1.6Lr+L	46.9
19.2	1.2D+1.6S+L	16.2
0	1.2D+1.6R+L	16.2
0	1.2D+1.6L+0.5W	52.9
0	1.2D+1.6R+0.5W	22.2
11 07	1.2D+W+L+0.5Lr	37.8
11.77	1.2D+W+L+0.5S	28.2
4.37	1.2D+W+L+0.5R	28.2
8 1 /	0.9D+W 1.2D+5++5h+/+0.2S	24.1
0.14	0.9D-Ev+Eh	15.9
18.78	1.2D+Ev+Emh+L+0.25	39.4
	0.00 5	
	Veight (psf) 13.5 0 19.2 0 0 11.97 4.37 8.14 18.78	Veight (psf) UID Load Combining per ASCE 1 13.5 1.20 + 6.44.95x 13.5 1.20 + 6.44.95x 0 1.20 + 6.44.95x 13.7 1.20 + 6.44.95x 13.7 1.20 + 6.44.95x 13.7 1.20 + 6.44.95x 14.7 1.20 + 6.44.95x 15.7 1.20 + 6.44.95x 11.97 1.20 + 6.44.95x 11.97 1.20 + 6.44.95x 12.37 1.20 + 6.44.95x 13.7 1.20 + 6.44.95x 13.

<image><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

SONGS AT LOS ANGELES ECO-VILLAGE

KENDALL GILBERT, KRISTIN HERNANDEZ, GIANNA MORELLI, & MARINA MIRELES-RIOS

BACKGROUND

shop, on the north end of the neighborhood. The property is classified as a Brownfield and significant work has already been done munity focused on sustainable and economic cooperative living. community consists of the two blocks of Bimini and White House Place located in the north end of the Wilshire Center area of Los Angeles. In 2016, CRSP, the nonprofit developer of the LAEV, acquired a quarter acre property known as Songs, formerly an auto to address soil remediation and retrofit of the existing auto shop structure. The LAEV wishes to transform and redevelop this new acquisition into a thriving multipurpose community hub for tenants The Los Angeles Eco-Village (LAEV) is a 40-tenant co-op housing and visitors seeking to learn about sustainable urban living.

After several meetings with LA eco village founder Lois Arkin, and other LA eco village members, we summarized the immediate needs and desires of the community into four main objectives to guide our design.

04	The design shou minimize costs.
03	The design should fit within the schedule and scope of existing community plans.
02	The design should incorporate educational elements to inspire visitors and terrants to live more sustainably.
01	The design should cultivate new highly sustainable, and resilient ideas on urban living.

The area on the Southeast portion of the site has been reimagined and designed as a 'Learning Garden' to be equipped with a 120 square foot structure that serves as a multi-purpose Garden Education Center. The proposed Learning Garden space will aim to satisfy LAEV's expressed interest in developing a garden space with potential for community engagement and learning opportunity.

much on-site runoff as possible to improve the sustainable practices of the community. Harvesting on-site runoff for non-potable uses is a This design proposal also includes a rainwater collection, storage, and use system for the site. It is the goal of the client to collect and use as resilient and accessible practice, and it is a goal of the community to maximize collection and use on site while inspiring visitors and other members of the community to adopt similar practices. The current aquaponics system serves as an additional source of produce for the community and is used to educate and inspire visitors to try constructing their own aquaponics systems. Eco-lions engineering proposes an expanded aquaponics system to include live fish as the source of nutrients and the growing space expanded by implementing a stacked media bed design. The new system is designed to include production of microgreens per the suggestion of the community...

The Garden Education Center (GEC) is designed as 120 square foot wood framed structure with a 41 mono slope roof. The minimum and maximum heights of the structure are 10 feet and 14 feet respectively. The building is designed to serve the residents of designed to serve the residents of can use the space as a welcome center for scheduled tours, to host educational sessions or to store seedlings and newly planted plants. The surrounding area is designed as an outdoor garden space that can be used by residents and LA Eco-Village and visitors as a shared agriculture. Occupants of the building space to teach the basics of urban visitors for gardening workshops.

0 0 11.97 4.37 8.14 8.14 18.78 14.41

soil reports, the site class was conservatively assumed to be site class to rithe seation canalysis. To see similar of the resisting system of structural wood thear walks was selected for the structure. These shear walks were sized based on NDS 2018 height to base ratios, shear strength and deflection. The shear walls will be anchored to the base shear was determined through the ELF procedure from ASCE 7-16 guidelines. Since the site does not have foundation using steel heavy tension ties, sized to resist the resulting tension and compression force couple and deflection. The shear wall location is shown in the plan

ECOLIONS ENGINEERING approvinated using the nearest approvinated using the nearest foundation. The foundation will be a continuous strip footing sade at depth of 1k twidth of 1 k and thickness of 0.5 k thesed on IBC 2018 guidance. The footing will be reinforced with no.5 rebar.

The total site runoff was calculated for the site using the Modified Rational Retrod through the LA County Pythorcalis Schware accordings on the Schware accordings to the Schware according to the total site runoff and total collection volume are schware in the table below.

ion storage and use system was designed to help meet the desire / community to maximize on site water use. The rainwater collected es include replenishment of the aquaponics syst and stored from the structure roofs can be used for onsite irrigation in the learning garden, diversity garden, or the LAEV residential site next door. of the LAEV community to maximize on site wate nal non-potable The collec

and the suggested onsite vegetable washing station.

for the selected polyethylene tanks from POTBAR com are shown below. Both tanks will connect to the designed downspouts with PVC piping as shown in the details below Each tank sits on a concrete slab and is seismically braced in the details below. The final tank capacities were determined based off of the design runoff volume for the roofs of the Autoshop and garden structure. The dimensio

ction Tank Size (gallons)	1200	75) Height (in)	99	50	
Volume (gallo	f 1192.6	72.8) Diameter (in	76	23	
	Songs Building Roof	Shed Roof	Tank Size (gallons	1200	75	

٦

(ALL) SOF

Each tank sits on a steel plate that is anchored to a half foot thick concrete slab to resist seismic lateral forces.

Loyola Marymount Department of Civil & Environmental University Engineering

LA

UM

are raised in a tank and their waste produces ammonia. This nutrient rich water is then filtered through the media beds, where bacteria converts it to nitrite, then nitrate. This through the media beds, where bacteria converts it to nitrite, then nitrate. This serves as a fartific fror the plants in the system. Additionally, as the water passes through the media bed, solids are filtered out and provide area for bacteria to grow and mantain a stable pHevel in the system. Finally, the fresh water is returned to the fish tank to repeat the process.

SIZING AND

	Volume (gallons)	Area (ft^2)
Fish Tank	270 (holds 240)	18
Microgreens Media Beds x2)	51	18
^c nit/Vegetable Media Beds x1)	135	18
Tank Type	Depth/Bed Height (ft)	Total Headloss (ft)
Fish Tank	2	0
Microgreens Media Bed 1	0.375	2.375
Microgreens Media Bed 2	0.357	3.75
^c ruit/Vegetable Media Bed	-	5.75

Another important element for system maintenance is monitoring DO levels for the and plant health. The oxygen required for the system was calculated with the assumption of 6" medium pore diffusers, which utilize a 0.01 standard oxygen transfer efficiency rate. Additionally, this was determined based on the assumption that there would be a 1.2 oxygen to feed ratio. The number of air stones were determined by the weight of feed per hour and the weight of oxygen per hour. And finally, the air pump was sized based on the number of stones required, and their corresponding dm. This was also multiplied by a safety factor of 1.5 to ensure adequate aeration.

The aquaponics pump was sized with three main considerations: • Distance the water is lifted against gravity • Volume of water to fill the grow beds in the amount of time

amount of time the pump is Fish tank tumover

The pump was sized to cycle the tank volume through the media bed volume at least 1-2 times per hour, on a 15-minute timer system running 5 minutes on

Number of Air Stones

Aerator Size

Pipe Size

JX-44

800-1000 GPH Pump Size

H/J 0006

Air Stone Size 6" medium pore diffusers

STRUCTURAL FRAMING PLAN

Panel Nail Edge S (in) Blocking (in) 3/8 rea (sq ft) 72 Plywood Sheathing Structural Panel Material

1.375

3.5' X 3.5' SQUARE SLAB

7.75' X 7.75' SOUARE SLAB

Structural Sheathing Material Details Minimum Nail Bearing

APPENDIX L: Ethics Presentation

ETHICS CASE STUDY PRESENTATION

Prepared by Kendall Gilbert, Kristin Hernandez, Gia Morelli, & Marina Rios

1

CASE 20: CONFIDENTIAL REPORT FINDINGS

- Sara, an engineering intern (EI) who has passed her FE, is assigned to inspect the structural integrity of an apartment complex that a client is looking to sell. She is informed that the client requires the structural report to remain confidential.
- Sara performs a site inspection and notices no structural issues, but she does notice potential electrical hazards.
- . She verbally informs the client and writes a vague report about the safety hazards she observed, which is signed off by her supervisor. Later she finds out that the client did not inform the occupants nor the buyer about the potential hazard.

Sara moves on to other projects without informing the authorities or her supervisor.

3/21/23 LOYOLA MARYMOUNT UNIVERSITY

2

electrical hazards on the apartment complex site to her employers and failed to present the consequences of the electrical hazards to the client.

"...with reluctance, Sara verbally informed the client

Failed to "present clearly and promptly the consequences to clients and employers if their

engineering judgment is overruled where health, safety, and welfare of the public may be endangered;" (ASCE Code of Ethics Canon 1c)

about the problem and made an oblique reference to the electrical deficiencies in her report*

Sources		
• ASCE Code of	Ethics	
• California Prof	essional Code of Conduct Rule 475	
3/21/23	LOYOLA MARYMOUNT UNIVERSITY	7

APPENDIX M: Summary of Brownfield Investigation

SUMMARY OF BROWNFIELD INVESTIGATION AND REMEDIATION TACTICS

3554 WEST FIRST STREET, LOS ANGELES, CA

The Songs at LAEV site has been designated as a Brownfield by the United States Environmental Protection Agency Region 9. CRSP and LAEV plan to redevelop the site for community use including potential for commercial and residential use. In 2016, EFI Global, Inc. performed a Phase I Environmental site assessment at the Songs site.

In 2017, Weston Solutions, Inc performed a Phase II Targeted Brownfield's Assessment and an Analysis of Brownfields Cleanup Alternatives. Afterwards the LAEV partnered with the Soil Biogeochemistry Group at U.C. Riverside to research community-accessible remediation options for the site. The partnership conducted a study throughout 2021 and 2022 to determine the efficacy of fungi for absorbing heavy metals in conjunction with other remediation techniques like phytoextraction. The results of this study will be obtained from the client.

As of January 2023, the southwest portion of the site is being used for soil remediation research. The scope of work for this project does not involve selection or design of remedies. All soil remediation is to be completed by the time of implementation of elements included in this design report. APPENDIX N: Boring Log Data for 3560 Beverly Blvd

APPENDIX O: Timesheets

7/23 4/24/23	W Th F M T W Th F																																										
4/10/23 4/1	M T W Th F M T V																																							1			
4/3/23	F M T W Th F		*Easter	Break																																							
3/27/23	M T W Th																																										
3/20/23	M T W Th F N																							-																			
3/13/23	F M T W Th F																																										
3/6/23	M T W Th F																																										
2/27/23	M T W Th F		*Spring Break																																								
2/20/23	M T W Th F																																										
2/13/23	M T W Th F																																										
2/6/23	- M T W Th F																																										
1/30/23	T W Th F																																										
1/23/23	M T W Th F																																										
1/16/23	- M T W Th F																																										
1/9/23	M T W Th F																																										
Percent	Complete (%)		100%	100%	100%	100%		100%	100%	100.0	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	100%	2001	2 00 F	5.001	100.10		100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	100%	100%	
Duration	(days)		N/A	N/A	14	2		7			21	14	11	6	18	15	14	14		7	17		11	::		0 0	0		7	32	14	11	33	52	14	14	18		18	00	9	09	
Start End	Date Date		N/A N/A	N/A N/A	29-Mar 12-Apr	12-Apr 14-Apr	stion Center	23-Jan 30-Jan	22-lan 2-Eah	1 2 4 0 1 2 0	3-Feb 24-Feb	24-Feb 10-Mar	13-Mar 24-Mar	22-Mar 31-Mar	27-Mar 14-Apr	3-Apr 18-Apr	10-Apr 24-Apr	14-Apr 28-Apr		23-Jan 30-Jan	31-Jan 17-Feb	16-Fah 23-Fah	22-Eob AMar	10ML0 00 107	0-Midf 17-Midf	77 Mar 14 Apr	1044-41 IPIAI-77		23-Jan 30-Jan	16-Jan 17-Feb	4-Apr 18-Apr	13-Mar 24-Mar	13-Mar 15-Apr	31-Jan 24-Mar	4-Apr 18-Apr	4-Apr 18-Apr	27-Mar 14-Apr		10-Apr 28-Apr	10-Apr 18-Apr	15-Mar 21-Mar	27-Feb 28-Apr	
Task Name		Site Planning	Client Meetings	Mentor Meetings	Civil3D Site Plan	Earthwork Calculations	Learning Garden & Garden Educe	Conceptual Design	Matorials Decourch		Load Design	Member Sizing	Seismic Calculations	Seismic Bracing	Foundation Design	Shear Wall Design	Base Shear Analysis	Sketchup Model	Rain Water Collection and Use	Conceptual Design	Hvdroloav Study	Fassibility Study	Tack Civing		connection pesign	Seismic Brading	roundaton Design	Aquaponics System	Conceptual Design	Research	Material Selection	Aeration Design	Hydraulics Design	Maintinence Requirements	Structural Framing Design	Seismic Brading	Foundation Design	Report and Presentation	CAD Details	Slides	Ethics Case Study	Report Writing	

TEAM MEMBER 1/9.	Gia Morelli C	Kendall Gilbert C	Kristin Hernandez 6	Marina Rios C
23 1/16/23	m	4	2	2
1/23/23	2	7	2	4
1/30/23	4	9	-2	4
2/6/23	80	8	2	9
2/13/23	5	4	2	4
2/20/23	80	7	2	9
2/27/23	2	e	4	3
3/6/23	4	9	c.	8
3/13/23	10	12	9	4
3/20/23	9	8	10	8
3/27/23	~	9	8	10
4/3/23	10	10	10	12
4/10/23	20	28	20	25
4/17/23	20	15	20	20
4/24/23	20	15	20	16
TOTAL HOUI	133	139	132	132

Kgillt