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Abstract 

Real world data is inherently noisy and data analysis can be especially complex when noise is 

compounded in hierarchical and multilevel data structures. Since such data structures can be 

described using multiple approaches, the way data is collapsed and grouped within these 

structures can influence its resulting interpretation and analyses. To avoid discrepancies in data 

collapsing and grouping, multiple statistical approaches have been developed specifically to 

analyze multilevel data structures. Examples of multilevel statistical models are the two-factor 

ANOVA and the general linear model with repeated-measures (GLM-RR) which is typically 

used in the context of looking at change over time. Unlike simple summary-statistics such as t-

tests, multilevel models allow for precision in the effect of each level on the observed data. In 

this study, analyses will be done using both simple statistical models and multilevel models with 

a dataset from a behavioral decision-making assay that aims to see whether phototactic 

preference changes over 24 hours in larval zebrafish. The simple and multilevel analyses will be 

compared through the descriptive analyses and hypothesis testing. The descriptive analyses will 

provide insight into the practicality of collapsing levels of data in hierarchical data structures and 

the hypothesis testing will provide comparative insight into the use of both simple and multilevel 

statistical models. 

Keywords:  Crossed Data Structures, Multilevel Modelling, Hierarchical Data 
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Introduction 

Hierarchical Data Structures 

Hierarchical data structures are a means of storing data in multiple levels, where each 

level pertains to a category associated with one aspect of an experimental design. Take, for 

instance, a study that aims to compare the pre-calculus test scores of two different schools as 

seen in Figure 1. In this example, the test scores are stored at the lowest level with the students, 

and each student is associated with specific teachers who are then associated with specific 

schools. The storing of data in lower-level categories which are nested within higher-level 

categories is the defining characteristic of hierarchical data structures. 

 
Figure 1: This figure represents an example of a hierarchical data structure with three levels: 

schools, teachers, and students. Figure taken from https://www.statisticssolutions.com/what-is-

hierarchical-linear-modeling/ 

 

To simplify the relationships that occur in hierarchical data structures, it is possible to 

mathematically represent such structures through nodes and links. Figure 2A is one example of 

this type of representation using the example of schools, teachers, and students. In this 

representation, the test scores are stored in students a through j, which each correspond to one 

unique teacher labeled 1 through 5, which each correspond to one of the two schools labeled A or 

B. In this simple example, each node on each level has a one-to-one relationship with nodes in 

other levels. In other words, each student is associated with a singular teacher, and each teacher 

is associated with a singular school.  

https://www.statisticssolutions.com/what-is-hierarchical-linear-modeling/
https://www.statisticssolutions.com/what-is-hierarchical-linear-modeling/
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Figure 2: This figure represents the mathematical representation of the hierarchical data 

structure of schools, teachers, and students. Figure A) represents the simplest hierarchical data 

structure where every node has a one-to-one relationship and figure B) represents the completely 

crossed hierarchical data structure where every node is related to all other nodes on the level 

above and/or below it. 

 

In the real world, more complex relationships can occur where not every relationship is a 

one-to-one relationship. For instance, a student can be enrolled under more than one teacher, and 

a teacher can be affiliated with more than one school. This crossing can continue until 

completion in which case all students are enrolled under all teachers, who are affiliated with both 

schools. This completely crossed hierarchical data structure is depicted in Figure 2B where every 

student has arrows that connect them to every teacher, and every teacher has arrows that connect 

them to both schools. 

Analysis of Hierarchical Data Structures 

 Since the nested nature of hierarchical data structures adds a layer of complexity to data 

analysis due to potential interactions between the different levels of data, the analysis of such 

structures needs to be done carefully. One way to do so is by applying multilevel modeling such 

as the two-way ANOVA and General Linear Models with repeated regression (GLM-RR). The 

two-way ANOVA tests for the effects of multiple independent variables on dependent variables, 

including the way the independent variables interact with one another (Hayes, 2022). For 
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hierarchical data structures, the independent variables would be the levels of categories and the 

dependent variables would be the recorded data.  

 Similar to the two-way ANOVA, a GLM-RR analyzes a dependent variable that is 

measured more than once for each subject. In this case, each measurement differs in its 

independent variables which are called within-subject factors. In hierarchical data structures, 

these factors are the levels of categories in which data is stored. The primary difference is that 

GLM-RR transforms the dependent variables according to their within-subject factors prior to 

analysis, whereas a two-way ANOVA analyzes the original dependent variables according to 

their within-subject variables (Wolfinger and Chang, 1996). 

 Despite the availability of analysis methods for multilevel data, one study found that 

traditional summary-statistics suffice for nested data. In this study, they find that multilevel 

models may suffer from frequent singular fit errors compared to simpler analyses (McNabb and 

Murayama, 2021). Thus, they suggest that running summary-statistics analyses like t-tests with 

clustered and collapsed data may suffice for hierarchical data structures. Doing so would require 

collapsing data into one category and analyzing it accordingly, which also requires less 

computing power due to its relative simplicity compared to two-way ANOVA and GLM-RR. 

 Due to the variety of analysis methods that are available for hierarchical data structures, 

one of the objectives of this study is to compare the descriptive and statistical analyses of these 

methods. In addition, since summary-statics require the clustering and collapsing of data into one 

level, this study aims to compare the descriptive and statistical results of different collapsed data 

structures. 
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Spatial Decision-Making  

 In this study, the hierarchal data structure used was collected from a behavioral 

experiment that explored spatial decision-making. Spatial decision-making involves the intake of 

stimulus choices, the internal processing of a stimulus, the process of deciding, and a resulting 

output that involves movement (Eldrandaly, 2011). In the real world, one example of this is when 

one goes clothes shopping and is choosing to decide which stores to shop in. In this case, the 

store displays are visual stimuli choices, the internal processing involve an interplay with the 

stimuli and your personal preference, the process of deciding occurs when you choose a shop to 

enter, and the output involves your actual movement towards your preferred shop.  

Due to the nature of spatial decision-making, decisions can be measured via spatial 

information. Figure 3 depicts one of the representations of spatial decision-making which is 

represented via the potential decision paths one can take. Figure 3A depicts the earlier example 

of going clothes shopping which is measured by observing the two decision paths that can result 

from choosing either of the two visual choices. The more choices one is presented with, the more 

decision paths one can take which is represented in Figure 3B (Fajen and Warren, 2003). 

 
Figure 3: This figure depicts the mathematical representation of spatial decision-making. Figure 

A) represents spatial decision-making with two visual choices and two resulting decision paths 

while figure B) represents spatial decision-making with ten visual choices and ten resulting 

decision paths. 
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Phototaxis in Larval Zebrafish 

The spatial decision-making data used in this study was collected by utilizing phototactic 

behaviors in larval zebrafish. By definition, phototaxis is a behavior that involves movement in 

response to light stimuli where positive phototaxis is movement towards light and negative 

phototaxis is movement away from light. In larval zebrafish, it is known that positive phototactic 

behavior is displayed (Chen and Engert, 2014). One study utilized this behavior in their 

experimental design to study spatial decision-making where they presented two light stimuli to a 

fish on a black background as depicted in Figure 4A. In response to the stimuli, fish swam 

towards the light and underwent one of two decision paths as depicted in Figure 4B (Burgess et 

al., 2010). The movement that the larval zebrafish underwent mirrors the mathematical 

representations of spatial decision-making in Figure 3. This suggests that the use of light stimuli 

as visual stimuli for spatial decision-making paradigms in larval zebrafish is justifiable due to 

their positive phototactic behaviors. 

 
Figure 4: This figure depicts the use of phototaxis in spatial decision-making behavioral 

paradigms. Figure A) depicts the stimuli choices in such experimental paradigm and figure B) 

depicts the resulting movements of larval zebrafish. The movement of larval zebrafish in figure B 

mirrors the mathematical representation of spatial decision-making, which supports the use of 

phototactic stimuli to study spatial decision-making 
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Timescales and Flexible Phototaxis 

 Though larval zebrafish have been shown to display positive phototaxis, recent studies 

have found that these behaviors undergo fluctuations over different timescales. These timescales 

have been found to occur over short time scales such as when zebrafish move in and out of 

shaded areas, and long timescales such as when the sun rises and sets (Chen et al., 2021). 

Depending on the history of a zebrafish’s light exposure, the strength of phototactic behaviors 

can change. Due to this finding, the primary experimental question of this study is to determine 

whether phototactic behaviors change over 24 hours and if so, whether that change is consistent 

across different light stimuli pairs. 

Methods 

Experimental Setup and Data Collection 

In this study, data was collected through a closed-loop stimulus setup which is depicted in 

Figure 5. As shown, the setup consists of four parts: a) a projector that displays a split view 

stimulus that appears half-light and half-dark onto the bottom of a petri dish, b) a camera that 

tracks the orientation and location of the larval zebrafish, and c) a computer that translates the 

positional data from the camera back into the projector. By tracking and translating the positional 

data in real-time, the setup is able to adjust itself based on the zebrafish’s location in the dish and 

adjust the stimulus accordingly. Doing so allows the setup to precisely control what is being 

projected onto each eye of the fish regardless of where it is on the dish and which direction it is 

facing. This way, spatial decision-making can be measured by counting how many light-ward 

turns a fish takes and how many dark-ward turns a fish takes. 
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Figure 5: This figure depicts the experimental setup of the closed-loop behavioral assay where a. 

shows the projector which displays the stimuli to the bottom of the petri dish; b. shows the petri 

dish that contains a larval zebrafish; c. shows the camera that tracks and collects positional data 

of larval zebrafish which computes the positional data and feeds it back to projector. Through 

this loop, the placement of the stimulus responds to the movement of the fish so that the light 

stimulus is fixed to one eye throughout the trial period, and the dark stimulus is fixed to the other 

eye. 

In general, a trial consists of 1-minute trials that consists of a 30 second adaptation period 

and a 30 second experimental period as depicted in Figure 6. Data collection occurs during the 

experimental period where the stimulus appears as a split-view which consists of two different 

light intensities ranging from pure black to pure white. Due to the closed-loop nature of the 

setup, each of the light intensities is fixed onto either eye of the fish. This makes it so that the left 

eye sees only one light intensity throughout the duration of the experiment and the right eye sees 

the other light intensity throughout the duration of the experiment regardless of the orientation 

and direction of the fish. The light intensity shown to each eye is randomized every trial so that 

both eyes are exposed to both bright and dark intensities. This randomization controls for any 

turning bias that the fish might have. During the adaptation period, the stimulus appears as a 

homogenous background which consists of the average light intensity of the following 
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experimental stimuli. This adaptation period is designed to control for any short-term bias that 

may be carried over from the previous experimental stimuli.  

 

Figure 6: This figure shows the experimental design of the different stimuli shown during the adaptation 

period (left) and experimental period (right). The adaptation period consists of a 30-second stimulus and 

the experimental period consists of a 30-second split-view stimulus. 

Regarding data collection, the raw measurement in this experiment is the count of turns a 

fish takes towards the lighter intensity in relation to the total turns taken during the trial. For the 

analysis of this study, these raw turns were converted into a percentage which represents light-

ward turns. Since the shift from the adaptation stimuli to the experimental stimuli may result in 

noisy behaviors, the only turns that were included in this experiment were those that took place 

during the last 10 seconds of the experimental period when turning stabilized.  

Experimental Design  

The primary experimental design of this study consisted of two controls: time and 

stimulus intensity. Regarding time, data collection occurred over 1 hour experiment blocks that 

consisted of a 30-minute resting period and a 30-minute trial period. During the 30-minute 

resting period, the stimulus displayed a homogeneous grey background which was intended to 

control for any long-term variation in light exposure that the fish may have had prior to the 

experiment. During the 30-minute trial period, the stimulus displayed 30 1-minute trials, where 
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each trial consisted of the 30-second adaptation period and a 30-second trial period described 

previously. This experiment block was repeated twice, followed by a 22-hour resting period 

where fish were left on petri-dishes and exposed to light during daytime and dark during 

nighttime. After 22 hours of resting, the fish were then exposed to another 2 experiment blocks. 

This temporal design is summarized in Figure 7. 

 
Figure 7: This figure shows the temporal components of the experimental designs. The components 

include 1) the 26-hour timescale which involve 2 hours of data collection, 22 hours of rest, and 2 hours of 

repeated data collection, 2) the 2-hour experimental periods which are composed of two rounds of 30-

minute resting periods and 30-minute trial periods, and 3) the trial periods which consist of 30-second 

adaptation periods and 30-second experimental periods.  

For the entire duration of data collection, 32 zebrafish were used and their fish IDs were 

tracked to ensure that the experimental results could be traced to an individual level and that data 

could be paired. This, alongside the temporal design of the study, allowed for the experiment to 

see whether phototactic preference changed over the span of 24 hours. 

Regarding stimulus intensity, there were six light intensity pairs that the fish were 

exposed to during the trial period as depicted in Figure 8. These pairs were different 

combinations of four light intensities which were complete white, light grey, dark grey, and 

complete black. The intensities were specified on a digital greyscale where black was 0, dark 

grey was 0.3, light grey was 0.6, and white was 1. During the adaptation period prior to the trials, 

the light intensity shown was the average of the numerical value associated with the trial light 

intensity pairs. Throughout the 30-minute trial period, the stimuli pairs were randomized for all 

fishes. This light intensity design allowed for the experiment to see whether phototactic 
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preference was dependent on the type of stimuli the fish were presented with. Pairing the stimuli 

this way also allows for the experiment to detect whether specific characteristics of the stimuli 

such as the difference in the stimuli intensities, the darker stimuli intensity, or the lighter stimuli 

intensity are more likely to influence phototactic preference and its persistence over time.  

 

Figure 8: This figure shows the experimental design of the different stimuli pairs that were shown. The 

intensity values are as follows: 1) adaption intensity of 0.183, light intensity of 0.33, dark intensity of 0, 2) 

adaption intensity of 0.33, light intensity of 0.66, dark intensity of 0, 3) adaption intensity of 0.495, light 

intensity of 0.66, dark intensity of 0.33, 4) adaption intensity of 0.500, light intensity of 1, dark intensity of 

0, 5) adaption intensity of 0.66, light intensity of 1, dark intensity of 0.33, and 6) adaption intensity of 

0.83, light intensity of 1, dark intensity of 0.66 

Data Structure 

The primary question that this paper aims to answer regarding the dataset is whether 

phototactic preference changes over 24 hours. However, since there were other variables that 

were modified and controlled for in the experiment including the six stimulus pairs, each 

individual fish ID, and the trial number as recorded by the computer, the structure of the dataset 

is hierarchical and crossed as summarized in Figure 9. Essentially, the recorded data of the raw 

count of light-ward and dark-ward turns a fish takes in the last ten seconds of a trial is recorded 

for each trial. Each trial is associated with a specific fish, a specific stimulus, and a specific hour.   
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Figure 9: This figure reveals the hierarchical data structure of the phototactic, spatial decision-

making data from larval zebrafish. At the lowest level, the light-ward turns are measured and 

stored at the trial level, which are then stored at the individual fish level, which are then stored at 

the stimulus pair level, which are then stored at the hour level. 

Due to the hierarchical nature of the data structure, there are multiple approaches to data 

analysis that can be done in order to answer whether phototactic preference changes over 24 

hours including simple linear models alongside multilevel models. Therefore, the second 

question this paper aims to answer is to compare the statistical results of simple-linear models 

and multilevel models. This will first be done with descriptive analysis and the comparison of 

means, followed by statistical analysis and the comparison of statistical results. After a 

comparison is done, a closer assessment of the nature of the data will be conducted in order to 

potentially explain the differences or similarities that were observed. 

Since each type of model requires different data structures, the data used for analysis 

collapsed in different ways. Table 1 shows the three ways of collapsing the hierarchical data 

structure into one level. To explain how the collapsing is done, all the raw data that were 

collected under a specific variable were grouped together in counts of left turns and counts of 

right turns. For example, the turn counts from all fishes and all trials that were done using 

stimulus 1 on hour 0 were grouped together and the turn counts from all fishes and all trials that 

were done using stimulus 1 on hour 24 were grouped together. This was done for all stimuli on 

both days and would be considered the collapsing of the data structure into the stimulus level. 
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Then, the counts were converted into a percentage which would represent how often fishes 

turned towards the lighter intensity during the experiment. In this paper, this measure will be 

referred to as percent light-ward turn (LT%). This collapsing of raw counts and conversion into a 

percentage was done for all the variables: stimulus, individual fish, and trial. Throughout this 

paper, this collapsing will be referred to as one-level, one-variable data structures. 

Table 1: This table shows the three different ways that data was collapsed in this study. At the 

stimulus level, all turn counts regardless of fish and trial number were collapsed into each 

stimulus giving a total of 6 datapoints per hour, where each datapoint consisted of an average of 

10065 total turns. At the individual level, all turn counts regardless of stimulus and trial number 

were collapsed into each individual fish giving a total of 32 datapoints per hour, where each 

datapoint consisted of an average of 1887 total turns. At the trial level, all turn counts regardless 

of individual fish and stimulus were collapsed into each trial number giving a total of 6 

datapoints per hour, where each datapoint consisted of an average of 17 total turns. 

Level Data Structure Sample Size (n) and 

Average 

Denominator (d) 

Stimulus 

 

n=6 

d=10065 

Individual 

 

n=32 

d=1887 

Trial 

 

n=3600 

d=17 

 

Table 2 shows the two ways of collapsing the hierarchical data structure that was used for 

multi-level analysis. Similar to the one-level data structures, the turn counts were collapsed into 

the groups described by the lowest level of the data structure, followed by a conversion into a 

percentage. Both data structures for multi-level analysis took into account data from the different 
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stimuli and data from each individual fish. The only difference between the one-level data 

structure and the two-level data structure is that the one-level data structure contained the turn 

counts for each combination of stimulus and individual fish. Since there are 6 stimuli and 32 

individual fish, this meant that there was a total of 192 measurements under this data structure. 

Throughout this paper, this collapsing will be referred to as one-level, two-variable data 

structures. In contrast, the two-level data structure contained the turn counts for each individual 

fish, meaning that there was a total of 32 measurements. However, each measurement was 

associated with two other categorical variables: hour and stimulus. Throughout this paper, this 

collapsing will be referred to as two-level data structures. 

Table 2: This table shows the two ways that hierarchical data was analyzed in this study. The 

one-level data structure consisted of 192 datapoints per hour which averaged 315 total turn 

counts. The datapoints in this structure are stored at the level which represents unique pair of 

individual fish and stimulus. The two-level data structure consisted of 32 datapoints per hour 

which averaged 1887 total turn counts. The datapoints in this structure are stored at the 

individual fish level which are nested in unique stimuli. 

Level Data Structure Sample Size (n) and 

Average 

Denominator (d) 

One-level: 

Individual/ 

Stimulus 

 

n=192 

d=315 

Two-level 

 

n=32 

d=1887 
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Data Analysis 

The comparison of the different data structures occurred in two ways: through descriptive 

analysis and statistical analysis. The descriptive analysis will simply be the comparison of the 

means of hour 0 and hour 24 for each data structure. For the comparison of means of the two-

level data structures, this will be done through two different approaches: a two-factor ANOVA 

alongside a general linear model with repeated measures (GLM-RR). This will then be followed 

by statistical analysis which will be done with simple paired t-tests for one-level data structures 

and a two-factor ANOVA and GLM-RR for the two-level data structure. In this study, the t-tests 

were run in Excel and the multilevel analyses were run in SPSS. 

Results and Discussion 

Descriptive Analysis 

Figure 10 summarizes the mean LT% for hour 0 and hour 24 across different data 

structures and across different multilevel descriptive summaries. As depicted, the mean LT% for 

the one-variable data structures differed from one another where the trial data structure, the 

individual data structure, and the stimulus data structure had hour 0 means of 51.6%, 51.1% and 

51.4% respectively, and had hour 24 means of 53.8%, 54.3%, and 53.1% respectively. This leads 

to a range of 0.5% for the hour 0 means and a range of 1.2% for the hour 24 means. In 

comparison, the mean LT% for the two-variable data structures were more similar to one another 

where the one-level individual/stimulus data structure, the two-factor ANOVA summary, and the 

GLM-RR summary had hour 0 means of 51.3%, 51.3%, and 51.4% respectively, and had hour 24 

means of 54.4%, 54.4%, and 54.4% respectively. Compared to the one-variable means, the two-

variable means had a range of 0.1% for hour 0 and 0.0% for hour 24.  
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Figure 10: This figure reveals the descriptive results of the different data structures. The graph 

above shows the plots of the means using the four different collapsed data structures alongside 

the two different multilevel models for both hour 0 and hour 24. The table below shows the raw 

results of the graph for both hour 0 and hour 24. 

Comparing the means of the different data structures, all show a general upward trend 

which suggests that there is an overall increase in positive phototactic behavior over 24 hours in 

larval zebrafish. Despite this similarity, there are two data structures which have different slopes 

of %LT over 24 hours which are the trial-level data structure and the stimulus-level data 

structure. The means of these data structures are depicted in the blue and grey lines respectively 

in the graph in Figure 10.    

To assess why the trial-level and the stimulus-level show a slightly different slope from 

the other data structures, a closer look at the nature of the different distributions is required. 

Figure 11 summarizes the distribution and the sample size of %LTs for each one-level data 

structure. As depicted, the sample sizes of the trial, individual, stimulus, and individual/stimulus 
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variables were 3600, 32, 6, and 192 fishes respectively. Comparing the sample sizes, the small 

sample size of the stimulus variable may explain why the stimulus-level means differed from the 

two-level data structures since smaller sample sizes are more prone to sampling bias. Comparing 

the distributions, the distribution of the trial variable may explain why the trial-level means 

differed from the two-level data structures since the high variability in the data can introduce 

more noise.  

 

Figure 11: This figure shows the distributions and the sample sizes of the %LTs for all four 

collapsed one-level data structures. The distribution graphs reveal a larger than average range 

of %LTs for the trial-level and the sample size table reveals a smaller than average sample size 

for the stimulus-level. 

 

The high variability of the trial-level data may be attributed to the fact that the trial-level 

means had lesser turning counts compared to other one-level variables. This means that it may 

prone to sampling bias since lesser turning counts allows for extreme %LTs to become more 

likely. For instance, if a fish happened to turn left once in a given trial and did not turn right at 

all, then the raw left turn count would be 1 while the %LT would be 100%. However, if a fish 

turned happened to turn left once in a given trial and turned right once, the raw left turn count 

would still be 1, but the LT% would drop to 50%. Since the weight of every trial’s %LT is treated 
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equally in the calculation of the means, the weight of the turns themselves would differ and the 

trials with smaller turn counts are more likely to skew the mean %LT. This is seen in Figure 12 

which gives sample trial data for a random selection of fish. The effect of small sample size can 

be seen best with fish 2 which has only one turn for this trial, making it’s %LT 100%. Due to the 

large distribution range of the trial-level data structure and the small sample size of the stimulus-

level data structure, the deviating means may be due to these abnormalities.  

 
Figure 12: This figure shows a sample of the raw turn data from 10 trials over the span of the 

last 10 seconds where data was collected. In the graph, orange depicts left turns and blue depicts 

right turns. As observed, the number of turns taken per trial can vary. 

 

One-Level Statistical Analysis – Comparing Collapsed One-Level Data Structures 

Table 3 summarizes the paired t-test results of the one-level data structures with the 

following hypothesis: 

H0: µhour 0 PL% = µhour 24 PL% 

HA: µhour 0 PL% ≠ µhour 24 PL% 

Similar to the descriptive analysis result, the p-values of the one-variable means differed from one 

another. Specifically, the p-value of the trial-level, individual-level, and stimulus-level were 0.000, 0.013, 

and 0.057 respectively. The paired t-test that differed the most from other paired t-tests was the one 



HIERARCHICAL DATA STRUCTURES 21 

conducted with the stimulus-level. Like the descriptive analysis, this may be due to the stimulus 

variable’s small sample size.  

Table 3: This table shows the change in means alongside the paired t-test results of all the one-

level data structures including the trial-level, individual-level, stimulus-level, and the 

individual/stimulus-level data structures. ** depicts significance at an α=0.05 level and * depicts 

significance at an α=0.01 level 

 

As observed in the table, the p-values were overall low, with the individual-level and 

stimulus-level data structures being relatively larger. Given the sample size of the individual-

level variable (n=32) which is smaller than the trial-level (n=3600) and the individual/stimulus-

level (n=191), it is likely that the larger p-value may be due to a relatively smaller sample size. 

This can also be seen in the stimulus-level which has a small sample size (n=5). This suggests 

that when running statistical tests on collapsed data, paying attention to the sample size of the 

level that the data is collapsed to is important to consider as it may have an effect on the resulting 

p-value. 

Two-Level Statistical Analysis – Comparing ANOVA and GLM-RR 

The results for the two-factor ANOVA and the GLM-RR are summarized in the table of 

Figure 13 which shows similar relatively small p-values for the effects of all levels. In other 

words, it appears to show that there is a statistically significant effect of the day on the %LT and 

that there is a statistically significant effect of the stimulus on the %LT. However, there appears 

to be a larger p-value for the interaction term of stimulus and day, suggesting that the effect of 

the day on %LT may not be stimulus specific. This is shown in the bar graph and the plot of the 

two-way ANOVA and GLM-RR results in Figure 13. Especially in the plot of %LT over 24 
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hours across the different stimuli, there seems to be an upward trend regardless of the stimulus. 

This supports the larger p-value of the interaction term. 

 

 

Figure 13: This figure shows the results of the two-way ANOVA and the GLM-RR analyses of the 

two-level hierarchical data structure. The top graph depicts the bar graphs of the different 

mean %LT of each stimuli pair for both tests on hour 0 (left) and hour 24 (right). The middle 

graph depicts the plots of the different mean %LT of each stimuli pair for hour 0 and hour 24 for 

both the two-way ANOVA (left) and the GLM-RR (right). The table at the bottom depicts the 

numerical results of both statistical tests including the F-statistic and its corresponding p-value. 

** depicts significance at an α=0.05 level and * depicts significance at an α=0.01 level 

 

Comparing the statistical results of the two-way ANOVA and the GLM-RR, the p-values 

of both the day effect and the day*stimulus effect appears to be relatively larger in GLM-RR. To 

assess why this might be, a closer look at the GLM-RR model is needed. Since GLM-RR 
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analyzes hierarchical data based on transformed data, it assumes sphericity where the variances 

of all combinations of related groups are equal. This assumption is measured by Mauchly’s test 

of sphericity, and any p-values lower than a 0.05 violates this assumption. As depicted in Table 4, 

the day effect has no p-value due to it having 0 degrees of freedom. However, the p-values of the 

stimulus effect and the day*stimulus effect have p-values of 0.036 and 0.019, which violate the 

assumption. This violation may be the underlying reason why a larger p-value was observed for 

GLM-RR compared to the two-way ANOVA. 

Table 4: This table shows the Mauchly’s test of sphericity for the GLM-RR test run using 

the two-level hierarchical data structure 

 

Conclusion 

 In conclusion, there appears to be an overall increase in the positive phototactic behaviors 

of larval zebrafish regardless of how the hierarchical data structure is collapsed and which 

statistical test is used. Regardless, there were differences in the calculated change in mean %LT 

over 24 hours alongside differences in the calculated p-values associated with these differences. 

For mean %LT observed in the descriptive analysis, these differences can potentially be due to 

small sample sizes and large distributions as observed in the data structures that were collapsed 

into the stimulus-level and trial-level. In this study, the large range of data distribution may be 

due to the small total turns taken at the trial level which allows for the increased likelihood of 

extreme datapoints. In this case, both the large data distribution range and the small sample size 

are inherently sample size issues. This implies the importance of sample size of the datapoints 
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within a given level and the measurements taken within a given recorded datapoint when 

determining which level to collapse a hierarchical data structure into. 

 For the p-values observed in the statistical analysis, it appears that sample size also plays 

a role where smaller sample sizes lead to larger p-values in collapsed data structures. However, 

differences in observed p-values of multilevel statistical analysis may be due to other factors. In 

this study, a test-specific assumption for GLM-RR was violated, namely the Mauchly’s test of 

sphericity. This violation may have led to the observation of a larger p-value compared to the 

two-way ANOVA. This reveals the importance of choosing the right multilevel test, and meeting 

test-specific assumptions as these may lead to differences in p-values. 

 Overall, this study shows that it is possible for simple summary statistics to reveal similar 

trends in collapsed data structures as multilevel models. This finding is useful in cases that 

primarily look to compare two means with the most efficient computing power. However, it is 

important to consider sample size of both the recorded data and the level at which data is 

collapsed into when running these simple summary statistics. Though efficient for computing 

power, this may not be a useful method of analysis if a study is interested in looking at the 

interplay of multiple effects on a dependent variable. In this case, a multilevel analysis is 

required, but special attention must be made to the assumptions of the multilevel model used. 

Any violations to the assumption may impact the p-values and the subsequent interpretation of 

these effects. 
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