

Western Washington University

Western CEDAR

Lake Samish

Miscellaneous Reports

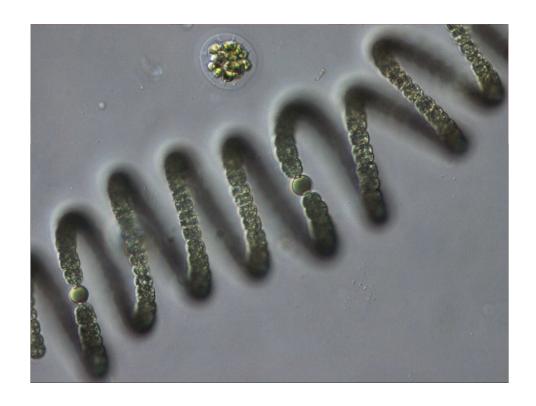
3-30-2010

Lake Samish Water Monitoring Project 2010 Final Report

Robin A. Matthews Western Washington University, robin.matthews@wwu.edu

Joan Vandersypen Western Washington University, joan.vandersypen@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/iws_samish


Part of the Environmental Sciences Commons, and the Fresh Water Studies Commons

Recommended Citation

Matthews, Robin A. and Vandersypen, Joan, "Lake Samish Water Monitoring Project 2010 Final Report" (2010). Lake Samish. 3.

https://cedar.wwu.edu/iws_samish/3

This Report is brought to you for free and open access by the Miscellaneous Reports at Western CEDAR. It has been accepted for inclusion in Lake Samish by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Lake Samish Water Monitoring Project 2010 Final Report

Dr. Robin A. Matthews Ms. Joan Vandersypen

Institute for Watershed Studies Huxley College of the Environment Western Washington University

March 30, 2010

Funding was provided by a grant from the Samish Water District. We thank students Clay Bailes, Rachael Gravon, Kara Hitchko, Kris Kannarr, Jessie Rosanbalm, Jordan Sly, Dan Whealdon-Haught; Huxley College GIS Specialist Stefan Freelan; and volunteers Mark Herrenkohl, Gordon Nolan, John Ploeger, and Kathy Ploeger for their assistance.

Contents

1	Annotated Figures	7
2	Tables	27
3	References	34
A	Lake Samish Hydrolab Profiles	35
В	Lake Samish Chlorophyll Profiles	74
C	Lake Samish Monitoring Data	113

List of Figures

1	Lake Samish tributary and lake sampling sites, 2005–2010	8
2	Surface and bottom water temperatures, June 2005 through January 2010	9
3	Dissolved oxygen concentrations, June 2005 through January 2010.	10
4	Alkalinity	11
5	Surface and bottom pH levels (laboratory analysis), June 2005 through January 2010.	12
6	Conductivity levels (laboratory analysis), June 2005 through January 2010	13
7	Total phosphorus concentrations, June 2005 through January 2010.	14
8	Soluble orthophosphate concentrations, June 2005 through January 2010	15
9	Total nitrogen concentrations, June 2005 through January 2010	16
10	Nitrate/nitrite data, June 2005 through January 2010	17
11	Lake Samish ammonium data, June 2005 through January 2010	18
12	Lake Samish near-surface chlorophyll levels, June 2005 through January 2010	19
13	Median TSI_{chl} values at Site A, June 2005 through January 2010	20
14	Median Lake Samish TSI_{chl} values at Site B, June 2005 through January 2010	21
15	Median Lake Samish TSI_{chl} values at Site C, June 2005 through January 2010	22
16	Median Lake Samish TSI_{chl} values at Site D, June 2005 through January 2010	23
17	Secchi depths, June 2005 through January 2010	24
18	Turbidity data, June 2005 through January 2010	25

19	Fecal coliform data, June 2005 through January 2010	26
20	Lake Samish Hydrolab profiles for Sites A–D, June 21, 2005	36
21	Lake Samish Hydrolab profiles for Sites A–D, July 20, 2005	37
22	Lake Samish Hydrolab profiles for Sites A–D, August 23, 2005	38
23	Lake Samish Hydrolab profiles for Sites A–D, September 20, 2005.	39
24	Lake Samish Hydrolab profiles for Sites A–D, October 16, 2005	40
25	Lake Samish Hydrolab profiles for Sites A–D, November 20, 2005.	41
26	Lake Samish Hydrolab profiles for Sites A–D, January 22, 2006.	42
27	Lake Samish Hydrolab profiles for Sites A–D, February 26, 2006.	43
28	Lake Samish Hydrolab profiles for Sites A–D, March 19, 2006	44
29	Lake Samish Hydrolab profiles for Sites A–D, April 23, 2006	45
30	Lake Samish Hydrolab profiles for Sites A–D, May 21, 2006	46
31	Lake Samish Hydrolab profiles for Sites A–D, June 20, 2006	47
32	Lake Samish Hydrolab profiles for Sites A–D, July 19, 2006	48
33	Lake Samish Hydrolab profiles for Sites A and B, August 24, 2006.	49
34	Lake Samish Hydrolab profiles for Sites A and B, September 18, 2006	50
35	Lake Samish Hydrolab profiles for Sites A and B, October 22, 2006.	51
36	Lake Samish Hydrolab profiles for Sites A and B, December 18, 2006	52
37	Lake Samish Hydrolab profiles for Sites A and B, January 30, 2007.	53
38	Lake Samish Hydrolab profiles for Sites A and B, February 27, 2007	54
39	Lake Samish Hydrolab profiles for Sites A and B, March 29, 2007.	55
40	Lake Samish Hydrolab profiles for Sites A and B, April 24, 2007.	56
41	Lake Samish Hydrolab profiles for Sites A and B. May 24, 2007.	57

42	Lake Samish Hydrolab profiles for Sites A–D, June 21, 2007	58
43	Lake Samish Hydrolab profiles for Sites A–D, September 13, 2007.	59
44	Lake Samish Hydrolab profiles for Sites A and B, November 15, 2007	60
45	Lake Samish Hydrolab profiles for Sites A–D, December 20, 2007.	61
46	Lake Samish Hydrolab profiles for Sites A and B, January 29, 2008.	62
47	Lake Samish Hydrolab profiles for Sites A–D, March 25, 2008	63
48	Lake Samish Hydrolab profiles for Sites A and B, April 21, 2008.	64
49	Lake Samish Hydrolab profiles for Sites A and B, May 15, 2008	65
50	Lake Samish Hydrolab profiles for Sites A–D, June 10, 2008	66
51	Lake Samish Hydrolab profiles for Sites A and B, July 22, 2008	67
52	Lake Samish Hydrolab profiles for Sites A and B, October 23, 2008.	68
53	Lake Samish Hydrolab profiles for Sites A–D, January 25, 2009.	69
54	Lake Samish Hydrolab profiles for Sites A–D, April 27, 2009	70
55	Lake Samish Hydrolab profiles for Sites A–D, July 1, 2009	71
56	Lake Samish Hydrolab profiles for Sites A–D, October 20, 2009	72
57	Lake Samish Hydrolab profiles for Sites A and B, January 26, 2010.	73
58	Lake Samish chlorophyll data for Sites A–D, June 15, 2005	75
59	Lake Samish chlorophyll data for Sites A–D, July 20, 2005	76
60	Lake Samish chlorophyll data for Sites A–D, August 23, 2005	77
61	Lake Samish chlorophyll data for Sites A and B, September 20, 2005	78
62	Lake Samish chlorophyll data for Sites A and B, October 16, 2005.	79
63	Lake Samish chlorophyll data for Sites A–D, November 20, 2005.	80
64	Lake Samish chlorophyll data for Sites A–D. January 22, 2006	81

65	Lake Samish chlorophyll data for Sites A–D, February 26, 2006.	82
66	Lake Samish chlorophyll data for Sites A–D, March 19, 2006	83
67	Lake Samish chlorophyll data for Sites A–D, April 23, 2006	84
68	Lake Samish chlorophyll data for Sites A–D, May 21, 2006	85
69	Lake Samish chlorophyll data for Sites A–D, June 20, 2006	86
70	Lake Samish chlorophyll data for Sites A–D, July 19, 2006	87
71	Lake Samish chlorophyll data for Sites A and B, August 24, 2006.	88
72	Lake Samish chlorophyll data for Sites A and B, September 18, 2006	89
73	Lake Samish chlorophyll data for Sites A and B, October 22, 2006.	90
74	Lake Samish chlorophyll data for Sites A and B, December 18, 2006	91
75	Lake Samish chlorophyll data for Sites A and B, January 30, 2007.	92
76	Lake Samish chlorophyll data for Sites A and B, February 27, 2007.	93
77	Lake Samish chlorophyll data for Sites A and B, March 29, 2007.	94
78	Lake Samish chlorophyll data for April 24, 2007	95
79	Lake Samish chlorophyll data for Site B, May 24, 2007	96
80	Lake Samish chlorophyll data for Sites A–D, June 21, 2007	97
81	Lake Samish chlorophyll data for Sites A–D, September 13, 2007.	98
82	Lake Samish chlorophyll data for Sites A and B, November 15, 2007	99
83	Lake Samish chlorophyll data for Sites A–D, December 20, 2007.	100
84	Lake Samish chlorophyll data for Sites A and B, January 29, 2008.	101
85	Lake Samish chlorophyll data for Sites A–D, March 25, 2008	102
86	Lake Samish chlorophyll data for Sites A and B, April 21, 2008	103
87	Lake Samish chlorophyll data for Sites A and B, May 15, 2008	104

88	Lake Samish chlorophyll data for Sites A–D, June 10, 2008 105
89	Lake Samish chlorophyll data for Sites A and B, July 22, 2008 106
90	Lake Samish chlorophyll data for Sites A–D, October 23, 2008 107
91	Lake Samish chlorophyll data for Sites A–D, January 25, 2009 108
92	Lake Samish chlorophyll data for Sites A–D, April 27, 2009 109
93	Lake Samish chlorophyll data for Sites A–D, July 1, 2009 110
94	Lake Samish chlorophyll data for Sites A–D, October 20, 2009 111
95	Lake Samish chlorophyll data for Sites A and B, January 26, 2010. 112

List of Tables

1	Summary of analytical methods used by the Institute for Watershed Studies in the Lake Samish monitoring project	28
2	Lake Samish sampling dates for Sites A–D	29
3	Lake Samish lake sampling dates for Sites A–B (supplemental nocost sampling by IWS)	30
4	Lake Samish tributary sampling dates	31
5	Dissolved oxygen (DO), temperature (Temp), alkalinity (Alk), turbidity (Turb), pH, and conductivity (Cond) results for Lake Samish watershed creeks	32
6	Ammonium (NH ₃), total nitrogen (TN), nitrate/nitrite (NO ₃), total phosphorus (TP), soluble orthophosphate (OP), and fecal coliform (FC) results for Lake Samish watershed creeks	33

Background Information

This report describes work done as a continuation of the Lake Samish monitoring project started in June 2005. Additional data and lake information is available in the 2006–2008 final reports (Matthews, et al., 2006; Matthews and Vandersypen, 2007; Matthews and Vandersypen, 2008).

Lake Samish is a valuable aquatic resource, providing public access for boating, fishing, swimming, picnicking, and other water and lakeshore activities. Residents around the lake enjoy outstanding views of both the lake and its surrounding watershed, and the lake serves as a water supply for many of the lakeshore residents. Lake Samish is located in the Washington State Department of Ecology's Water Resource Inventory Area #3 (WRIA 3), and discharges into Friday Creek, a salmon spawning tributary of the Samish River.

The Lake Samish monitoring project was initiated in June 2005 to collect water quality data from the lake and from major tributaries in the watershed. Lake Samish experiences periodic algal blooms, including blooms of potentially toxic cyanobacteria. The major goal of the monitoring project was to collect data that would help identify the causes of the blooms, and possibly provide insight into how to protect the lake from water quality degradation.

Although the primary goal for this project was to collect baseline water quality data, a second goal was to begin looking as options for protecting water quality in the lake. A full assessment of lake management options is beyond the scope of this project, but several important observations can be made concerning the direction of future lake management efforts.

Lake Samish features that affect management choices: First, is it important to recognize the features of Lake Samish that will affect management options and factor heavily into the success of any lake management effort. Lake Samish is predominantly a shallow, mesotrophic lake. With the exception of the west arm, which is unusual in itself, the lake favors the growth of aquatic plants, whether they are algae, cyanobacteria, or shoreline vegetation. The mean depth in the east arm is only 9.4 m (Bortleson, et al., 1976), and all of the east arm sites have had high chlorophyll concentrations at some point during the monitoring project. While the lake is shallow enough to support algal growth throughout the water column, it is deep enough to stratify in both arms. Because of it's mesotrophic

state, the hypolimnion in both arms becomes anoxic, releasing phosphorus. The water column in the west arm does not mix thoroughly during winter (Figure 3, page 10), which can result in extended periods of anoxia in the hypolimnion that persist past winter and into the next period of stratification. This has the potential to release of large amounts of phosphorus into the lake from the sediments (Figure 7, page 14). The release of phosphorus from sediments due to low oxygen concentrations in the hypolimnion is called *internal phosphorus loading*, and is one of the items that must be considered in the future management of Lake Samish.

A second important feature that affects lake management is land use in the Lake Samish watershed. The tributary data revealed that there is *external phosphorus loading* of phosphorus from the watershed. The lakeshore is developed, mostly with single-family homes, and the upper watershed is largely devoted to forestry and timber harvesting. A major interstate highway, with heavy truck and vehicle traffic, passes along the eastern side of the lake. Although these land use activities are not necessarily incompatible with recreational use of the lake, they are not particularly desirable in a lake that provides drinking water for lakeshore residents.

Recommendations for maintaining Lake Samish water quality: Our recommendations for Lake Samish focus on controlling external phosphorus loading, minimizing internal phosphorus loading, and educating watershed residents about drinking water issues and lake stewardship. These recommendations are not intended to serve as a substitute for developing a comprehensive lake management plan.

This list of recommendations was presented by Matthews and Vandersypen (2008) in the previous Lake Samish annual report; the text has been included here to provide continuity.

• Develop an environmental education program to help residents of the Lake Samish watershed understand the water quality issues in the lake, and what can be done at the individual level. One example of this is the Watershed Pledge Program developed for the Lake Whatcom watershed (http://www.watershedpledge.org). While it may be difficult to measure the direct success of public education programs in terms of water quality improvement, an educated public is more likely to understand and support watershed and lake management actions. • Develop strategies for controlling external phosphorus loading. Phosphorus is very difficult to remove after it get into streams or lakes, so where possible, source control remains the best approach. This means either reducing the amount of phosphorus that enters surface runoff (e.g., using phosphorus-free fertilizers) or decreasing the amount of surface runoff that enters the lake (e.g., adding retention/detention basins that facilitate infiltration into the groundwater). The Watershed Pledge Program lists a number of ways to reduce phosphorus in surface runoff near homes. Because of the scale of this task, the Samish Water District should work with an experienced storm water consultant to develop a comprehensive storm water management plan for the watershed.

Lake Samish is already mesotrophic, and in some cases eutrophic, so reducing external phosphorus loading from the watershed will probably not eliminate cyanobacteria blooms. If external loading is reduced, however, the lake should stabilize around its current levels of productivity, and possibly even show some improvement over a long period of time.

- Optionally, after external phosphorus loading has been addressed, develop strategies for reducing internal phosphorus loading. There are many lake management techniques that, given sufficient funding for installation and maintenance, can be used to reduce internal loading. The addition of chemicals such as alum will bind with phosphorus, often resulting in years of reduced algal densities. The effect is temporary, and reapplication of the chemical is required on a periodic basis. Hypolimnetic aerators are available that can maintain sufficient oxygen in the hypolimnion to prevent internal phosphorus loading. Aerators are also available that circulate the entire water column, but in most stratified lakes, this is not a desirable approach, and may even increase algal growth. All of these techniques require a significant initial investment, long-term funding for maintenance, and are unlikely to be effective if external loading is not controlled.
- Consider developing a public drinking water supply and distribution system. The algal densities in the lake were very high and probably contribute to the formation of harmful disinfection by-products, particularly in systems that disinfect the water by chlorinatation. Although the coliform levels were low in the lake, the results may not reflect conditions at private drinking water intakes. Finally, the lake is subject to potentially hazardous cyanobacteria blooms and exposed to potentially hazardous chemicals from boating activ-

ities and the nearby highway. These represent an ongoing risk to individuals drawing domestic drinking water from the lake.

- Conduct an evaluation of on-site sewage disposal in the upper watershed, and its potential influence on water quality in Lake Samish. This evaluation should be included in the assessment of external phosphorus loading into the lake. On-site sewage disposal may be a minor factor in phosphorus loading into the lake because the Lake Samish shoreline is served by a public sewer line, so only portions of the upper watershed are likely to have on-site sewage disposal.
- Although monitoring priority pollutants was beyond the scope of this project, Lake Samish was placed on Washington State's 2004 Water Quality Assessment 303(d) list due to the levels of PCBs and mercury in sports fish collected from the lake. The levels of PCBs were high enough to generate a "Category 5" listing, which will require the Department of Ecology to develop a Total Maximum Daily Load (TMDL) assessment aimed at reducing PCBs in the lake. The mercury levels were lower, resulting in a Category 2 listing that identifies "waters of concern" where there is evidence of a water quality problem but not enough data to require a TMDL.

High levels of mercury and PCBs have been found in fish tissue from many other lakes in Washington, and throughout North America, so the presence of these pollutants in Lake Samish reflects widespread contamination of freshwater lakes rather than a unique local source. Nevertheless, due to the popularity of sports fishing in Lake Samish, we recommend additional monitoring of priority pollutants in water, sediments, and fish tissue in Lake Samish.

Methods

Water samples were collected at representative sites in Lake Samish (Figure 1, page 8) and analyzed following the protocols in Table 1 (page 28). The original scope of work specified monthly sampling at four lake sites (Sites A–D) from June 2005 through July 2006; the contract was amended to include quarterly sampling from June 2007 through December 2009. This effort was supplemented by IWS, at no additional cost, to provide additional sampling at two lake sites (Sites A and B) when resources were available. Water samples were also collected from tributaries to the lake and Friday Creek (outlet) approximately twice each year. All sampling dates are listed in Tables 2–4, pages 29–31.

Lake sampling methods: Temperature and dissolved oxygen field measurements were collected at 1 meter depth intervals from the surface to the bottom at each site using a Hydrolab field meter. Beginning in March 2006, conductivity and pH profiles were also collected at 1 meter depth intervals using the Hydrolab field meter. Secchi depth was measured at each site by lowering a black and white disk into the water and recording the depth at which it was no longer visible from the lake surface. All field measurements followed the protocols summarized in Table 1 (page 28).

Surface and bottom water samples were collected at each lake site and transported to the laboratory to measure pH, conductivity, phosphorus (total phosphorus and soluble orthophosphate), nitrogen (total nitrogen, nitrate/nitrite¹, ammonium), turbidity, and alkalinity following the protocols listed in Table 1. Separate surface and bottom water samples were collected to measure fecal coliform counts; the coliform samples were delivered on ice to the Samish Water District or to a certified commercial laboratory contracted by the District.

From June 2005 through May 2007, chlorophyll fluorescence was measured in the field (*in vivo*) at 1 meter depth intervals from the surface to the bottom using a field fluorometer. Water samples were collected from approximately 10-20% of the depths where fluorescence was measured, and the water samples were used to measure chlorophyll biomass (Table 1). A linear regression between the paired *in vivo* fluorescence and chlorophyll biomass data was used to estimate

¹Nitrate and nitrite were analyzed together because nitrite concentrations are usually very low in surface water and require low level analytical techniques to measure accurately.

chlorophyll biomass at all depths along the fluorescence profiles.² Due to equipment failure, the field fluorometer was not used after May 2007. Beginning in June 2007, chlorophyll biomass was measured using water samples collected at approximately 5 meter depth intervals. For more information about *in vivo* fluorometric chlorophyll measurements, refer to the previous Lake Samish annual reports (Matthews, et al., 2006; Matthews and Vandersypen, 2007; Matthews and Vandersypen, 2008).

Creek sampling methods: Temperature and dissolved oxygen was measured using a field meter. Water samples were collected at each stream site and transported to the laboratory to measure pH, conductivity, phosphorus (total phosphorus and soluble orthophosphate), nitrogen (total nitrogen, nitrate/nitrite, ammonium), turbidity, and alkalinity. Separate water samples were collected to measure fecal coliform counts; the coliform samples were delivered on ice to the Samish Water District or to a certified commercial laboratory contracted by the District. All water samples collected in the field were stored on ice and in the dark until they reached the laboratory, and were analyzed as described in Table 1.

²Chlorophyll biomass is more commonly used to describe lake trophic status than fluorescence, but fluorescence is easier to measure in the field.

1 Annotated Figures

The Lake Samish monitoring project started in June 2005, and has resulted in the accumulation of nearly five years of regular water quality sampling. In order to accommodate the increasing amount of data while still providing a useful annual summary, we are changing the style of presentation, beginning with this year's report. The cumulative lake data will be summarized in a series of annotated figures (Figures 1–19, pages 8–26) designed to show seasonal and annual patterns in the lake. Each figure includes a descriptive caption that provides background information as well as a brief interpretation of the Lake Samish results.

Raw data plots and tables are included in a series of appendices at the end of this report. The field hydrolab profiles for all sampling dates have been plotted in Appendix A, beginning on page 35. Chlorophyll *in vivo* fluorescence profiles and biomass measurements are illustrated in Appendix B, beginning on page 74. Raw data reports for the current sampling program are included in Appendix C of the printed report; online copies of this report will not contain the raw data, but electronic data files are available from the Institute for Watershed Studies. In addition, the Institute's web site (http://www.ac.wwu.edu/~iws) includes a short description of the lake monitoring program and simple tabulation and plotting program that allows the user to view water quality data by site and depth.

As discussed in the methods section (page 5), some of the lake sites were sampled more frequently than others. Specifically, Sites A and B were sampled as a no-cost service by IWS to provide additional water quality data from the deepest sites in the lake's east and west arms. As a result, the plots on the following pages have fewer sample points for Sites C and D than for Sites A and B.

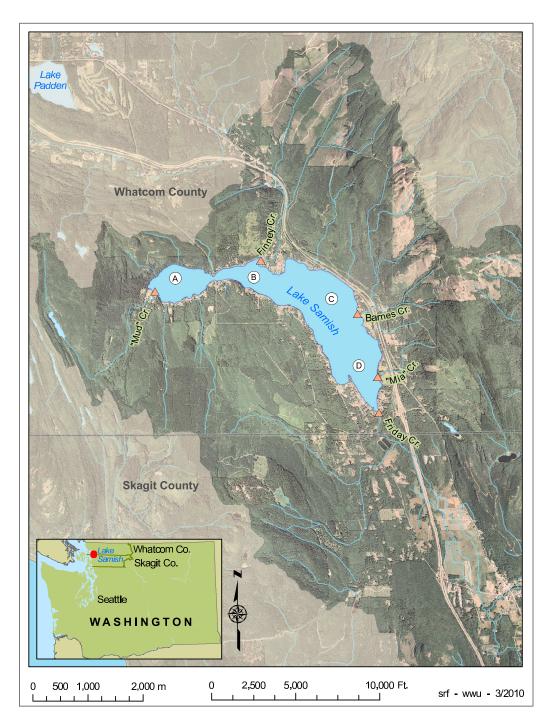


Figure 1: Lake Samish tributary and lake sampling sites, 2005–2010 (map provided by S. Freelan, Institute for Spatial Information and Analysis, Huxley College of the Environment, Western Washington University).

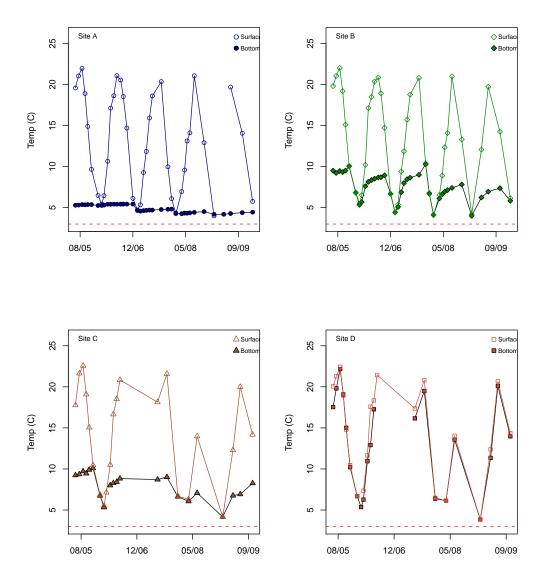


Figure 2: Surface and bottom water temperatures, June 2005 through January 2010. Temperature profiles show that much of the lake is stratified from spring through early fall (see Appendix A). Only Site D, which is very shallow, remains thermally unstratified throughout the year. During stratification the warmer upper portion of the water column (*epilimnion*) does not mix with the colder water near the bottom (*hypolimnion*). In the fall, after the surface water cools, the water column will start to mix again (*destratify*), and will continue to mix throughout the winter and early spring unless there is ice cover.

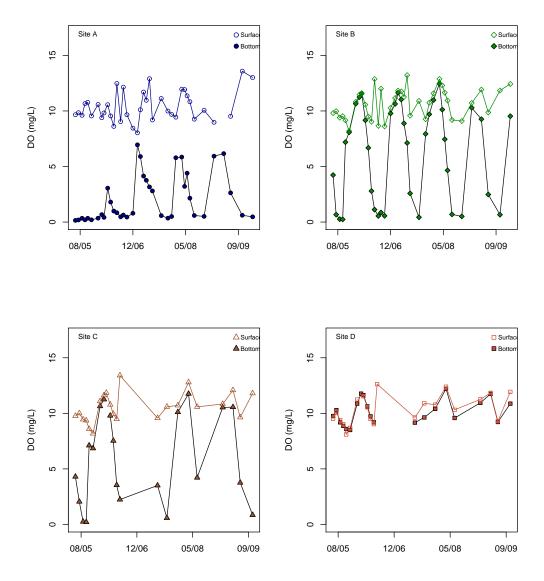


Figure 3: Dissolved oxygen concentrations, June 2005 through January 2010. The primary source of dissolved oxygen is the atmosphere. Algal photosynthesis is a source of oxygen during the day, but algae consume oxygen at night for respiration, so the net oxygen gain is minimal. All of the stratified sites in Lake Samish experience oxygen depletion in the hypolimnion, which is usually caused by bacteria decomposing organic matter (e.g., dead algae, leaf fragments, and other organic debris). When the lake destratifies, oxygen mixes into the water column, so the winter oxygen concentrations are similar for the surface and bottom samples at Sites B–D. Site A exhibits intermittent meromixis (Matthews and Vandersypen, 2008), where the water column may not mix completely during the winter.

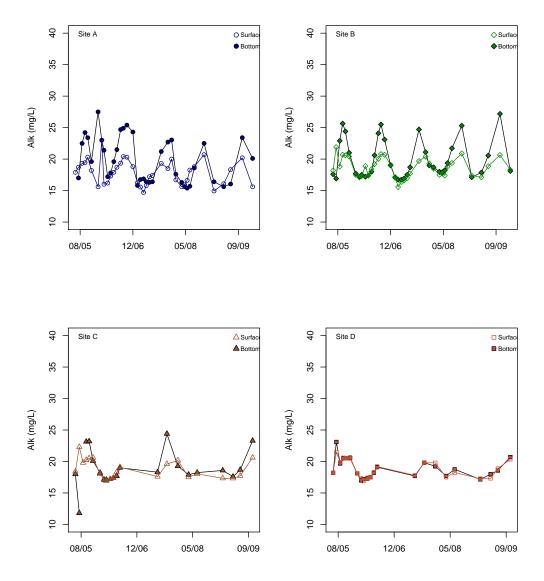


Figure 4: Alkalinity concentrations, June 2005 through January 2010. Alkalinity, pH, and specific conductance (conductivity) are related in surface waters. Alkalinity measures the *buffering capacity* or how resistant water is to pH changes. The alkalinity levels in Lake Samish are low, indicating that the water is poorly buffered against pH changes. This is typical for lakes in our region. The alkalinity levels fluctuate seasonally, especially in surface samples. During photosynthesis, algae remove dissolved CO_2 from the water, which can temporarily raise pH and lower alkalinity.

Figure 5: Surface and bottom pH levels (laboratory analysis), June 2005 through January 2010. Alkalinity, pH, and specific conductance (conductivity) are related in surface waters. The pH in water is determined by the concentration of H^+ ions. During photosynthesis, algae remove dissolved CO_2 from the water, which can temporarily raise pH by reducing the concentration of dissolved carbonic acid, which is formed when CO_2 reacts with water: $H_2O + CO_2 \leftrightarrow H_2CO_3$ (carbonic acid). This relationship is illustrated very clearly in the summer surface samples at Sites A and B.

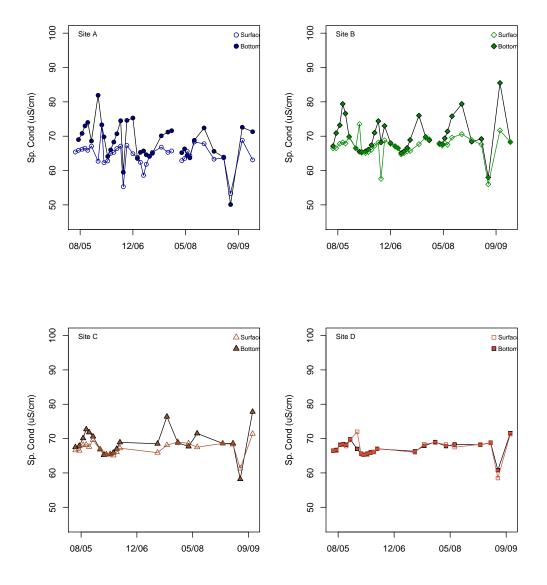


Figure 6: Conductivity levels (laboratory analysis), June 2005 through January 2010. Alkalinity, pH, and specific conductance (conductivity) are related in surface waters. Conductivity is determined by the types and amount of dissolved ions in the water. The soil type and land use in the watershed influence the amount of dissolved ions entering the lake from runoff and groundwater. Biological activity and chemical interactions determine whether dissolved ions remain in the water column. In Lake Samish, the conductivity levels are fairly low, which is typical for low-alkalinity lakes. The conductivity levels are slightly elevated near the bottom of the lake at Sites A and B, which is typical for stratified lakes with low oxygen concentrations near the sediments.

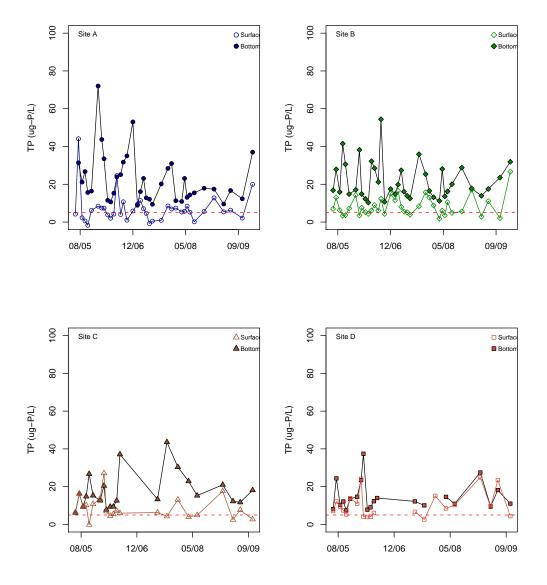


Figure 7: Total phosphorus concentrations, June 2005 through January 2010 (horizontal red line = detection limit of 5 μ g-P/L). Total phosphorus includes organic phosphorus (phosphorus associated with algae and other biota) and dissolved phosphorus (primarily soluble orthophosphate). Phosphorus is an important nutrient for algae and is usually the nutrient that limits the amount of algae in a lake. Phosphorus is released from anaerobic sediments, so the bottom samples at Sites A and B often contained high concentrations of total and soluble phosphorus (see Figure 8). Although median total phosphorus concentrations were fairly low at each site (10–15 μ g-P/L), the bottom concentrations often exceeded 30 μ g-P/L.

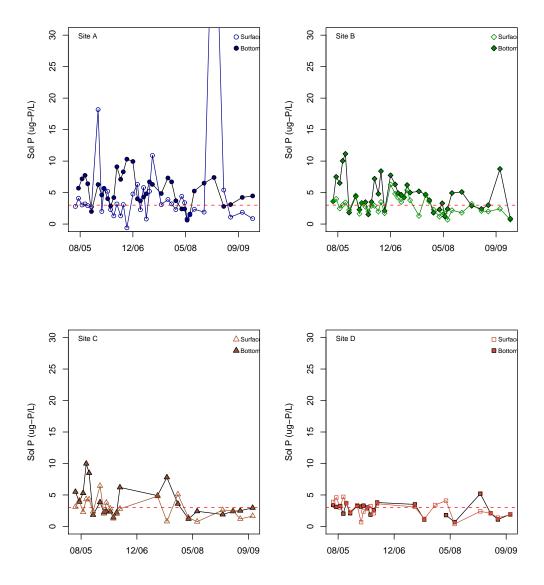


Figure 8: Soluble orthophosphate concentrations, June 2005 through January 2010 (horizontal red line = detection limit of 3 μ g-P/L). Soluble orthophosphate is the soluble inorganic portion of total phosphorus. Soluble phosphate concentrations are often low in the water column, even when algal concentration are high, because this form of phosphorus is easily and rapidly taken up by algae and other microbiota. Soluble phosphate is released from anaerobic sediments, which accounts for the high concentrations occasionally measured in the bottom samples. The atypical surface sample outlier (59.7 μ g-P/L at Site A on Jan 25, 2009) probably resulted from sample contamination because the total phosphorus concentrations in the sample was only 12.8 μ g-P/L.

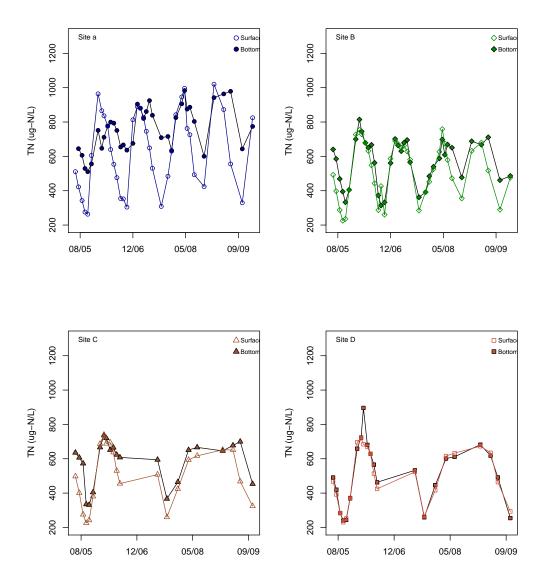


Figure 9: Total nitrogen concentrations, June 2005 through January 2010. Total nitrogen represents the combined concentrations of organic nitrogen (nitrogen associated with algae and other biota) and dissolved inorganic nitrogen (DIN = nitrate + nitrite + ammonium). In Lake Samish, about two thirds of the total nitrogen was inorganic (average $\frac{DIN}{TN} = 68\%$). Algae use inorganic nitrogen for growth, so it is common to see depletion of total nitrogen and DIN during the summer in samples collected at ≤ 10 meters. (Photosynthesis is usually limited by insufficient light in deeper samples.) Nitrogen rarely limits total algal growth because cyanobacteria can convert dissolved nitrogen gas (N_2) into inorganic nitrogen. Low concentrations of inorganic nitrogen, however, will limit the growth of certain types of algae and favor the growth of cyanobacteria.

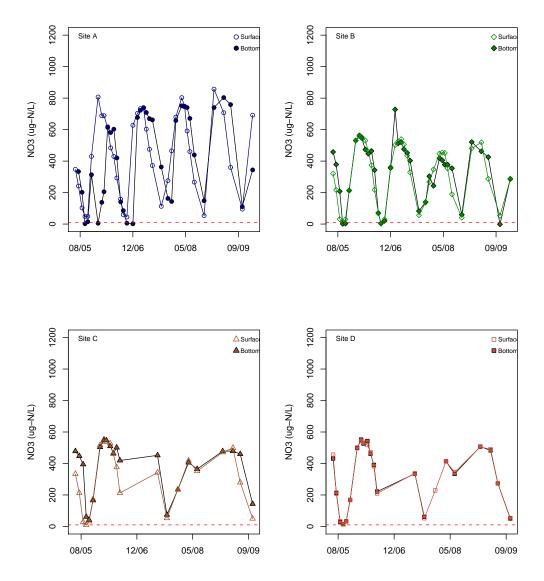


Figure 10: Nitrate/nitrite data, June 2005 through January 2010 (horizontal red line = detection limit of 10 μ g-P/L). Nitrate and nitrite are often measured simultaneously because nitrite concentrations are usually negligible and below analytical detection levels. Nitrate/nitrite is usually the major component of dissolved inorganic nitrogen (DIN), the primary nitrogen source for algal growth. In Lake Samish, almost all DIN was in the form of nitrate/nitrite (average $\frac{NO_2+3}{DIN}=86\%$). The Lake Samish nitrate/nitrite concentrations were depleted in both the surface and bottom samples during the summer, but for different reasons. The depletion in samples ≤ 10 meters was due to algal uptake; the depletion in deeper samples (bottom samples at Sites A and B) was due to nitrate reduction by anaerobic bacteria that use nitrate (and nitrite) as an alternative to oxygen.

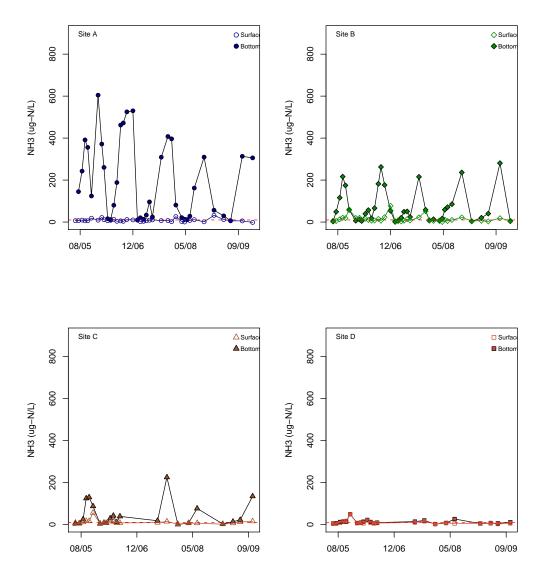


Figure 11: Lake Samish ammonium data, June 2005 through January 2010 (horizontal red line = detection limit of 10 μ g-P/L). Ammonium is easily taken up by algae as a nitrogen source. Most of the ammonium in surface waters comes from decomposition of organic matter or is excreted by animals. In aerobic water, ammonium is rapidly converted into nitrite and nitrate by bacteria or lost through volitization. When oxygen concentrations are low, however, these bacteria are inactive, so ammonium can build up, especially in the hypolimnion. In Lake Samish, ammonium concentrations were low except in bottom samples during periods of stratification at sites that developed anoxia in the hypolimnion. The highest ammonium concentrations were from bottom samples at Site A, which may be due to incomplete water column mixing at that site.

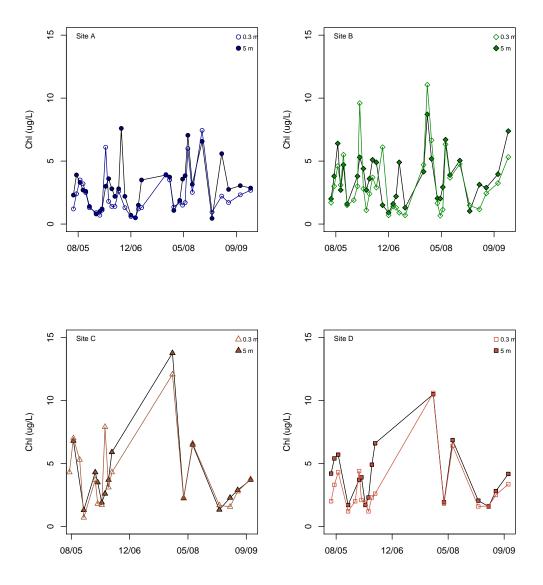
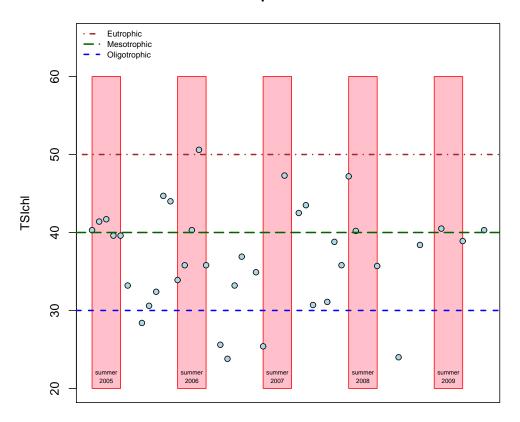
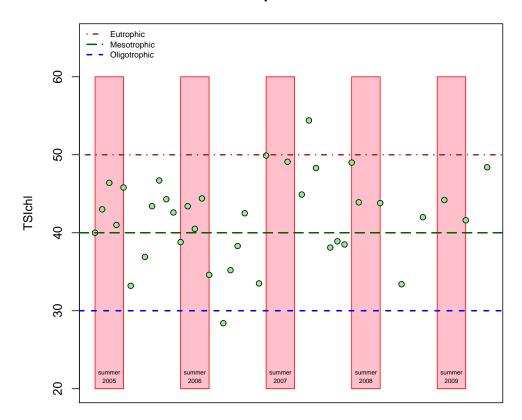
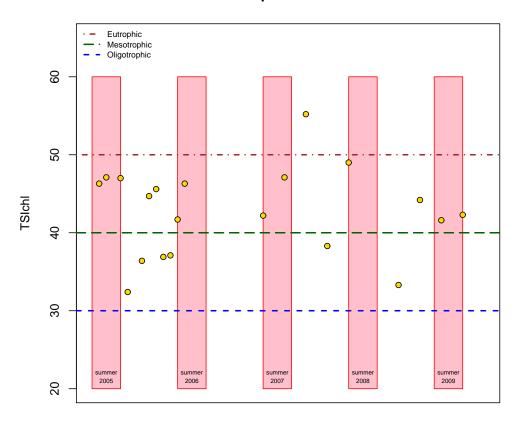



Figure 12: Lake Samish near-surface chlorophyll levels, June 2005 through January 2010. Chlorophyll is the primary photosynthetic pigment in algal cells and is generally the best indicator of the amount of algae present in lakes. In Lake Samish, as in most lakes, chlorophyll levels were usually low during the winter, with peaks in the spring and summer coinciding with spring/summer algal blooms. This figure shows chlorophyll biomass that was either measured in the laboratory (preferred method), or estimated from *in vivo* fluorescence measured in the field. For more information about these methods, see Matthews, et al. (2008).


Median Trophic Index - Site A

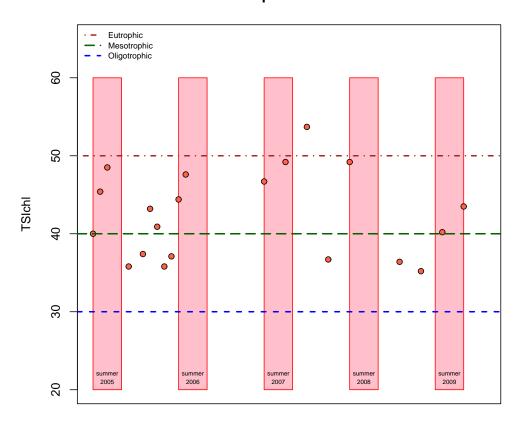
$$TSI_{chl} = 9.81 \text{ (ln Chl } (\mu g/L) + 30.6)$$

Figure 13: Median TSI_{chl} values at Site A, June 2005 through January 2010. Carlson's Trophic State Index (TSI_{chl} ; Carlson and Simpson, 1966) is a simple way to classify lakes based on biological productivity using chlorophyll measurements. The shaded rectangles show summer months (July-October), which often have higher TSIs compared to the rest of the year. Most of the Site A values fell between the oligotrophic and mesotrophic ranges, indicating that this site had lower algal concentrations and would be less likely to experience thick algal blooms than other portions of the lake.


Median Trophic Index - Site B

$$TSI_{chl} = 9.81 \text{ (ln Chl } (\mu g/L) + 30.6)$$

Figure 14: Median Lake Samish TSI_{chl} values at Site B, June 2005 through January 2010; the shaded rectangles show summer months (July-October), which often have higher TSIs compared to the rest of the year. The TSI values at Site B were higher than Site A, and most were near the level that indicates a mesotrophic or moderately productive lake. Sites B–D, located in the shallower arm of Lake Samish, are more likely to experience noticeable algal blooms.


Median Trophic Index - Site C

$$TSI_{chl} = 9.81 \text{ (ln Chl } (\mu g/L) + 30.6)$$

Figure 15: Median Lake Samish TSI_{chl} values at Site C, June 2005 through January 2010; the shaded rectangles show summer months (July-October), which often have higher TSIs compared to the rest of the year. The TSI values at Site C were higher than Site A, and some of the values were in the eutrophic range, indicating high levels of algal productivity. Sites B–D, located in the shallower arm of Lake Samish, are more likely to experience noticeable algal blooms.

Median Trophic Index - Site D

$$TSI_{chl} = 9.81 \text{ (ln Chl } (\mu g/L) + 30.6)$$

Figure 16: Median Lake Samish TSI_{chl} values at Site D, June 2005 through January 2010; the shaded rectangles show summer months (July-October), which often have higher TSIs compared to the rest of the year. The TSI values at Site D were higher than Site A, and some of the values were in the eutrophic range, indicating high levels of algal productivity. Sites B–D, located in the shallower arm of Lake Samish, are more likely to experience noticeable algal blooms.

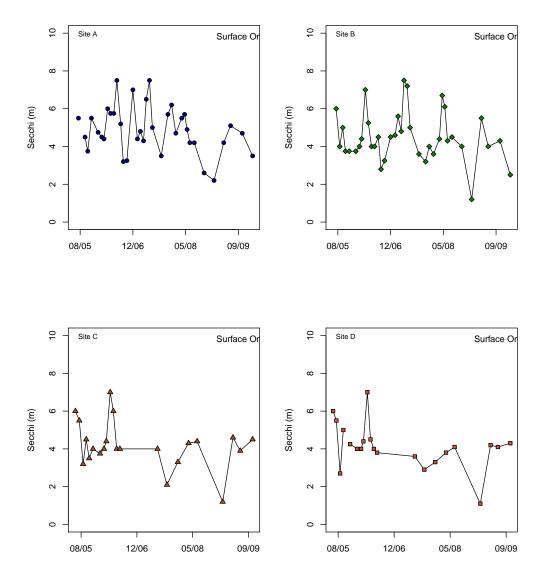


Figure 17: Secchi depths, June 2005 through January 2010. Secchi depth is an indicator of lake transparency and is defined as the depth at which a black and white disk is no longer visible from the lake surface. Secchi depth determines the approximate depth of the *photic* zone, where light conditions favor photosynthesis. Lake Samish Secchi depths were usually 4–6 meters (average = 4.5 m), consistent with peak chlorophyll concentrations that occurred between 4–7 m, but for any particular sampling date, the relationship between Secchi depth and chlorophyll was weak. This indicates that inorganic and non-algal sediments contribute to the cloudiness of the water column.

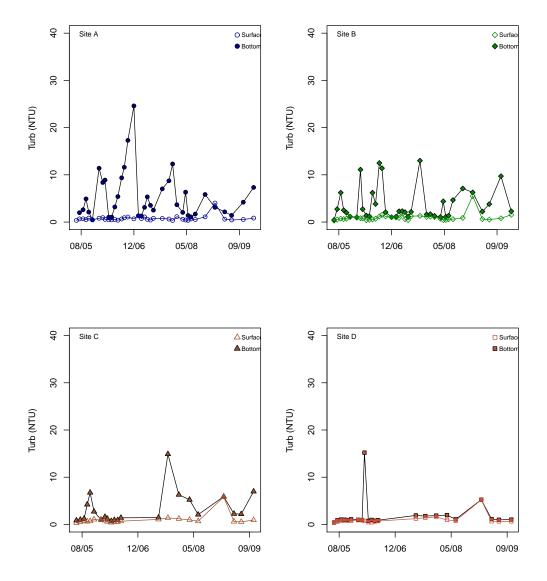


Figure 18: Turbidity data, June 2005 through January 2010. Turbidity is a measure of the suspended particles in water, which include algae, inorganic particles, and non-living organic matter. When most of the suspended particles in the water column are algae, chlorophyll concentrations are closely related to Secchi depth and turbidity, but if non-algal particles are abundant, the relationship between Secchi depth and turbidity is still good, but neither are closely related to chlorophyll. Turbidity levels in Lake Samish did not show a typical near-surface summer peaks. Instead, the major turbidity peaks were related to suspended particles in the hypolimnion.

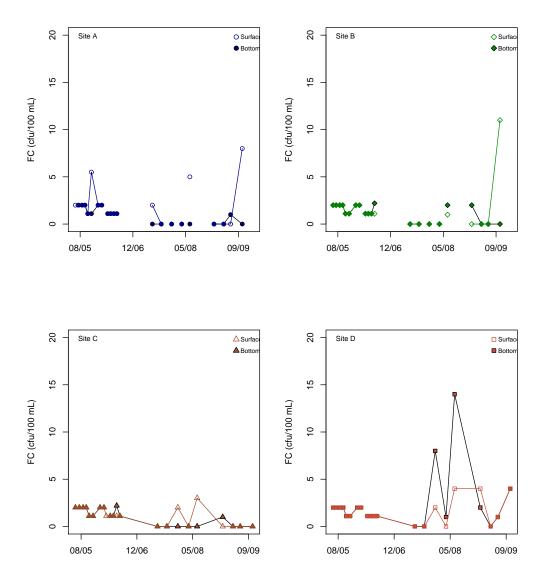


Figure 19: Fecal coliform data, June 2005 through January 2010. Fecal coliforms are normally found in the intestinal tract and feces of warm blooded animals, so their presence in water samples can be used to detect sewage or fecal contamination. Most types of fecal coliforms are not pathogenic, but if fecal coliforms are present, other potentially harmful pathogens may also be present. The fecal coliform counts in Lake Samish were low, with only one samples exceeding 10 cfu/100 mL (cfu=colony-forming unit); however, if there are concerns about swimming beaches or drinking water safety, additional samples should be collected following the protocols described by the Washington Administrative Code Section 173-201A, which deals with coliform standards in recreational waters.

2 Tables

			Detection Limit/
Analyte	Abbr.	Method Reference (APHA 2005)	Sensitivity
Alkalinity	Alk	SM2320, titration	±0.5 mg CaCO ₃ /L
Chlorophyll - field	Chl	Turner fluorometer (field meter)	NA
Chlorophyll - lab	Chl	SM10200 H, acetone extraction	$\pm 0.1~\mathrm{mg/m^3}$
Conductivity - field/lab	Cond	SM2510, lab or field meter	± 0.1 units
Dissolved oxygen - field	DO	SM4500-O G., membrane electrode (field meter)	± 0.1 mg/L
Dissolved oxygen - lab	DO	SM4500-O C., Winkler, azide	± 0.1 mg/L
Fecal coliforms	FC	SM9221 E , MPN*	<1.1 or <2
Nitrogen - ammonium	NH_3	SM4500-NH3 H., flow inject, phenate	$10~\mu \mathrm{g}~\mathrm{NH_3}$ -N/L
Nitrogen - nitrate/nitrite	NO_3	SM4500-NO3 I., flow inject, Cd reduction	$10~\mu \mathrm{g}~\mathrm{NO_3}$ -N/L
Nitrogen - total	TN	SM4500-NO3 I., flow inject, persulfate digest	$10~\mu \mathrm{g}~\mathrm{N/L}$
pH - field/lab	pН	SM4500-H, electometric lab or field meter	± 0.1 units
Phosphorus - orthophosphate	OP	SM4500-P G., flow inject	$3~\mu \mathrm{g}~\mathrm{PO_4}$ -P/L
Phosphorus - total	TP	SM4500-P G., flow inject, persulfate digest	$5~\mu \mathrm{g}~\mathrm{P/L}$
Temperature - field	Temp	SM2550 thermistor (field meter)	±0.1 C
Turbidity	Turb	SM2130, nephelometric	$\pm 0.2~\mathrm{NTU}$

^{*}Fecal coliform analyses were provided by Edge Analytical, 805 Orchard Dr., Bellingham, WA and Exact Scientific Services, 3929 Spur Ridge Ln., Bellingham, WA.

Table 1: Summary of analytical methods used by the Institute for Watershed Studies in the Lake Samish monitoring project.

	Measured	Chlorophyll
Date	Parameters [†]	Measurements
June 21, 2005	all field/lab analyses except pH/cond	chl profiles (A, B, D)
July 20, 2005	all field/lab analyses except pH/cond	chl profiles
August 23, 2005	all field/lab analyses except pH/cond	chl profiles
September 20, 2005	all field/lab analyses except pH/cond	chl profiles (A, B)
October 16, 2005	all field/lab analyses except pH/cond	chl profiles (A, B)
November 20, 2005	all field/lab analyses except pH/cond	chl profiles
January 22, 2006	all field/lab analyses except pH/cond	chl biomass(misc. depths)
February 26, 2006	all field/lab analyses	chl profiles
March 19, 2006	all field/lab analyses	chl profiles
April 23, 2006	all field/lab analyses	chl profiles
May 21, 2006	all field/lab analyses	chl profiles
June 20, 2006	all field/lab analyses	chl profiles
July 19, 2006	all field/lab analyses	chl profiles
June 21, 2007	all field/lab analyses	chl biomass(misc. depths)
September 13, 2007	all field/lab analyses (no coliforms)	chl biomass (misc. depths)
December 20, 2007	all field/lab analyses	chl biomass (5 m intervals)
March 25, 2008	all field/lab analyses	chl biomass (5 m intervals)
June 10, 2008	all field/lab analyses	chl biomass (5 m intervals)
October 23, 2008	all field/lab analyses	chl biomass (5 m intervals)
January 25, 2009	all field/lab analyses	chl biomass (5 m intervals)
April 27, 2009	all field/lab analyses	chl biomass (5 m intervals)
July 1, 2009	all field/lab analyses	chl biomass (5 m intervals)
October 20, 2009	all field/lab analyses	chl biomass (5 m intervals)

[†] Field/lab analyses include Secchi depth, dissolved oxygen, water temperature, pH, conductivity, alkalinity, total nitrogen, nitrate/nitrite, ammonium, total phosphorus, soluble orthophosphate, turbidity, chlorophyll, and fecal coliforms.

Table 2: Lake Samish sampling dates for Sites A–D. Table 3 lists dates when only Sites A–B were sampled and Table 4 lists tributary sampling dates.

	Measured	Chlorophyll
Date	Parameters [†]	Measurements
August 24, 2006	all field/lab analyses (no coliforms)	chl profiles
September 18, 2006	all field/lab analyses (no coliforms)	chl biomass (misc. depths)
October 22, 2006	all field/lab analyses (no coliforms)	chl profiles
December 18, 2006	all field/lab analyses (no coliforms)	chl profiles
January 30, 2007	all field/lab analyses (no coliforms)	chl profiles
February 27, 2007	all field/lab analyses (no coliforms)	chl profiles
March 29, 2007	all field/lab analyses (no coliforms)	chl profiles
April 24, 2007	all field/lab analyses (no coliforms)	no chl data
May 24, 2007	all field/lab analyses (no coliforms)	chl profiles
November 15, 2007	all field/lab analyses (no coliforms)	chl biomass (5 m intervals)
January 29, 2008	all field/lab analyses (no coliforms)	chl profiles
April 21, 2008	all field/lab analyses (no coliforms)	chl profiles
May 15, 2008	all field/lab analyses (no coliforms)	chl profiles
July 22, 2008	all field/lab analyses (no coliforms)	chl profiles
January 26, 2010	all field/lab analyses (no coliforms)	chl profiles

[†] Field/lab analyses include Secchi depth, dissolved oxygen, water temperature, pH, conductivity, alkalinity, total nitrogen, nitrate/nitrite, ammonium, total phosphorus, soluble orthophosphate, turbidity, chlorophyll, and fecal coliforms.

Table 3: Lake Samish lake sampling dates for Sites A–B (supplemental no-cost sampling by IWS). Table 2 lists dates when all four lake sites (A–D) were sampled and Table 4 lists tributary sampling dates.

	Measured	
Date	Parameters [†]	Sampling Locations
July 15, 2005	all field/lab analyses	Barnes, Finney, Mia, Mud
August 9, 2005	all field/lab analyses	Friday
November 10, 2005	all field/lab analyses	Barnes, Finney, Friday, Mia, Mud
July 16, 2007	all field/lab analyses	Barnes, Finney, Friday, (Mia dry), Mud
March 17, 2008	all field/lab analyses	Barnes, Finney, Friday, Mia, Mud
February 18, 2009	all field/lab analyses	Barnes, Finney, Friday, Mia, Mud
July 13, 2009	all field/lab analyses	Barnes, Finney, Friday, Mia, Mud

[†] Field/lab analyses include dissolved oxygen, water temperature, pH, conductivity, alkalinity, total nitrogen, nitrate/nitrite, ammonium, total phosphorus, soluble orthophosphate, turbidity, and fecal coliforms.

Table 4: Lake Samish tributary sampling dates. Table 2 lists dates when all four lakes sites (A–D) were sampled and Table 3 lists dates when Sites A–B were sampled.

G1.		DO	Temp	Alk	Turb	**	Cond
Site	Date	(mg/L)	(C)	(mg/L)	(NTU)	pН	(μS)
Barnes	July 15, 2005	10.2	12.5	52.0	4.6	7.2	128.7
Creek	November 10, 2005	14.7	9.0	37.5	2.7	7.5	103.4
	July 16, 2007	10.1	12.9	59.7	1.2	7.3	139.7
	March 17, 2008	12.5	6.0	40.0	2.7	7.6	102.6
	February 18, 2009	12.2	5.9	52.0	0.6	7.7	127.1
	July 13, 2009	10.5	12.8	55.9	1.1	7.7	103.8
Finney	July 15, 2005	9.7	13.5	28.0	0.8	7.1	149.8
Creek	November 10, 2005	14.7	9.2	12.2	3.0	7.2	75.2
	July 16, 2007	8.8	16.2	41.4	0.3	7.2	399.0
	March 17, 2008	12.7	5.6	16.2	3.9	7.3	92.9
	February 18, 2009	12.9	4.6	21.8	1.5	7.3	140.0
	July 13, 2009	9.5	14.5	42.1	0.8	7.6	260.0
Unnamed	July 15, 2005	9.1	13.4	31.8	2.5	6.7	82.7
(Mia Creek)	November 10, 2005	13.6	9.2	18.0	1.9	7.1	73.9
	March 17, 2008	10.9	6.5	32.0	11.9	7.0	131.8
	February 18, 2009	11.4	5.7	32.7	1.3	7.3	155.4
	July 13, 2009	NA	NA	NA	NA	NA	NA
Unnamed	July 15, 2005	8.3	12.9	24.7	0.8	6.3	94.2
(Mud Creek)	November 10, 2005	14.6	8.5	15.9	0.9	7.1	74.8
	July 16, 2007	9.1	13.5	19.2	1.1	6.4	83.8
	March 17, 2008	12.5	5.9	15.1	1.4	7.1	67.0
	February 18, 2009	12.7	4.3	16.1	0.6	7.1	71.2
	July 13, 2009	8.7	12.8	19.8	0.4	6.7	72.8
Friday	August 9, 2005	4.1	20.5	21.3	3.7	6.1	69.4
Creek	November 10, 2005	8.5	10.7	19.7	0.9	7.2	68.4
(outlet)	July 16, 2007	4.8	21.9	19.7	1.4	6.4	66.5
` /	March 17, 2008	12.4	6.4	17.6	1.5	7.3	66.4
	February 18, 2009	11.7	5.7	17.9	1.9	7.3	68.8
	July 13, 2009	4.3	19.5	20.1	1.8	6.8	60.0

Table 5: Dissolved oxygen (DO), temperature (Temp), alkalinity (Alk), turbidity (Turb), pH, and conductivity (Cond) results for Lake Samish watershed creeks (Figure 1). Water temperatures were higher and dissolved oxygen concentrations were lower in Friday Creek. All of the sites had relatively low alkalinities (<60 mg/L) and low to moderate conductivities (60– $400 \,\mu\text{S}$). Turbidities were generally low (1–3 NTU), with occasional spikes that did not follow any obvious seasonal or site-specific pattern. The pH levels ranged from slightly acidic to slightly basic (6–8), but none were as high as the pH peaks present in the lake.

		NH_3	TN	NO_3	TP	OP	FC (cfu/
Site	Date	$(\mu g\text{-N/L})$	$(\mu g\text{-N/L})$	$(\mu g\text{-N/L})$	$(\mu g\text{-P/L})$	$(\mu g\text{-P/L})$	100 mL)
Barnes	July 15, 2005	17.1	1082.7	915.6	46.0	26.9	>23*
Creek	November 10, 2005	< 10	1670.0	1518.2	15.1	9.0	23
	July 16, 2007	< 10	756.9	678.4	18.0	24.3	240
	March 17, 2008	10.0	882.0	767.0	17.1	11.6	4
	February 18, 2009	< 10	776.0	677.0	13.4	12.7	1
	July 13, 2009	19.7	772.1	618.8	24.8	16.3	130
Finney	July 15, 2005	11.7	747.6	622.2	33.1	35.3	>23*
Creek	November 10, 2005	< 10	2061.5	1860.4	15.1	5.7	130
	July 16, 2007	24.2	585.9	434.8	9.3	21.4	170
	March 17, 2008	< 10	1196.6	1089.0	13.2	7.2	52
	February 18, 2009	< 10	948.0	782.0	12.8	7.5	12
	July 13, 2009	16.0	651.7	455.0	20.9	11.2	1600
Unnamed	July 15, 2005	14.5	478.3	293.4	49.8	30.9	>23
(Mia Creek)	November 10, 2005	< 10	1890.9	1666.2	21.2	10.3	23
	March 17, 2008	13.2	801.0	534.0	20.5	5.7	104
	February 18, 2009	36.1	2236.0	1944.0	12.8	9.4	0
	July 13, 2009	NA	NA	NA	NA	NA	NA
Unnamed	July 15, 2005	<10	582.1	474.3	20.2	15.5	>23*
(Mud Creek)	November 10, 2005	108.6	2308.4	1901.7	18.6	8.7	13
	July 16, 2007	31.7	551.2	464.9	11.7	8.2	23
	March 17, 2008	< 10	1328.0	1211.1	9.1	7.2	4
	February 18, 2009	< 10	1057.0	920.0	8.8	8.1	0
	July 13, 2009	25.6	780.6	624.5	9.1	4.6	130
Friday	August 9, 2005	40.6	361.9	10.2	25.9	<3	130
Creek	November 10, 2005	28.0	409.8	187.9	9.6	<3	8
(outlet)	July 16, 2007	23.0	358.3	88.0	13.8	7.8	80
	March 17, 2008	< 10	590.0	423.8	5.4	<3	8
	February 18, 2009	< 10	664.0	466.0	10.4	3.5	500
	July 13, 2009	21.1	419.7	92.1	14.9	<3	300

^{*}Sample above detection limit of 23 cfu/100 mL

Table 6: Ammonium (NH₃), total nitrogen (TN), nitrate/nitrite (NO₃), total phosphorus (TP), soluble orthophosphate (OP), and fecal coliform (FC) results for Lake Samish watershed creeks. The total nitrogen and nitrate/nitrite concentrations were high, with the exception of a few samples from Friday Creek. Ammonium concentrations were highly variable, with many samples exceeding 20 μ g-N/L. Total and soluble phosphorus concentrations were usually higher in the tributary creeks than in Friday Creek due to algal uptake of phosphorus in Lake Samish. Coliform counts were variable; 36% of the samples exceeded 100 cfu/100 mL, suggesting that the sites might not pass surface water criteria.

3 References

- APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.
- Bortleson, G. C., N. P. Dion, J. B. McConnell, and L. M. Nelson. 1976. Reconnaissance Data on Lakes in Washington, Volume 1, Clallam, Island, Jefferson, San Juan, Skagit, and Whatcom Counties. Water-Supply Bull. 43(1), Washington State Department of Ecology, Tacoma, WA.
- Carlson, R E. and J. Simpson. 1996. A Coordinator's Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society. 96 pp.
- Matthews, R. A., J. Vandersypen, and K. Hitchko. 2006. Lake Samish Monitoring Project 2006 Final Report. Final Report prepared by the Institute for Watershed Studies, Western Washington University, for the Lake Samish Water District, November 3, 2006, Bellingham, WA.
- Matthews, R. A. and J. Vandersypen. 2007. Lake Samish Monitoring Project 2007 Final Report. Final Report prepared by the Institute for Watershed Studies, Western Washington University, for the Lake Samish Water District, November 13, 2007, Bellingham, WA.
- Matthews, R. A. and J. Vandersypen. 2008. Lake Samish Monitoring Project 2008 Final Report. Final Report prepared by the Institute for Watershed Studies, Western Washington University, for the Lake Samish Water District, September 30, 2008, Bellingham, WA.

A Lake Samish Hydrolab Profiles

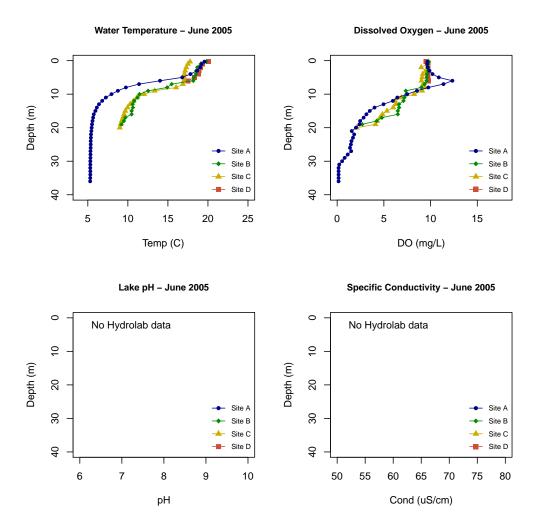


Figure 20: Lake Samish Hydrolab profiles for Sites A–D, June 21, 2005. Field pH and conductivity data were not collected on this date.

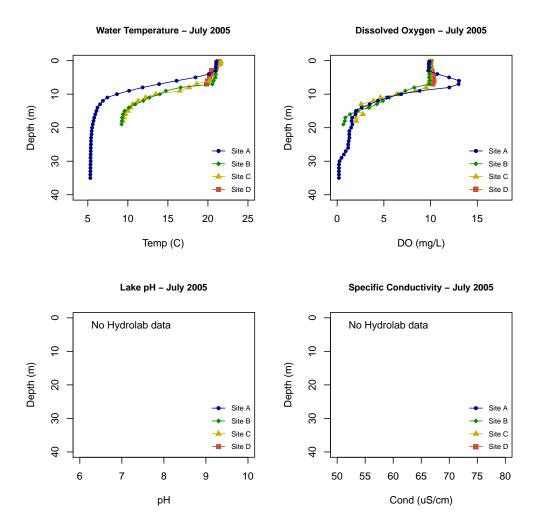


Figure 21: Lake Samish Hydrolab profiles for Sites A–D, July 20, 2005. Field pH and conductivity data were not collected on this date.

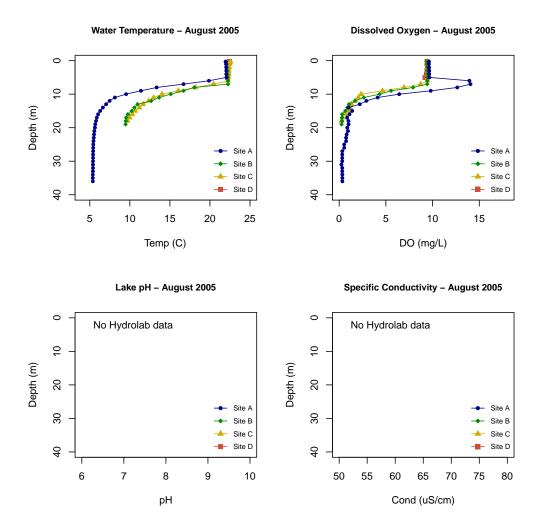


Figure 22: Lake Samish Hydrolab profiles for Sites A–D, August 23, 2005. Field pH and conductivity data were not collected on this date.

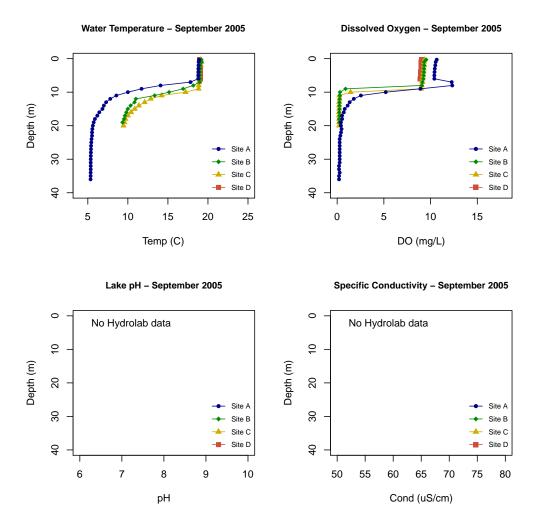


Figure 23: Lake Samish Hydrolab profiles for Sites A–D, September 20, 2005. Field pH and conductivity data were not collected on this date.

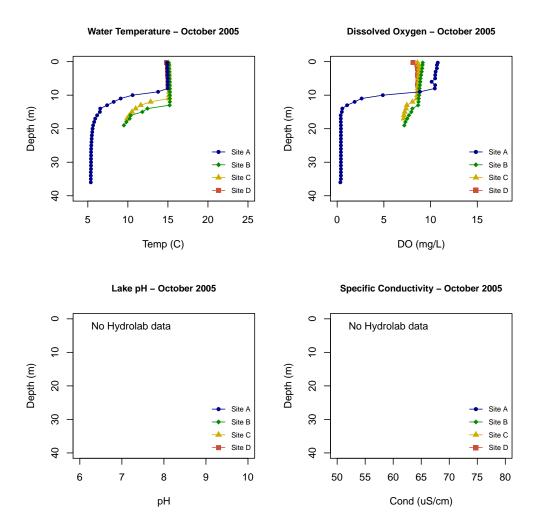


Figure 24: Lake Samish Hydrolab profiles for Sites A–D, October 16, 2005. Field pH and conductivity data were not collected on this date.

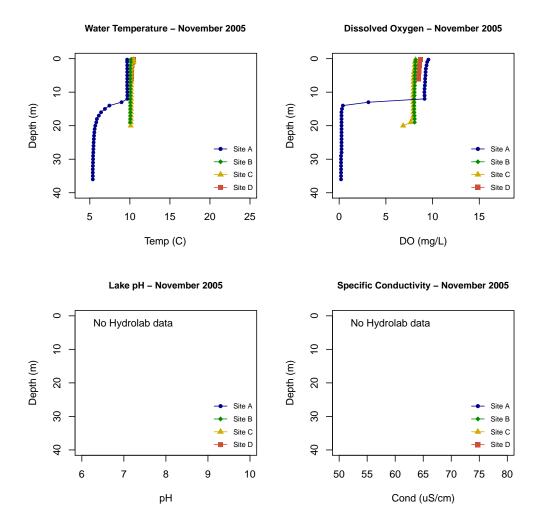


Figure 25: Lake Samish Hydrolab profiles for Sites A–D, November 20, 2005. Field pH and conductivity data were not collected on this date.

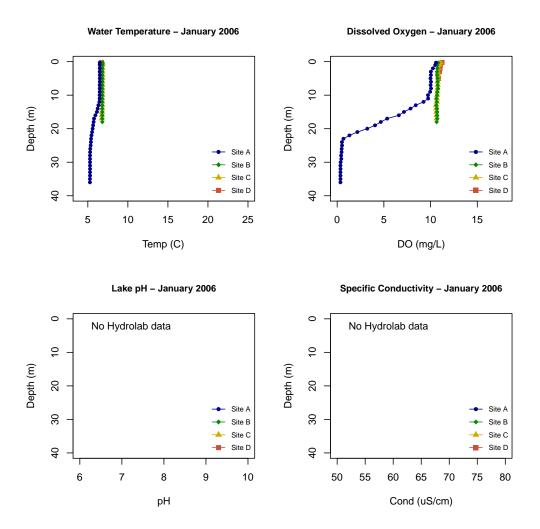


Figure 26: Lake Samish Hydrolab profiles for Sites A–D, January 22, 2006. Field pH and conductivity data were not collected on this date.

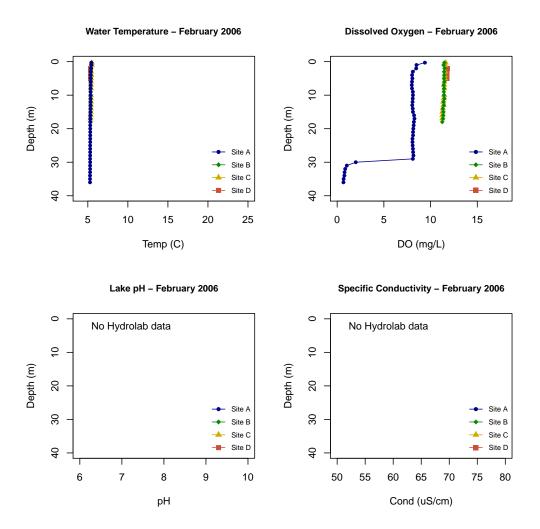


Figure 27: Lake Samish Hydrolab profiles for Sites A–D, February 26, 2006. Field pH and conductivity data were not collected on this date.

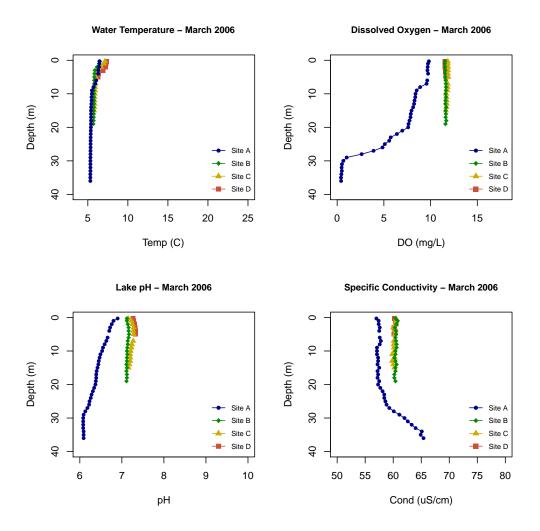


Figure 28: Lake Samish Hydrolab profiles for Sites A-D, March 19, 2006.

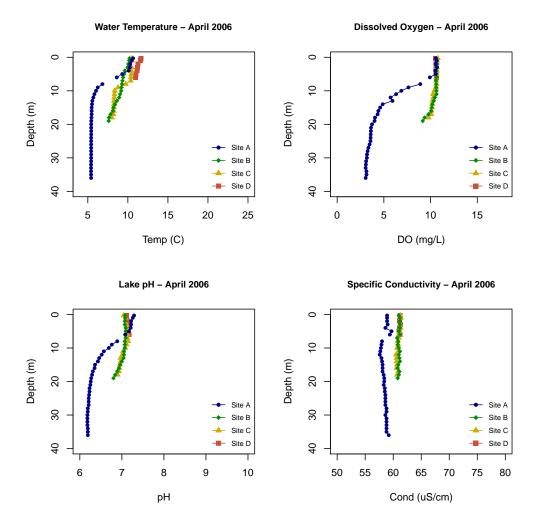


Figure 29: Lake Samish Hydrolab profiles for Sites A–D, April 23, 2006.

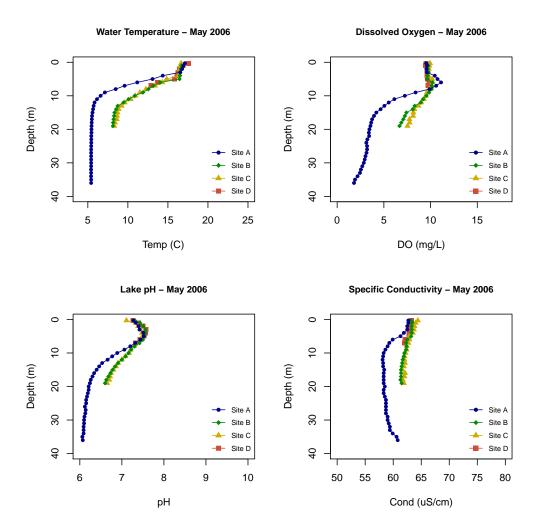


Figure 30: Lake Samish Hydrolab profiles for Sites A–D, May 21, 2006.

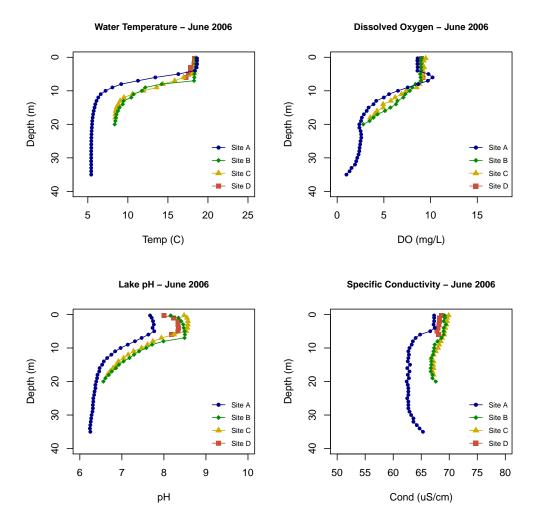


Figure 31: Lake Samish Hydrolab profiles for Sites A–D, June 20, 2006.

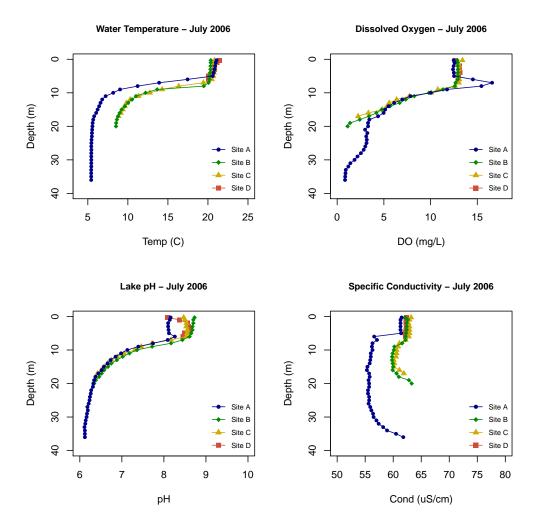


Figure 32: Lake Samish Hydrolab profiles for Sites A–D, July 19, 2006.

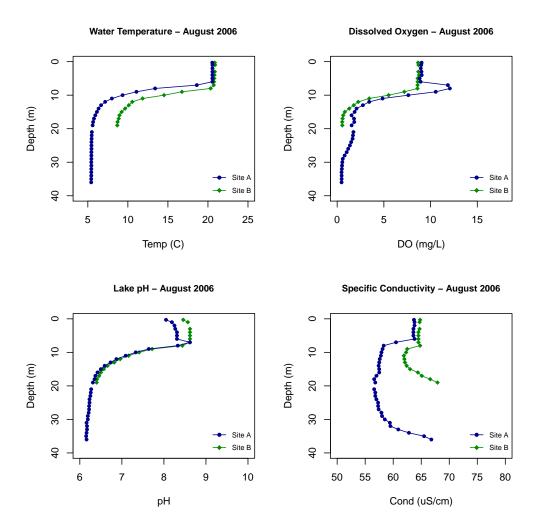


Figure 33: Lake Samish Hydrolab profiles for Sites A and B, August 24, 2006. Sites C and D were not sampled on this date.

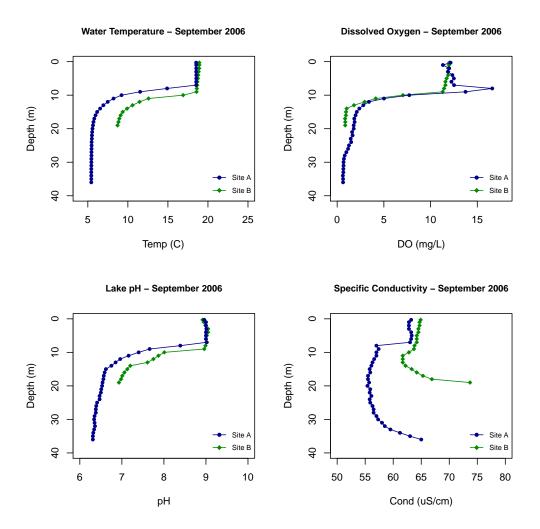


Figure 34: Lake Samish Hydrolab profiles for Sites A and B, September 18, 2006. Sites C and D were not sampled on this date.

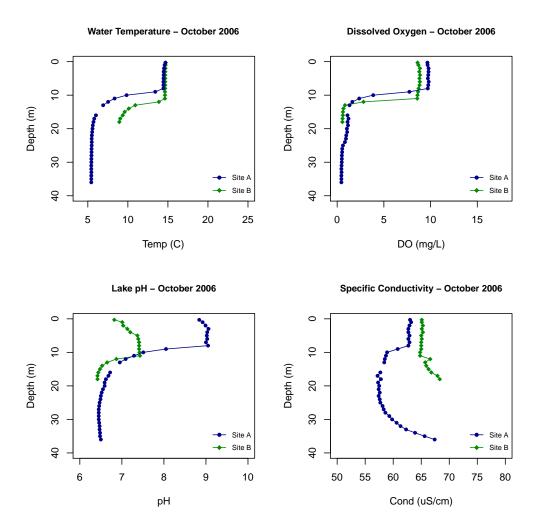


Figure 35: Lake Samish Hydrolab profiles for Sites A and B, October 22, 2006. Sites C and D were not sampled on this date.

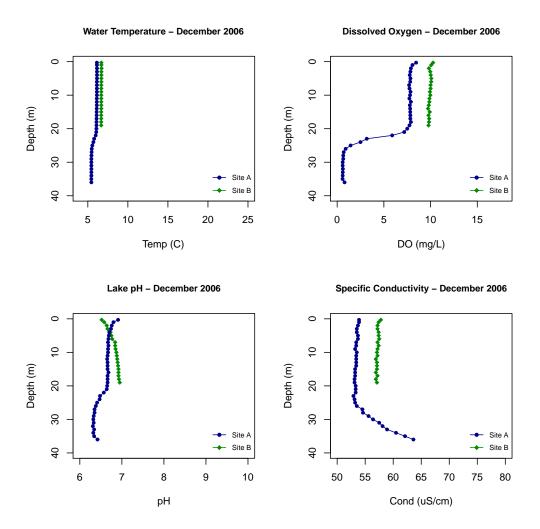


Figure 36: Lake Samish Hydrolab profiles for Sites A and B, December 18, 2006. Sites C and D were not sampled on this date.

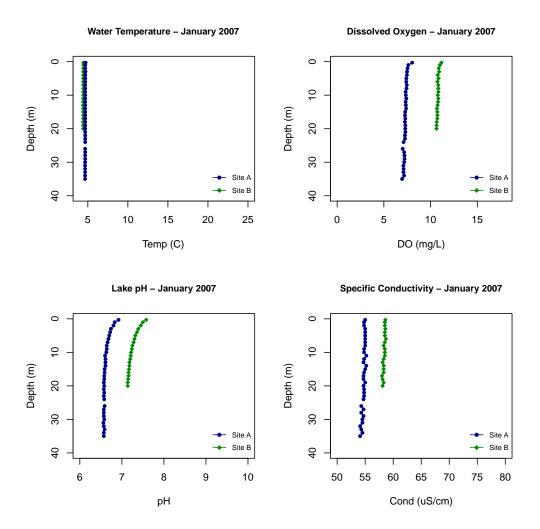


Figure 37: Lake Samish Hydrolab profiles for Sites A and B, January 30, 2007. Sites C and D were not sampled on this date.

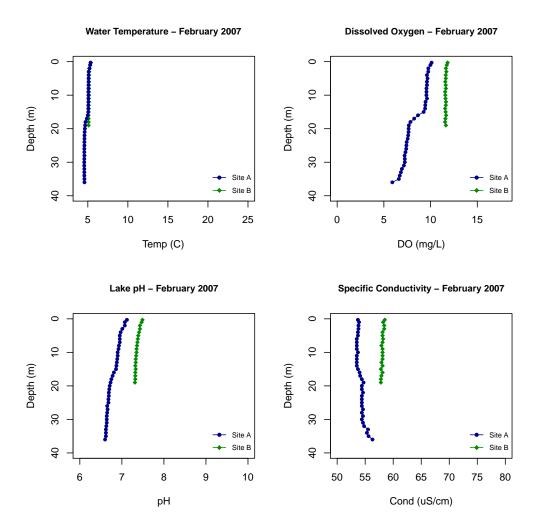


Figure 38: Lake Samish Hydrolab profiles for Sites A and B, February 27, 2007. Sites C and D were not sampled on this date.

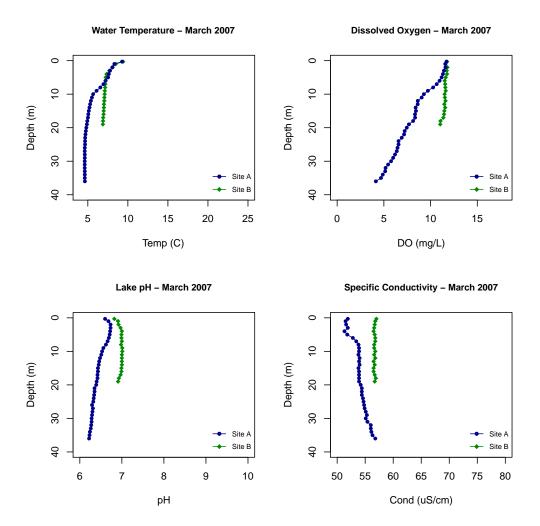


Figure 39: Lake Samish Hydrolab profiles for Sites A and B, March 29, 2007. Sites C and D were not sampled on this date.

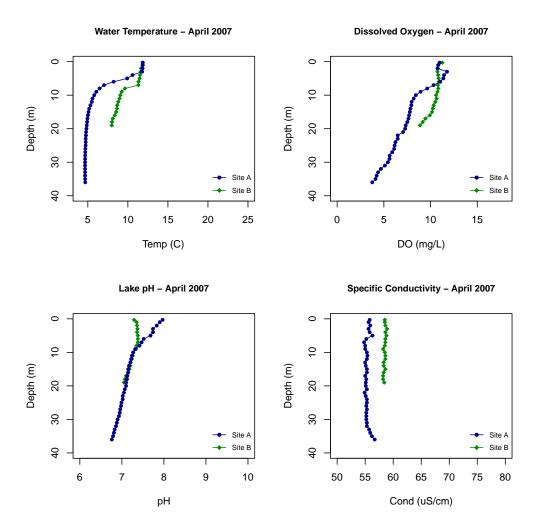


Figure 40: Lake Samish Hydrolab profiles for Sites A and B, April 24, 2007. Sites C and D were not sampled on this date.

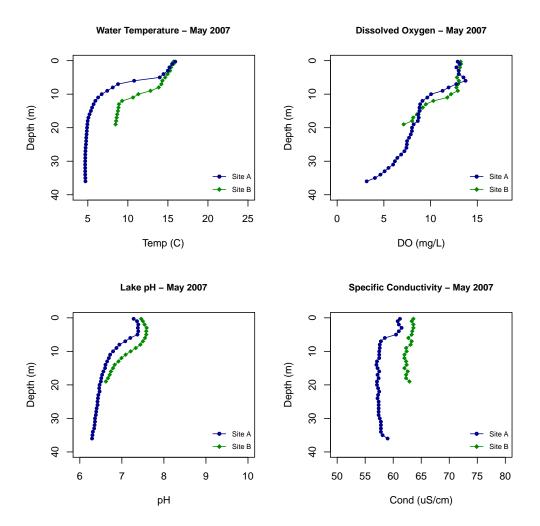


Figure 41: Lake Samish Hydrolab profiles for Sites A and B, May 24, 2007. Sites C and D were not sampled on this date.

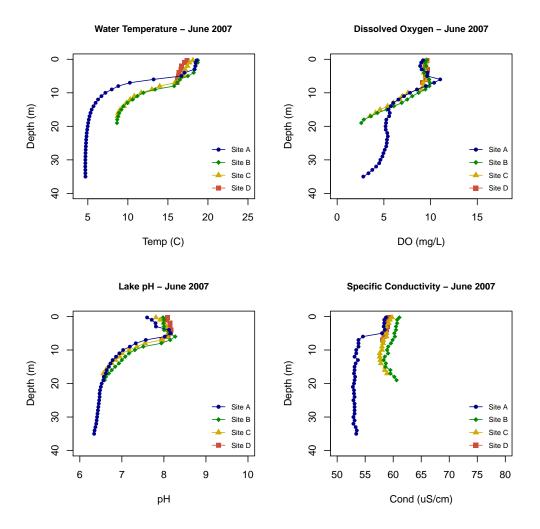


Figure 42: Lake Samish Hydrolab profiles for Sites A-D, June 21, 2007.

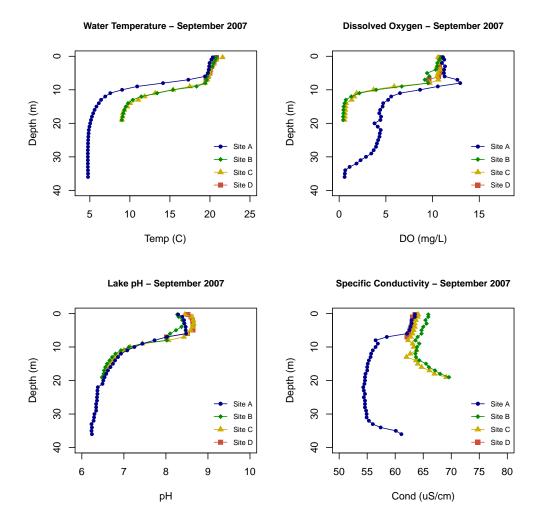


Figure 43: Lake Samish Hydrolab profiles for Sites A-D, September 13, 2007.

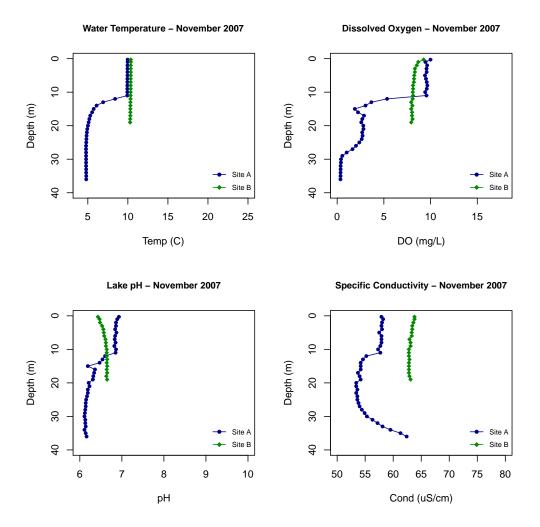


Figure 44: Lake Samish Hydrolab profiles for Sites A and B, November 15, 2007. Sites C and D were not sampled on this date.

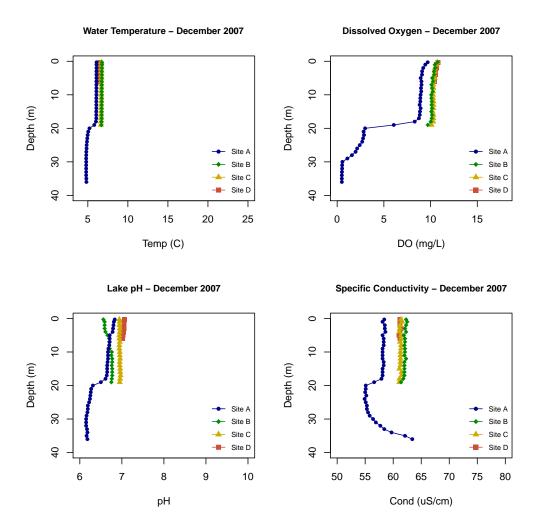


Figure 45: Lake Samish Hydrolab profiles for Sites A–D, December 20, 2007.

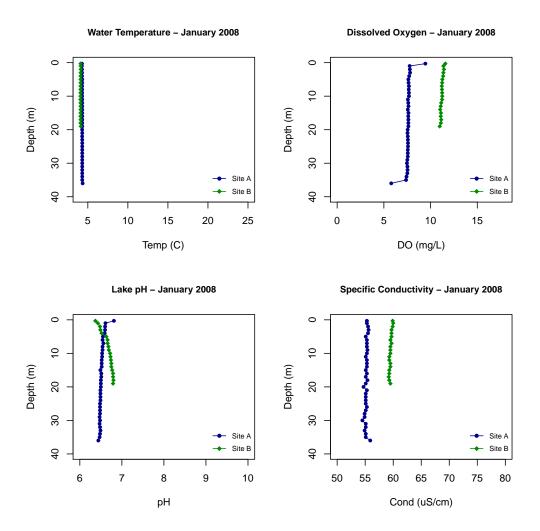


Figure 46: Lake Samish Hydrolab profiles for Sites A and B, January 29, 2008. Sites C and D were not sampled on this date.

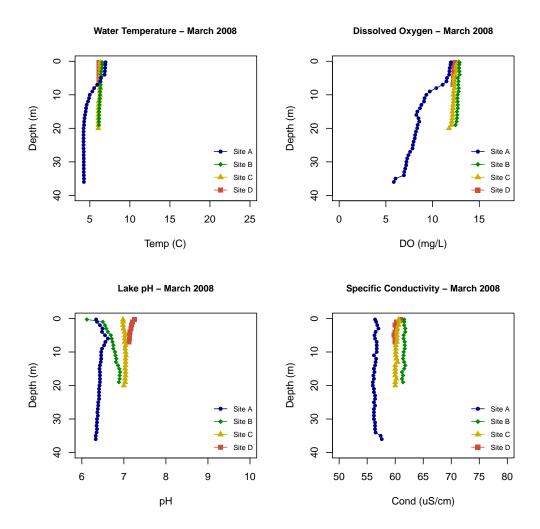


Figure 47: Lake Samish Hydrolab profiles for Sites A-D, March 25, 2008.

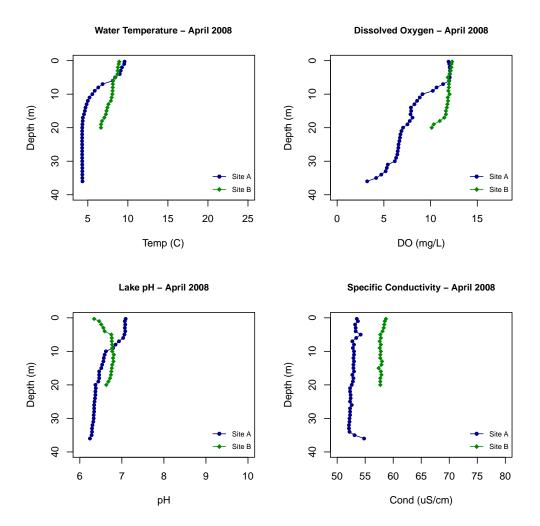


Figure 48: Lake Samish Hydrolab profiles for Sites A and B, April 21, 2008. Sites C and D were not sampled on this date.

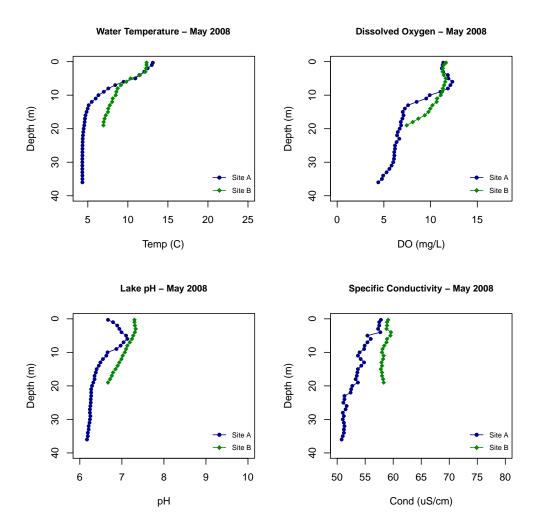


Figure 49: Lake Samish Hydrolab profiles for Sites A and B, May 15, 2008. Sites C and D were not sampled on this date.

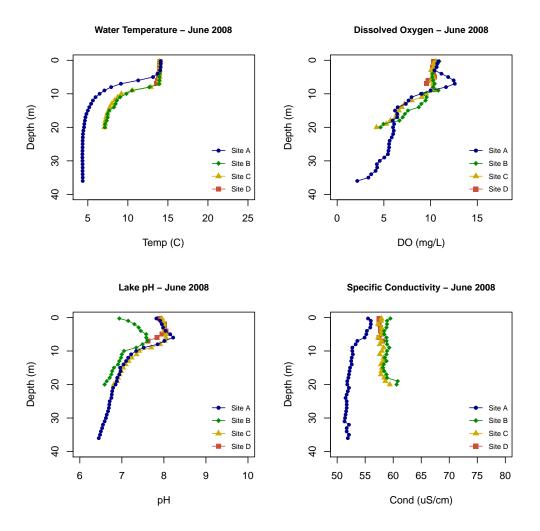


Figure 50: Lake Samish Hydrolab profiles for Sites A-D, June 10, 2008.

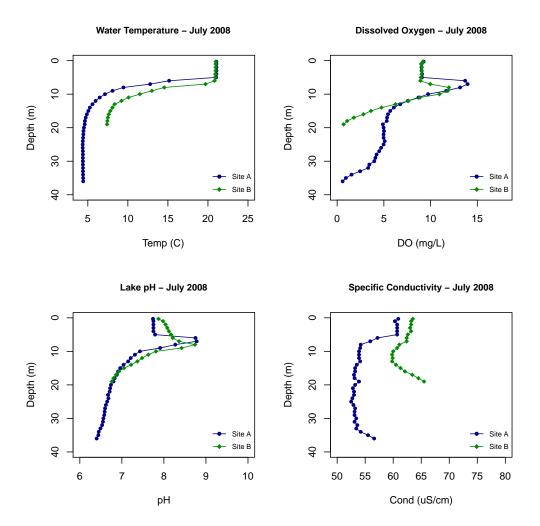


Figure 51: Lake Samish Hydrolab profiles for Sites A and B, July 22, 2008. Sites C and D were not sampled on this date.

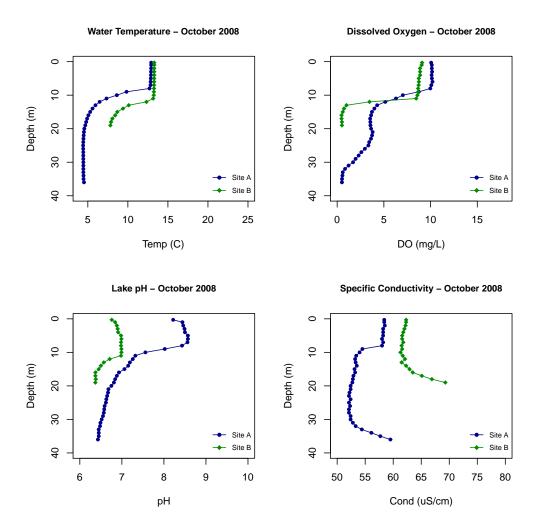


Figure 52: Lake Samish Hydrolab profiles for Sites A and B, October 23, 2008. Sites C and D were not sampled on this date.

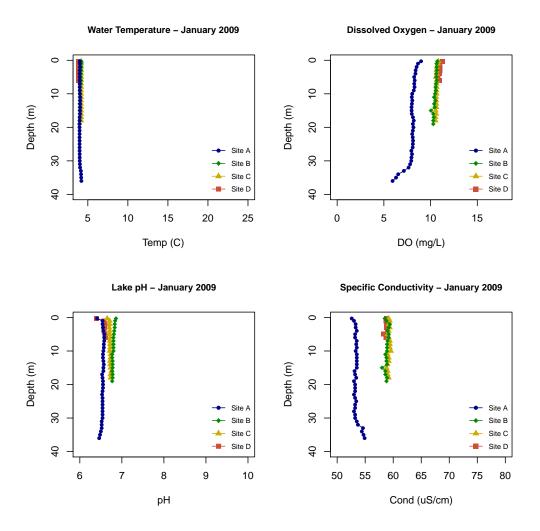


Figure 53: Lake Samish Hydrolab profiles for Sites A–D, January 25, 2009.

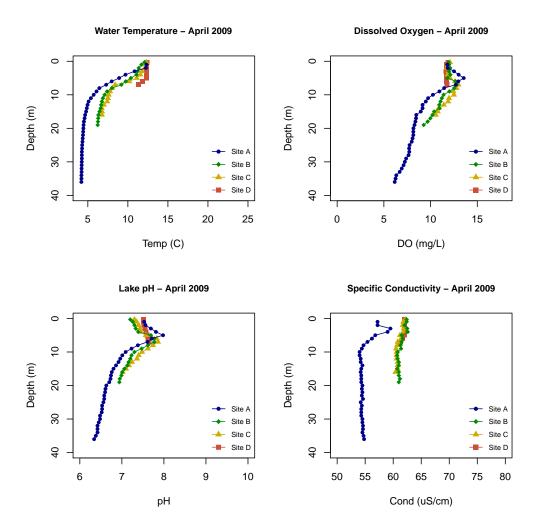


Figure 54: Lake Samish Hydrolab profiles for Sites A–D, April 27, 2009.

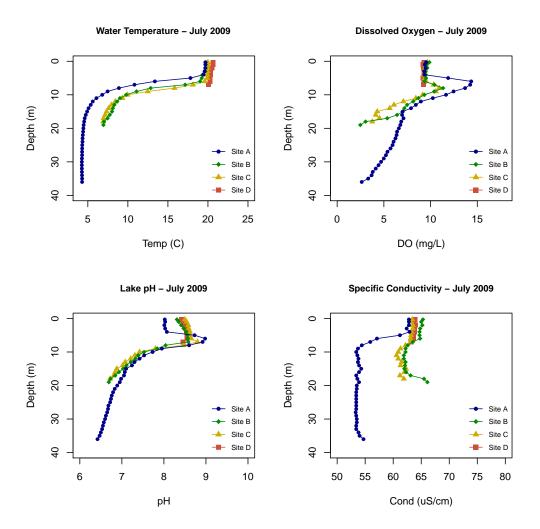


Figure 55: Lake Samish Hydrolab profiles for Sites A-D, July 1, 2009.

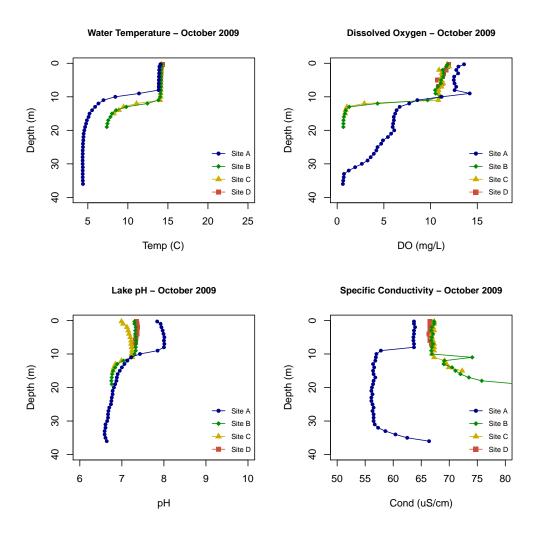


Figure 56: Lake Samish Hydrolab profiles for Sites A-D, October 20, 2009.

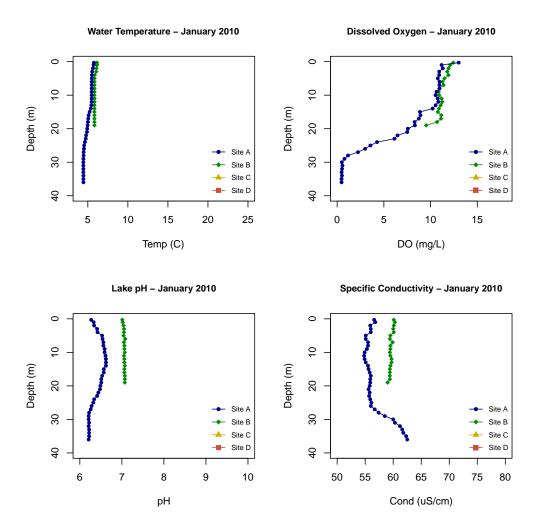


Figure 57: Lake Samish Hydrolab profiles for Sites A and B, January 26, 2010. Sites C and D were not sampled on this date.

B Lake Samish Chlorophyll Profiles

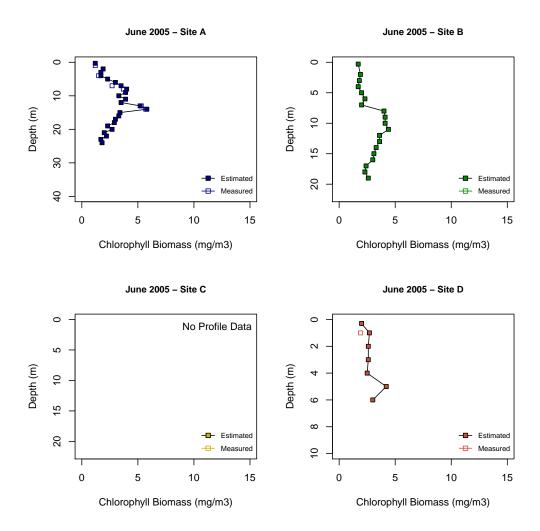


Figure 58: Lake Samish chlorophyll data for Sites A–D, June 15, 2005.

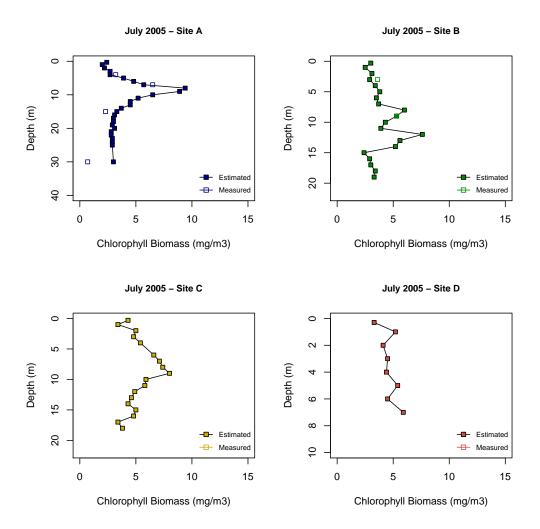


Figure 59: Lake Samish chlorophyll data for Sites A-D, July 20, 2005.

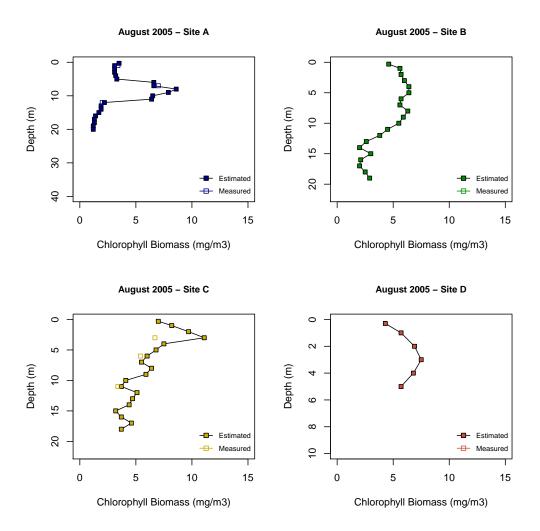


Figure 60: Lake Samish chlorophyll data for Sites A–D, August 23, 2005.

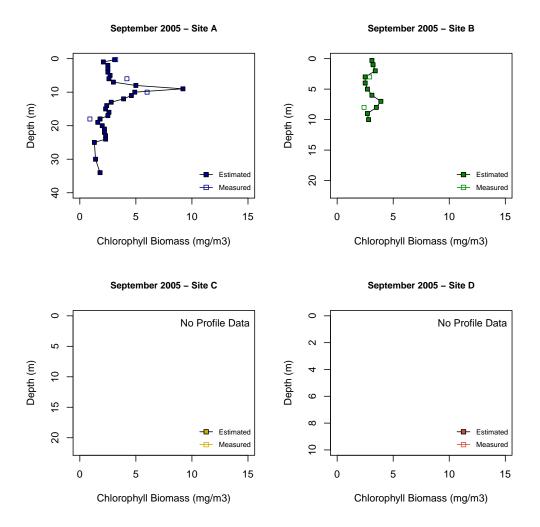


Figure 61: Lake Samish chlorophyll data for Sites A and B, September 20, 2005. Data from Sites C and D have been omitted due to equipment malfunction.

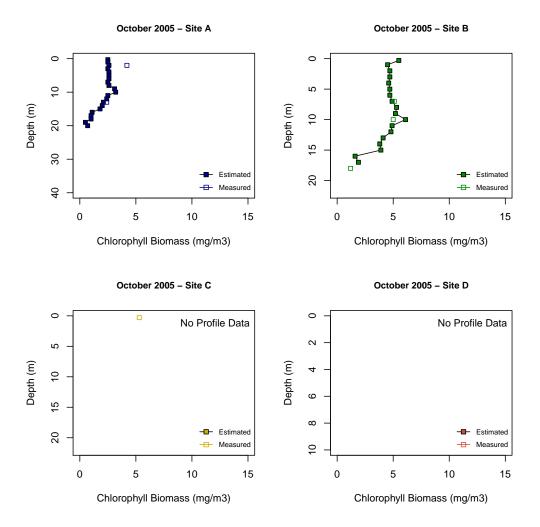


Figure 62: Lake Samish chlorophyll data for Sites A and B, October 16, 2005. Data from Sites C and D have been omitted due to equipment malfunction.

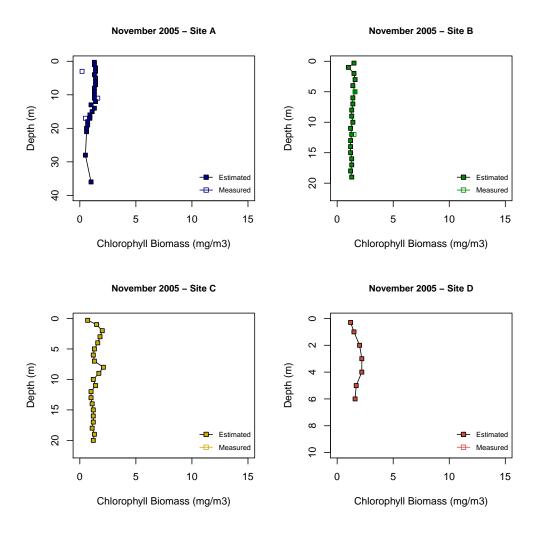


Figure 63: Lake Samish chlorophyll data for Sites A-D, November 20, 2005.

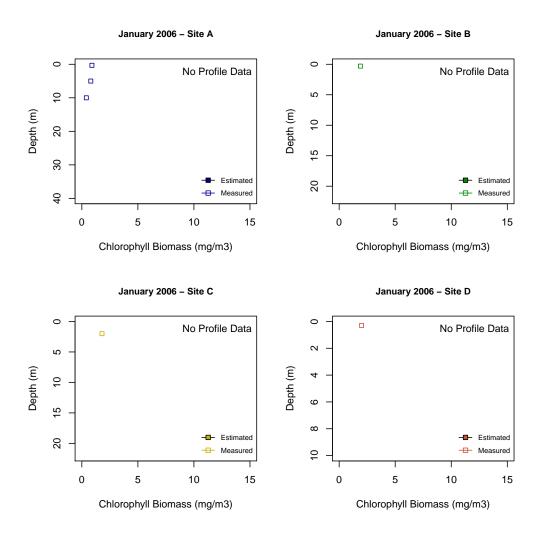


Figure 64: Lake Samish chlorophyll data for Sites A-D, January 22, 2006.

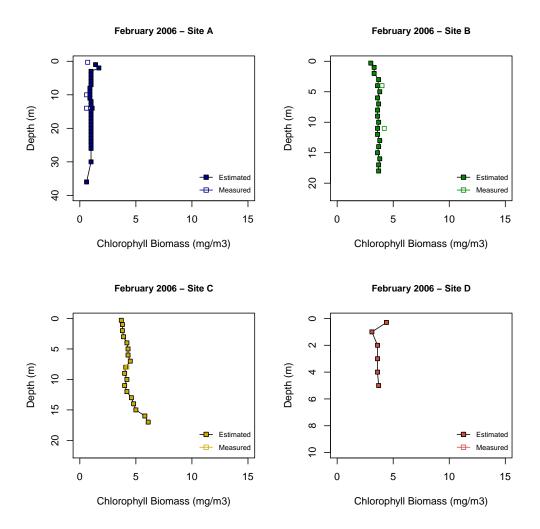


Figure 65: Lake Samish chlorophyll data for Sites A–D, February 26, 2006.

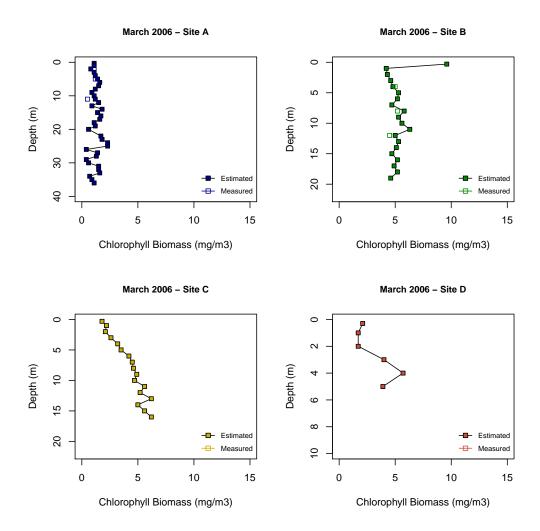


Figure 66: Lake Samish chlorophyll data for Sites A–D, March 19, 2006.

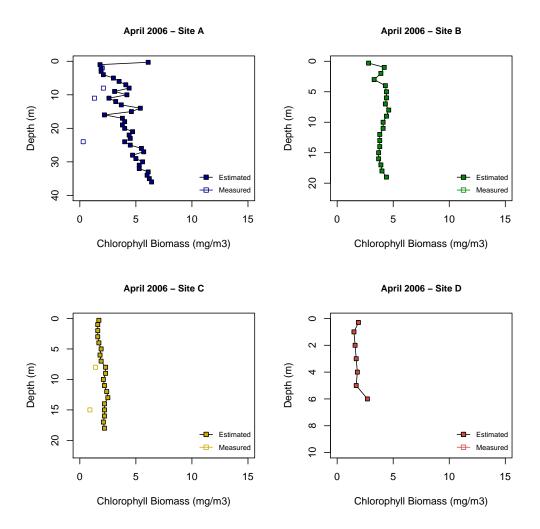


Figure 67: Lake Samish chlorophyll data for Sites A-D, April 23, 2006.

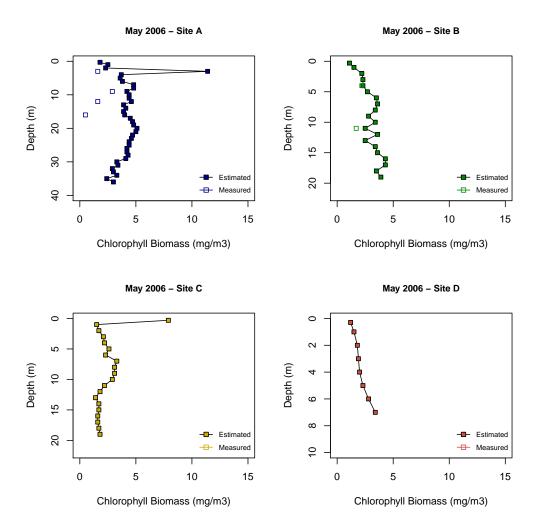


Figure 68: Lake Samish chlorophyll data for Sites A-D, May 21, 2006.

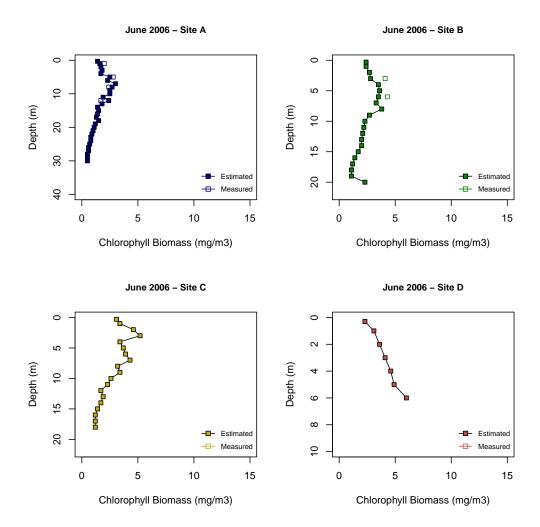


Figure 69: Lake Samish chlorophyll data for Sites A-D, June 20, 2006.

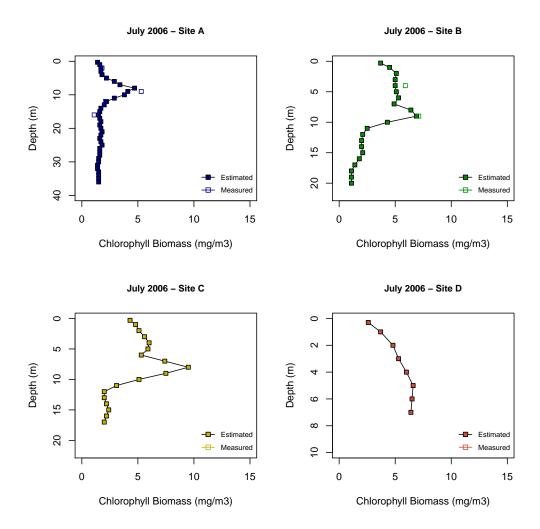


Figure 70: Lake Samish chlorophyll data for Sites A–D, July 19, 2006.

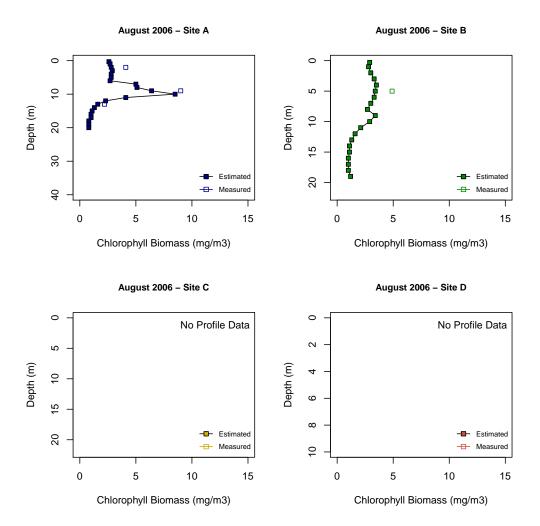


Figure 71: Lake Samish chlorophyll data for Sites A and B, August 24, 2006. Sites C and D were not sampled on this date.

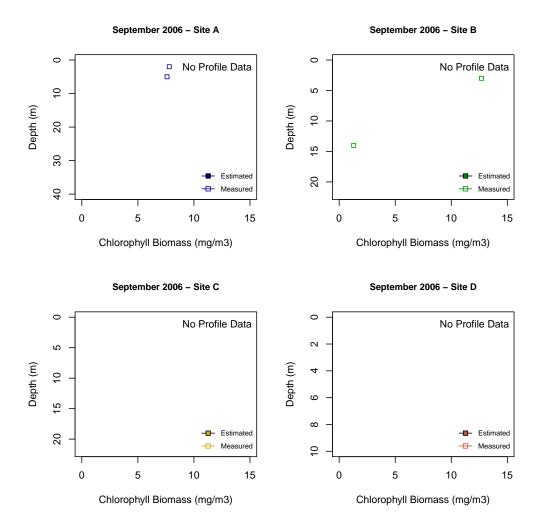


Figure 72: Lake Samish chlorophyll data for Sites A and B, September 18, 2006. Sites A and B had two measured water column samples; Sites C and D were not sampled on this date.

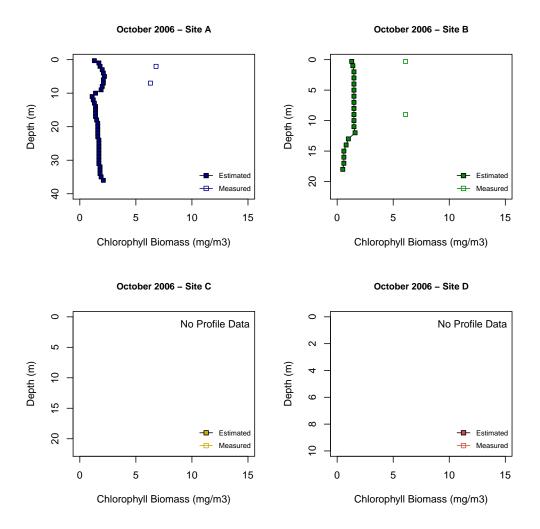


Figure 73: Lake Samish chlorophyll data for Sites A and B, October 22, 2006. Sites C and D were not sampled on this date.

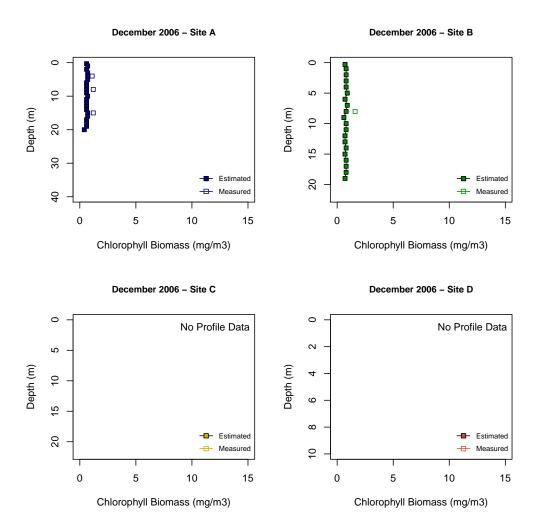


Figure 74: Lake Samish chlorophyll data for Sites A and B, December 18, 2006. Sites C and D were not sampled on this date.

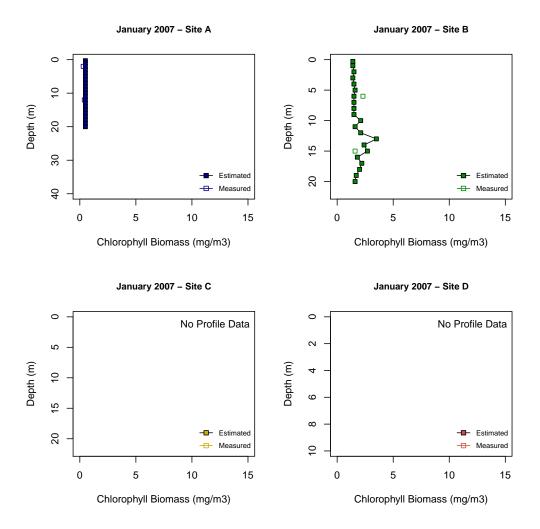


Figure 75: Lake Samish chlorophyll data for Sites A and B, January 30, 2007. Sites C and D were not sampled on this date.

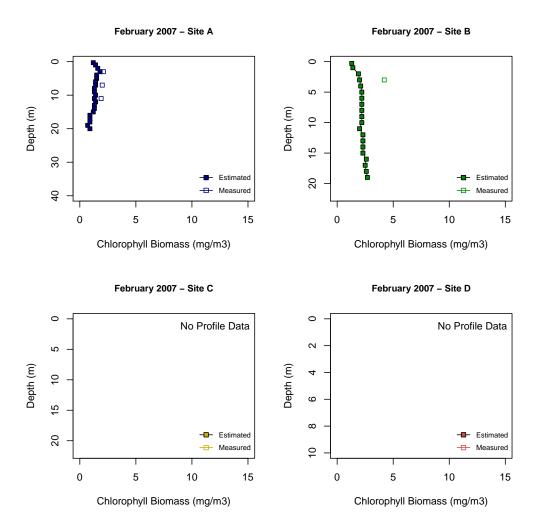


Figure 76: Lake Samish chlorophyll data for Sites A and B, February 27, 2007. Sites C and D were not sampled on this date.

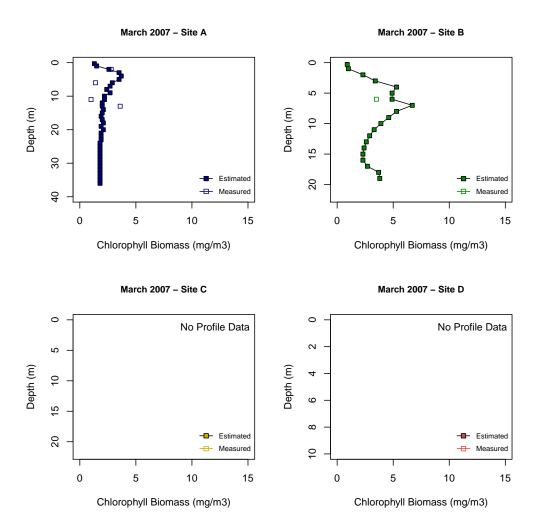


Figure 77: Lake Samish chlorophyll data for Sites A and B, March 29, 2007. Sites C and D were not sampled on this date.

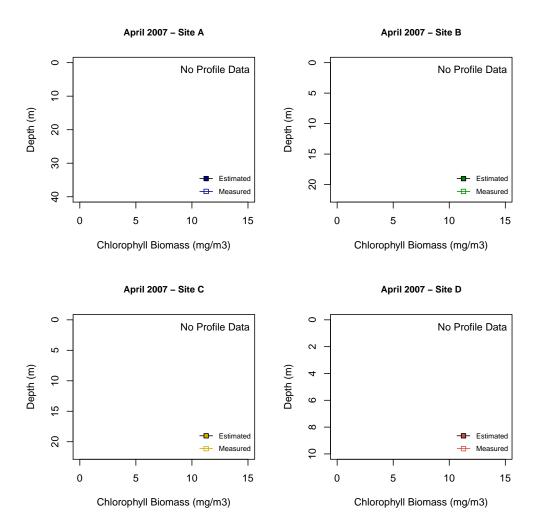


Figure 78: Lake Samish chlorophyll data for April 24, 2007 (no chlorophyll data were collected; the plot is included for information only).

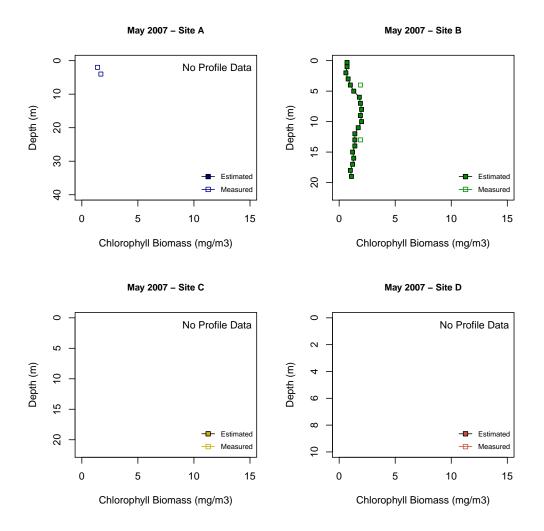


Figure 79: Lake Samish chlorophyll data for Site B, May 24, 2007. Sites C and D were not sampled on this date and only two samples were collected at Site A.

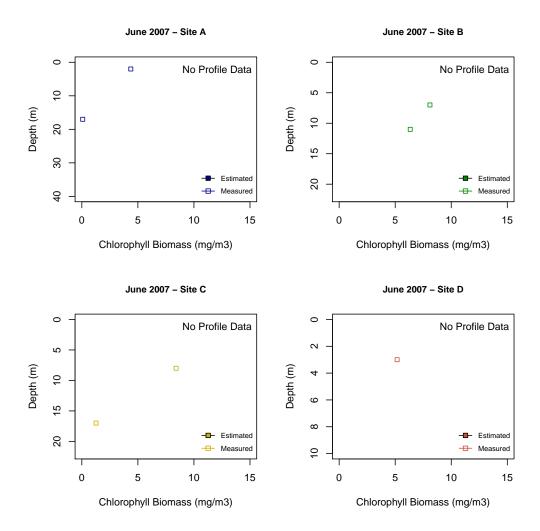


Figure 80: Lake Samish chlorophyll data for Sites A-D, June 21, 2007.

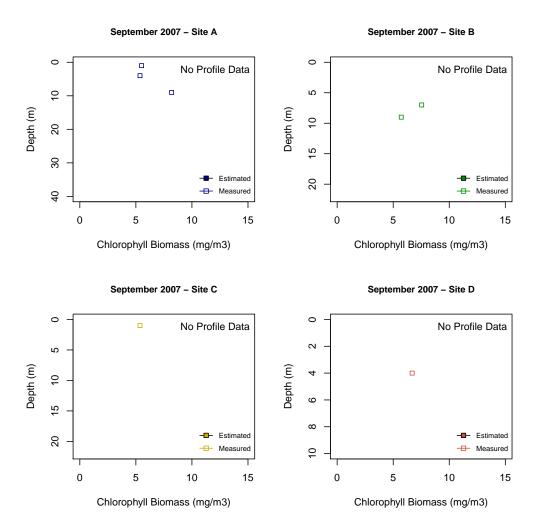


Figure 81: Lake Samish chlorophyll data for Sites A–D, September 13, 2007.

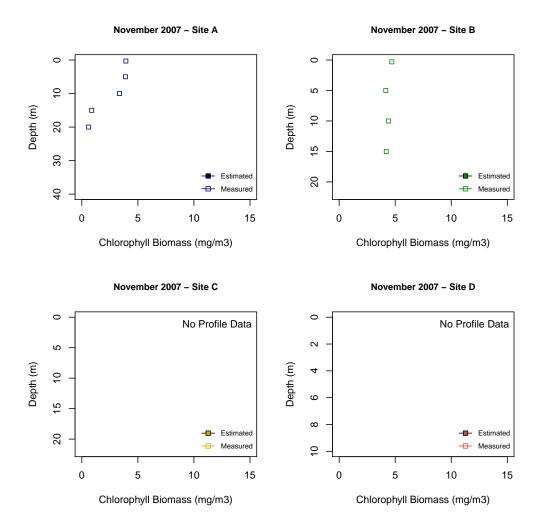


Figure 82: Lake Samish chlorophyll data for Sites A and B, November 15, 2007. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.

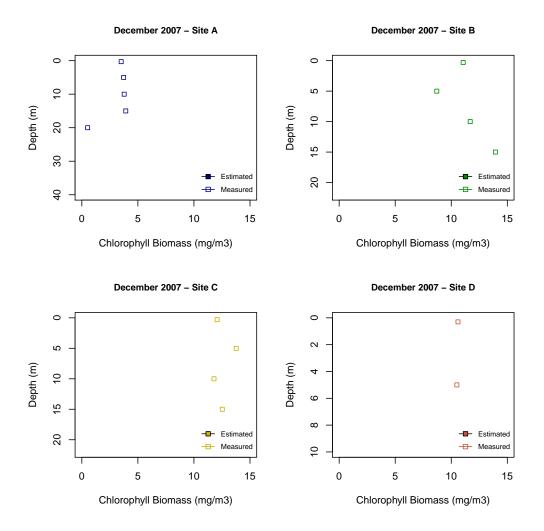


Figure 83: Lake Samish chlorophyll data for Sites A–D, December 20, 2007. All sites were sampled at 5 meter depth intervals.

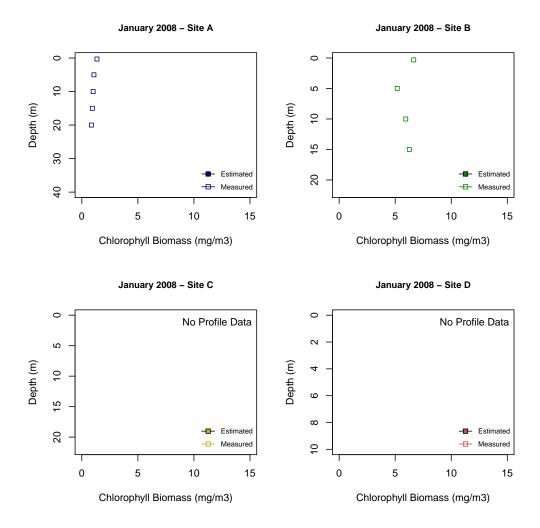


Figure 84: Lake Samish chlorophyll data for Sites A and B, January 29, 2008. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.

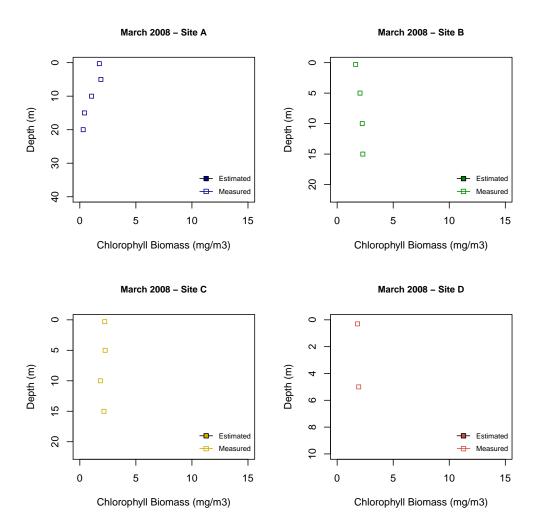


Figure 85: Lake Samish chlorophyll data for Sites A–D, March 25, 2008. All sites were sampled at 5 meter depth intervals.

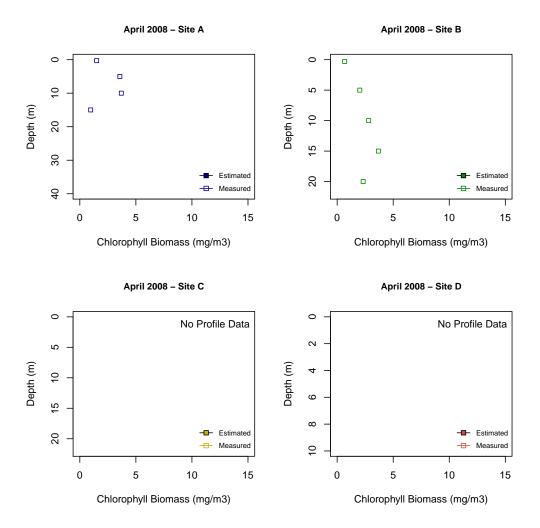


Figure 86: Lake Samish chlorophyll data for Sites A and B, April 21, 2008. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.

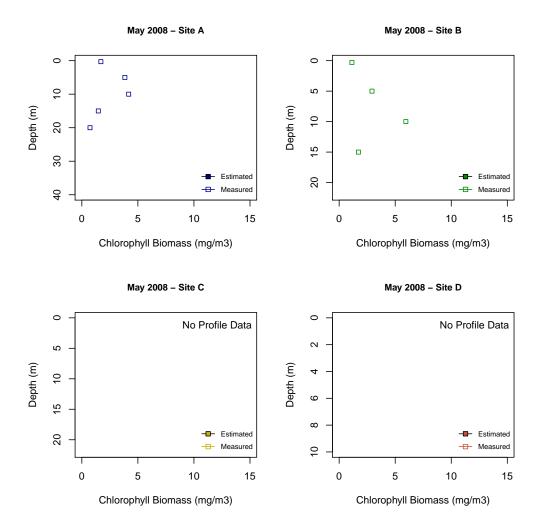


Figure 87: Lake Samish chlorophyll data for Sites A and B, May 15, 2008. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.

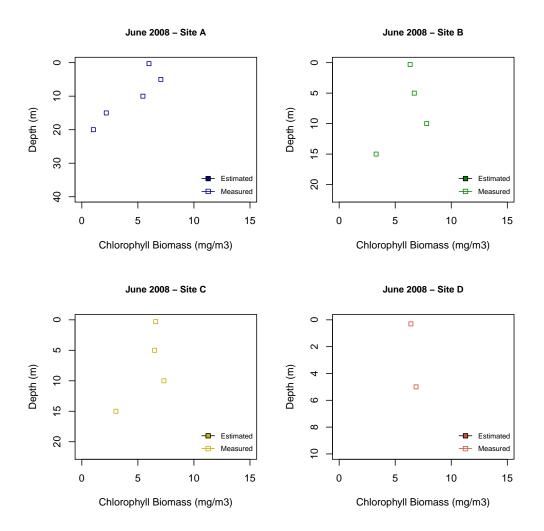


Figure 88: Lake Samish chlorophyll data for Sites A–D, June 10, 2008. All sites were sampled at 5 meter depth intervals.

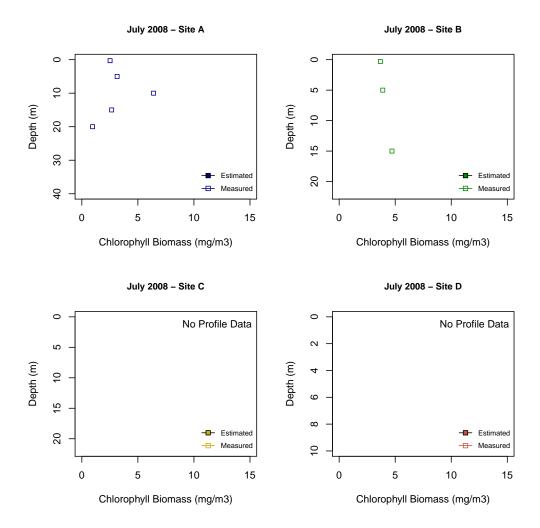


Figure 89: Lake Samish chlorophyll data for Sites A and B, July 22, 2008. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.



Figure 90: Lake Samish chlorophyll data for Sites A–D, October 23, 2008. All sites were sampled at 5 meter depth intervals.

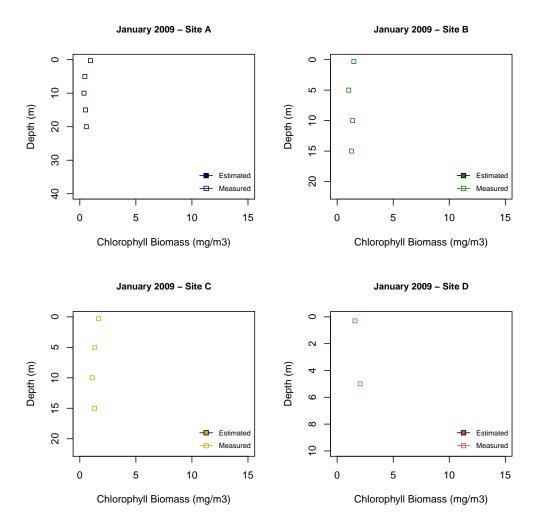


Figure 91: Lake Samish chlorophyll data for Sites A–D, January 25, 2009. All sites were sampled at 5 meter depth intervals.

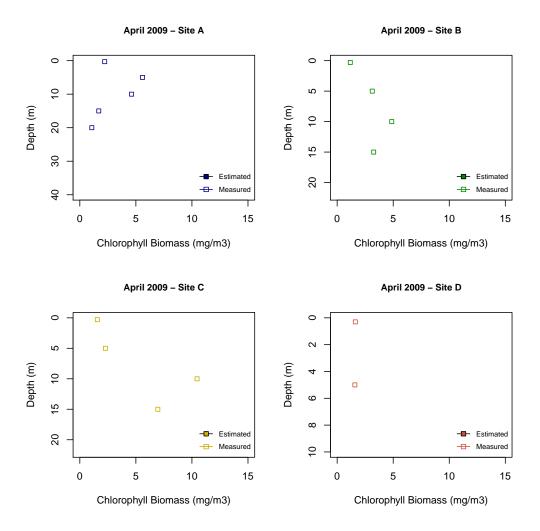


Figure 92: Lake Samish chlorophyll data for Sites A–D, April 27, 2009. All sites were sampled at 5 meter depth intervals.

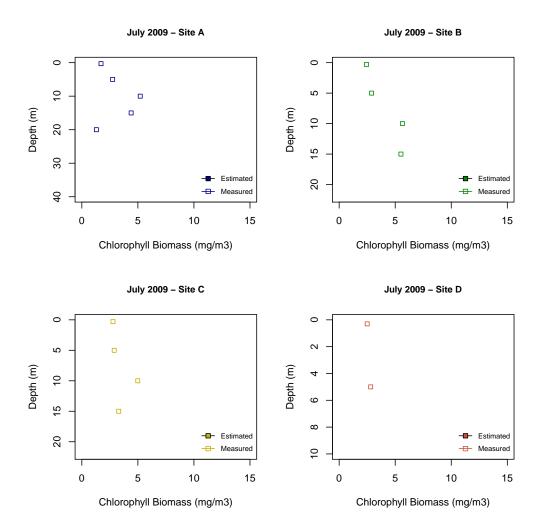


Figure 93: Lake Samish chlorophyll data for Sites A–D, July 1, 2009. All sites were sampled at 5 meter depth intervals.

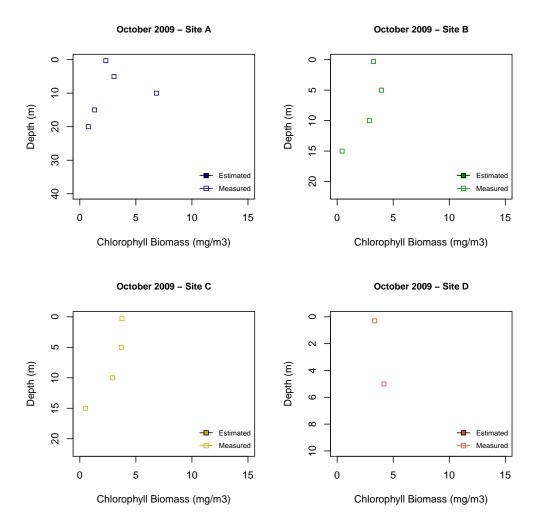


Figure 94: Lake Samish chlorophyll data for Sites A–D, October 20, 2009. All sites were sampled at 5 meter depth intervals.

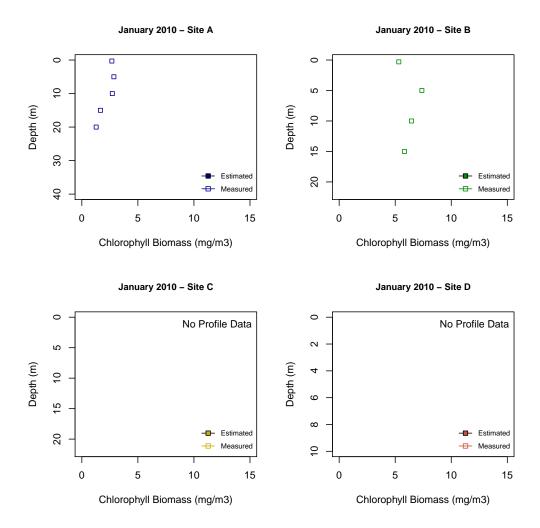


Figure 95: Lake Samish chlorophyll data for Sites A and B, January 26, 2010. Sites A and B were sampled at 5 meter depth intervals; Sites C and D were not sampled on this date.

C Lake Samish Monitoring Data

Printed versions of this report include tables of raw lake and tributary monitoring data, edited to show detection limits. Online reports do not include copies of the original data, but electronic data files are available from the Institute for Watershed Studies. In addition, the IWS web site (http://www.ac.wwu.edu~iws) features "dynamic" plots of the Lake Samish water quality data and tables containing the most recent results from the lake.