
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2023

Level and Temperature Controlled Vessel Level and Temperature Controlled Vessel

Cameron Macesich
cwm40@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Catalysis and Reaction Engineering Commons, and the Process Control and Systems

Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Macesich, Cameron, "Level and Temperature Controlled Vessel" (2023). Williams Honors College,
Honors Research Projects. 1679.
https://ideaexchange.uakron.edu/honors_research_projects/1679

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/242?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/247?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/247?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1679
https://ideaexchange.uakron.edu/honors_research_projects/1679?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Senior Design Report:

Level and Temperature

Controlled Vessel

Prepared for

Dr. Paul Schreuders

By

Cameron Macesich 

April 10, 2023

 Macesich 2

Executive Summary

 In the reactor experiment of CHEE 360 Chemical Engineering Lab, the student is asked

to operate a Continuously Stirred Tank Reactor (CSTR) system and a system of CSTR’s in

series. These systems require both volume and temperature to be controlled closely to safely

produce consistent and predictable results. Currently the students use manual control, which is

prone to slow responses, operator errors, and lack repeatability. To overcome these challenges, an

automated control system was designed, built, and evaluated.

 A pair of control systems consisting of two linked Arduino microcontrollers, a pair of

pumps, and sensors to measure the temperature and liquid level in a development-scale reaction

vessel. These components form two feedback control loops to maintain user designated setpoints,

minimizing the need for human operators to manually adjust flowrates. The Arduinos apply a

Proportional-Integral (PI) control equation. The associated tuning constants with each control

system were determined by performing both open loop step tests and closed loop tuning. The

level controller had operating parameters of KP = 30 and KI = 0.2, and the temperature control

system used KP = 14.26 and KI = 0.67. These tuning parameters produced closed loop stable

steady states but had aggressive responses to setpoint changes with <15% overshoot. These

parameters are most appropriate for lab systems where students may make changes to setpoints

during the experiment and want to minimize time spent in a transitory state. The code written for

the Arduino Mega 2560 R3 level controller and that for the Arduino Uno R3 temperature

controller are shown in Appendices A and B, respectively. A circuit diagram of the system is

shown in Appendix D.

 For implementation, in the experimental reactor system, it is recommended that the

system undergo an evaluation at the intended reaction conditions to assure the temperature

 Macesich 3

control system has sufficient capability to remove heat from the process and prevent runaway

reactions. It is also recommended that a better method for outlet flow manipulation be developed,

as it impacts reactor performance but lacks quantitative control. The 12-volt process pumps were

limited to a span of 4.2—10 volts using the available interfaces. Additional control could be

achieved by using a different motor controller with less voltage drop. Alternatively, superior

pumps with gearboxes could be used to increase torque at low rotation speeds, increasing the

pumps’ ability to operate at lower flow rates.

 The project was a demonstration of skills in process equipment engineering in designing

and building the system, computer science in writing the code for the control system, process

controls and analysis in tuning the system, and incorporated process safety elements. As an

aspiring automation and controls engineer, the project was a means to get firsthand experience

working with electronics, instrumentation, and controlled systems. The project provides an

opportunity for future students to expand upon my work to explore reactions in CSTR’s and

serves as a demonstration of how programming and other technology skills, which grow in

importance in industry each year, can be further incorporated into the chemical engineering

curriculum at the University of Akron.

 Macesich 4

Introduction

 In industrial applications, chemical manufacturers use automated systems to control

valves, pumps, and other process equipment. The use of automated systems increases product

quality and productivity by replacing process components that require human control with

computer-controlled systems and instruments. These computer controls are faster and more

precise than their human counterparts, reducing both the operating labor and time spent away

from process setpoints. The reactor activities performed in CHEE 360, Chemical Engineering

Lab, all required human control, and could be improved by the implementation of an automated

system to control the vessel level.

 The purpose of the performed activities was to create an automated vessel akin to that

used in the continuously stirred tank reactor section of the Chemical Engineering Lab reactor lab

section with integrated monitoring and control of the vessel liquid level and temperature.

Background

Continuously Stirred Tank Reactor

Continuously stirred tank reactors (CSTR’s), commonly used in biomanufacturing due to

their superior controllability and lower cost when compared to their tubular counterparts [1], are

steady state process units that operate on the assumption of constant liquid volume and with

perfect mixing [2, p. 38]. Reaction rate (-rA) in the vessel depends on the rate constant, k. The

relationship between rate constant and temperature is described by Equation 1. CSTR’s are also

chosen for their simplicity in design; a CSTR is a mixed tank with an inlet and an outlet which

allows measurements to be taken of the bulk liquid at any point in the vessel and any adjustments

 Macesich 5

to the bulk material (such as temperature and pH) can be made directly on the bulk by means of

heat exchangers on or in the vessel and chemical additions directly to the bulk.

 𝑘(𝑇) = 𝐴 ∗ 𝑒𝑥𝑝⁡(−𝐸𝑎/𝑅𝑇) (1)

Controlling the vessel level and temperature are important for CSTR operation as they impact the

fundamental relationships that impact the reaction occurring in the vessel. The design equation

(Equation 2) shows that the fractional molar conversion of reagent to product (X) is dependent

upon the molar flow rate of reagent into the vessel (FA0 [mol A/minute]), the reactor’s volume (V

[m3]), and reaction rate (-rA [mol A/(minute*m3)]) [2, p. 38].

𝑉 =

𝐹𝐴0𝑋

(−𝑟𝐴)𝐸𝑥𝑖𝑡
 (2)

A CSTR is designed under the assumption of constant volume, so the volume of liquid in the

reactor must be controlled for the reactor to have an effluent concentration profile matching the

intended design. Volume control is also a safety concern; high level excursions can result in

overflows in open vessels or rapid pressure increase in closed vessels from compression of air in

the top of the reactor as liquid level rises. High pressure events can trigger relief devices, which

may result in unplanned downtime for cleaning and maintenance, and a subsequent loss in plant

productivity [3]. In a CSTR, the only removal of heat occurs from conduction through the walls

of the vessel, through a heat exchanger (if present), and by the flow of process liquid out of the

reactor. For an exothermic reaction, which generates heat, further measures must be taken to

remove heat from the system to prevent runaway reactions and ensure product concentration

adheres to design criteria. Use of a temperature control loop with a jacket or heat exchanger in

the vessel can mitigate this risk by removing heat from the system, slowing down the rate of

reaction.

 Macesich 6

Control of CSTR’s

As noted earlier, in CHEE 360, Chemical Engineering Lab, the level in the CSTR was

manually controlled by the adjustment of the feed and outlet pump setpoints by the students

operating the reactor. To determine if the system was at steady state, tape was placed on the

vessel at the desired liquid level and the student watched to see if the level deviated from the

mark over time. Manual processes such as this create variability in experiments and decrease

experiment repeatability. Use of an automated feedback control system to continuously monitor

and control the liquid level would increase the speed and accuracy of input pumping rate to level

setpoint and reduce deviations from setpoint.

Computer-Based Controllers

Computer controlled processes can utilize various control systems to read input from

sensors and instruments, run the user program, and set outputs to devices out in the field like

valves and pumps.

The objective for the level control system is to hold the level in the vessel steady at its

setpoint and automatically perform changes to vessel level when a setpoint change is made by

the operator. The objective for the temperature control system is to keep the temperature in the

vessel at a specified setpoint and resist deviation from setpoint due to generated heat to ensure

the reaction proceeds at the expected rate of reaction.

The most common industrial control solution is the programmable logic controller (PLC).

A PLC is a hardened computer designed for industrial use that can quickly react to inputs and set

outputs. They are coded in ladder logic, a graphical programming language that is based on the

hardwired control ladder diagrams that they have replaced. Ladder logic uses a combination of

 Macesich 7

basic logical and mathematical functions to operate ([4, p. 475]). Using a computer over a

hardwired control system allows the user to make changes to the control system without having

to reconfigure or rewire the system. While useful in industrial applications, PLCs often require

special licensed software to code and have high upfront cost for the unit itself and the field

devices which it controls.

Microcontroller-Based Controls

A microcontroller unit (MCU) is similar in concept to a PLC in that it is designed to

receive input and output from field devices and run a user program, but differs in the

programming language of operation, the robustness of components, and most importantly, the

cost of the device and its sensors. MCU’s are often used by students and hobbyists due to their

reduced financial barriers to entry and ease of use. The Arduino Mega 2560 (Mega) is one such

MCU, and is distinguished by its low cost, the relatively large size of the board, high number of

input and output pins relative to similar systems, and its C++ based programming language. The

software used to program and load the program onto the board, the Arduino Integrated

Development Environment (IDE) [5], is free to use and there are various free libraries that

implement more complex programs like Proportional, Integral, Derivative (PID) control and

communication with digital sensors.

Process Sensors

A level sensor is required for level control of the vessel. An ultrasonic sensor can measure

the distance between itself and a target by measuring the time it takes for an emitted soundwave

to travel to the target and then back to a receiver on the instrument. The time taken for the

reflected wave to be detected is divided by two times the speed of sound to determine the

 Macesich 8

distance to the object. The advantage of an ultrasonic sensor over a laser distance sensor is that

the ultrasonic sensor does not depend on an object’s opacity, making it ideal for measuring the

distance to fluids, which would allow the majority of the light waves to pass through.

Process Actuators

DC Motor Driven Pumps

To add fluid to the vessel for level control, a pump is required. Pumps can be controlled

by two types of electric motors, alternating current (AC) and direct current (DC). For smaller

loads, DC motors present the advantage of being able to draw power from batteries and the speed

and direction is easily controlled by changing the voltage across its terminals. A MCU like the

Mega cannot deliver true continuous analog output voltages to its pins, but it can use Pulse

Width Modulation (PWM) to simulate an analog output voltage by very quickly triggering its

digital pins on and off to form a square wave [6]. The average voltage of the resultant wave is

between 0 and 5V, the maximum output voltage of the Mega. Equation 3 describes the output

voltage of an Arduino PWM pin. The PWM output (n) is the numerator of the fractional time that

the output is energized. The ratio of n:255 is known as the Duty Cycle. When n=255, the output

is always on. Figure 1 shows an example of a PWM output, where the output voltage of 2.5 volts

is the result of the output being energized 50% of the time.

𝑉𝑃𝑊𝑀 = 5𝑉 ∗

𝑡𝑜𝑛
𝑃𝑒𝑟𝑖𝑜𝑑

= 5𝑉 ∗
𝑛

255

(3)

 Macesich 9

Figure 1: Example of how a digital (on/off) output can use PWM to simulate an analog output [6].

Peristaltic pumps operate by squeezing a tubing element with rotating rollers to push

liquid forward through the tube [7, p. 208]. They are often used in bioprocessing because the

liquid flow rate through the pump is directly proportional to the rotational speed of the rollers

(Figure 2), leading to high precision in volumetric flow rate for dosing applications, and for their

ease of cleaning. The fluid is within the tube at all times and does not need to go through a pump

head which may be harder to clean.

Figure 2: Operating principle of a peristaltic pump. Liquid is pulled by the rollers from the suction side to the discharge side [8].

Diaphragm pumps operate by expanding and contracting a diaphragm of a flexible

material in the wall of a chamber with one-way check valves on the inlet and outlet [7, p. 206].

As the diaphragm expands, the liquid in the chamber is pushed out of the outlet. When it

contracts, the volume of the chamber increases, and fluid is sucked into the chamber for the inlet.

Diaphragm pumps are preferred for higher flowrate applications than peristaltic pumps, which

 Macesich 10

are limited to smaller flowrates, but both are positive displacement pumps with near constant

volumetric flow rate per cycle [7, p. 207].

Electromechanical Relays

 Electromechanical relays are magnetic switches that use electromagnetism to switch

contacts. They provide the ability to use a small control current to energize or de-energize a

higher current system [9]. Relays may be normally open (NO), meaning that when the control

side is de-energized, the process side is de-energized, or normally closed (NC), where the

process side is energized when the control side is de-energized. In lighter applications, a control

relay will suffice, but when the process side load is large, like that of a three phase 480V pump in

a factory, special hardened relays called contactors are used that can withstand the higher process

current draw. For the smaller 12V-2A DC system used in this project, a standard control relay

will suffice. Relays can be used to increase process safety by giving the operator or controller the

ability to toggle the power to process equipment. For emergency stop functionality, the control

relay is always hardwired into the emergency stop circuit to reduce reliance on the controller in

case the system needs to be immediately halted by the operator [9].

Control Algorithms

Liquid Level Control

Systems require different control methods depending on the desired response and order of

the system. Using the mass balance for a single CSTR with a pumped inlet and gravity drained

outlet, the relationship between the deviation from steady-state level of the liquid in the tank

(H*(s)), the controlled variable (CV), can be derived in terms of the manipulated variable (MV),

the deviation from steady state inlet pump PWM setpoint (P*(s)). The derivation for the system

 Macesich 11

in the Laplace domain is shown in Appendix C. The transfer function for the gravity drained

reactor system in terms of the deviation from steady state values has a first order relationship

between the MV and CV, as shown in Equation 4, where K is the gain and τ is the process time

constant.

𝐻∗(𝑠) = ⁡

𝐾

𝜏𝑠 + 1
∙ 𝑃∗(𝑠)

(4)

A first-order response is desired from the system, so by direct synthesis the transfer function for

the desired level controller was derived, shown in Equation 5. The desired controller is a

Proportional-Integral (PI) controller with no derivative action. A PI controller calculates the MV

setpoint using the instantaneous error from CV setpoint (the term KP) and the amount of

accumulated error in CV over time (the term KI/s), where KP and KI are tuning constants. The

error is the difference between the measured value of the CV and its setpoint value. Larger

tuning constants increase the magnitude of controller response.

𝐺𝐶 =⁡𝐾𝑃 +

𝐾𝐼
𝑠

(5)

Temperature Control

The relationship between the pumped flow of cold water through the heat exchanger, Q*(s), can

be related to the temperature of the water, T*(s), in the vessel by means of the energy balance.

The complete derivation of the transfer function for tank temperature in terms of heat exchanger

flow (Equation 6) is shown in Appendix C. τ1 and τ2 are placeholder values for process time

constants, and K for process gain, which can all be determined experimentally performing a step

test and fitting the results with an equation. A step test is performed by manually adjusting the

value of the manipulated variable and recording the response of the controlled variable.

 Macesich 12

𝑇∗(𝑠) = ⁡

𝐾

𝜏1𝜏2𝑠2+(𝜏1 + 𝜏2)𝑠 + 1
∙ 𝑄𝐻𝐸𝑋

∗ (𝑠)
(6)

The ideal controller for the system is of equal order to the system, second order. By the Internal

Module Control (IMC) method, which establishes starting controller settings several common

process models [4], the best control solution for a second order system is a PID controller shown

in Equation 7 and in Equation 8 where the integral term is in respect to the time constant τI.

G𝑐 ⁡= ⁡⁡⁡ K𝑃 ⁡+

⁡K𝐼

s
+⁡K𝐷s⁡ (7)

G𝑐 ⁡= ⁡⁡⁡ K𝑃 ⁡+

1⁡

τ𝐼s
+⁡K𝐷s⁡ (8)

While accurate in its description of the system, second order models are more difficult to fit and

characterize in real processes with measurement noise, which controllers with derivative action

are very sensitive to [4, p. 192]. Lower order systems are also more convenient for control

system design [4, p. 92].

For complex responses, Skogestad [10] states that the order of a higher order system can

be reduced a First-Order-Plus-Time-Delay (FOPTD), seen in Equation 9, by means of the “Half

Rule”, where one half of the largest neglected time constant is added to the largest time constant,

while the other half and remaining time constants are added to the delay.

 𝐾

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
→

𝐾𝑒−𝜏2𝑠/2

(𝜏1 + 𝜏2/2)𝑠 + 1

(9)

When the heat exchanger transfer function is reduced by the “Half Rule” to FOPTD (Equation

10), the IMC method can be used to determine coefficients for a PI controller. Therefore, if a

FOPTD function is fit to an open loop response, the controller parameters can be estimated using

the IMC relations [11] shown in dependent form in Equation 11.

 Macesich 13

𝑇∗(𝑠) = ⁡

𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
∗ 𝑄𝐻𝐸𝑋

∗ (𝑠)
(10)

G𝑐 ⁡= ⁡⁡⁡ K𝐶 (1⁡ +

⁡1

τ𝐼s
) , K𝐶 =

1

𝐾
∗

𝜏

𝜃 + 𝜏𝑐
, τ𝐼 = 𝜏 (11)

Materials:

• Laptop Computer with the following software installed:

o PuTTY SSH and Telnet Client v0.78 [12]

o Arduino Integrated Development Environment v2.04 [5]

▪ PID_v2 Library [13]

▪ OneWire Library [14]

▪ DallasTemperature Library [15]

o Microsoft Excel [16]

o Loop-Pro Trainer [17]

• Adafruit Arduino UNO Rev3

• CSTR Vessel

o 400 mL beaker with stopcock outlet

o Custom made by Jack Gillespie

• Ring stands (x2)

• Ring stand clamps (x2)

• Inland Arduino Super Learning Kit [18](1)

o Inland Arduino Mega 2560 Rev3

o HC-SR04 Ultrasonic level sensor

o AA Battery Bank (9V)

o 5V Relay Control Module SRD-05VDC-SL-C

o Solderless Breadboard

o 10 kΩ Resistor (x4)

• Taiss 3pcs Momentary Push Button Switch 22mm 10A 440V 1NO 1NC DPST Red

Yellow Green Pushbutton Switches LA38-11BNRYG(2)

• Push-Pull Emergency Stop Button

o Donated By Scott Smejkal

• uxcell Push Button Switch Control Station Box 22mm 4 Button Aperture White and

Black(2)

• Treedix 5 pcs Prototype Shield Board Compatible with Arduino Mega 2560 Solderable

Universal BreadBoard PCB Double Sided Tinned Gold Plated Holes(2)

• General Protoboard(2)

1 Material Purchased from Micro Center(https://www.microcenter.com/)

 Macesich 14

• L298N H-bridge motor driver

• 12V 2A DC Power Supply

• Gikfun 12V DC Dosing Pump Peristaltic Dosing Head with Connector For Arduino

Aquarium Lab Analytic Diy AE1207(2)

• 2mm ID silicon tubing(2)

• Gikfun Mini DC 6V to 12V R385 Water cooled Water Pump Air Diaphragm Pump

EK1856(2)

• Gikfun DS18B20 Temperature Sensor Waterproof Digital Thermal Probe Sensor for

Arduino (Pack of 5pcs) EK1083(2)

• ¼” ID Clear PVC Tubing(2)

• ¼” OD copper tubing

Methods:

Initial Training

 The initial training activities performed were activities from the Inland Arduino Super

Learning kit. Activities performed were those predetermined to be relevant to the project

objective. The activities are summarized below:

• Activity 1: Hello World [18] - Print to Serial.

• Activity 2: LED Blinking [18] - Use of timers and output pins to make an LED light

blink.

• Activity 3: PWM [18] - The use of an analog input device (potentiometer) to manipulate

the brightness of an LED using the Arduino AnalogWrite(PIN, INT) command.

• Activity 4: Traffic Light [18] - More complicated wiring of 3 LED’s which were

activated by the Arduino by a timer.

• Activity 6: Button Controlled LED [18] - Using a digital input (momentary pushbutton)

to energize an LED light on a digital output. The wiring for the momentary pushbutton

would later be replicated to make the button control panel.

2 Material purchased from Amazon (amazon.com)

 Macesich 15

• Activity 26: HC-SR04 Ultrasonic Sensor [18] - Use the HC-SR04 sensor to determine the

range of an object by sending a sound wave then measuring the time required to detect

the echo. The activity would form the foundation of the level sensor code.

Electronics Prototyping

Once the Arduino introductory activities were completed, the system was mocked up on a

solderless breadboard. The initial control program was created, with the primary function to read

input from the button panel (shown in Figure 4) and get input from the DS18B20 temperature

and HC-SR04 level sensors. The emergency stop button was wired to be normally closed, while

the momentary pushbuttons were wired on their normally open terminals. Readings from the

sensors were transferred to the Laptop Computer using a USB cable and PuTTY. The data was

recorded as .LOG files and transformed into comma separated value (.CSV) files in Microsoft

Excel for analysis in Loop-Pro Trainer. Next, the level and heat exchanger pumps were wired

into the system by sending a 0-5V Pulse Width Modulated (PWM) signal to the L298N H-bridge

motor controller interface, which controlled the pump direction and speed using power from the

12V DC wall power supply (Figure 3).

 Macesich 16

Figure 3: L298N Motor control interface and E-Stop Relay for the control system. Wires are labeled.

The emergency stop button, initially wired directly to an Arduino input pin that digitally

controlled pump setpoints, was reconfigured to energize the normally open control pins of a 5V

relay control module that regulated the 12V power. The relay provided a hardwired control for

the pump emergency stop mechanism. When the emergency stop button is pushed, the relay is

de-energized, killing power to the pumps. Once all electrical components were working

correctly, shields for the Arduinos were fabricated with ports for all input and output devices

(Figure 5 and Figure 6).

→ LC E-Stop

Relay GND

TC

PUMP

LC

PUMP

↑ TC Motor

Control Ports

↑ LC Motor

Control Ports

↓ 12 V DC

GND | 12 V

↓ LC E-Stop Relay

5V and Signal

 Macesich 17

Figure 4: Four button panel fabricated for control system. Left to right: RED – Emergency Stop, GRN – Start, YEL – User-

Programmable, RED – Normal Stop.

Figure 5: Arduino Mega level controller shield. Ports are labeled.

To L298N

E-Stop Relay

TC GND

To HC-SR04

Button Panel

TC COM1

& COM 2

 Macesich 18

Figure 6: Arduino Uno temperature controller shield. Ports are labeled. Three wires go to level controller for communication:

BLK – TC GND, YEL – COM1, BLUE – COM2

Heat Exchanger Fabrication

A heat exchanger was fabricated for the vessel using ¼” OD copper pipe as follows:

1. A small slot was milled in the bottom of a 2” OD guide tube around which the

copper pipe could be wrapped to make a helical coil.

2. The copper pipe was given a 90 degree bend using a pipe bender at what would

become the bottom of the exchanger.

3. The copper pipe was threaded into the notched end of the guide tube.

4. The copper pipe was placed into the notch in the guide tube.

5. The guide tube was clamped into the chuck of a lathe and slowly rotated while

maintaining tension on the copper pipe to coil it around the guide.

6. The copper heat exchanger was then removed from the guide tube and given a

90-degree bend to direct the top exchanger pipe upwards, away from the bottom.

The reaction vessel, exchanger, and sensors can be seen in Figure 7.

To L298N

Temp Probes 1,2,3

To Level

Controller

 Macesich 19

Figure 7: Reaction vessel and exchanger with internal temperature probe and HC-SR04 ultrasonic sensor.

Experimental Activities

The level control system comprised of the reaction vessel with an outlet stopcock,

included a peristaltic fill pump controlled through the L298N motor control interface an HC-

SR04 ultrasonic level sensor, a four-button panel, and the Arduino Mega. The devices interfaced

with the Mega via the fabricated shield (Figure 5). See Appendix D for full system wiring. Level

control testing was completed without the temperature controller enabled or connected. The heat

exchanger was removed from the reaction vessel for level control testing.

Activity 1:

 Macesich 20

 Pump curves were created by applying different PWM duties to the pumps and

calculating the volumetric flow rate by recording the time to fill a graduated container. To

mitigate the impact of pressure drop due to friction on pump evaluations, the temperature control

pump was connected to the heat exchanger and level control pump had the same inlet and outlet

line lengths as during normal operation. The outlet was directed to a graduated container. The

pump was turned on and the required amount of time to fill to a graduation height on the

container was recorded. For the sake of time, the target graduation was lower for smaller

flowrates. Figure 9 and Figure 10 show the resulting pump curves.

Activity 2:

Code was written to perform open loop step tests of the level and temperature systems to

determine tuning parameters. Initial level tuning activities were performed without the heat

exchanger installed in the vessel. As the level pump span was determined to be 13 – 65 mL/min,

the reactor outlet stopcock was closed to restrict flow out of the vessel to this range. The pump

was turned on to a setpoint of PWM 180. After ten minutes, the pump setpoint was bumped up to

PWM 220, and the response was observed and recorded (Figure 11). After failing to reach steady

state in the first attempt, the outlet flow rate was reduced and the experiment was repeated with a

smaller change in level control motor setpoint of 110 to 115 (Figure 12).

Activity 3:

Due to large time constants and difficulties in an achieving open loop steady state in level

response in Activity 2, closed loop setpoint change tests were performed using rules-of-thumb

[19] to determine initial tuning parameters (Kp = 50, Ki = 0.3). A PI test program was written to

control liquid level to a setpoint of 7 cm. The reset button was rewired to bump the setpoint

 Macesich 21

between 7 and 8 cm when pushed. The system was allowed to come to steady state, then the

setpoint was changed to 8 cm and allowed to come to steady state, then bumped back down to 7

cm. The responses were exported to the laptop computer and compiled using the PuTTY SSH

and Telnet client. In response to large oscillations shown in Figure 13, the tuning parameters

were adjusted to Kp = 30 and Ki = 0.2, and the activity was repeated. Results of the repeated

activity are shown in Figure 14.

Figure 8: Experimental set-up and equipment for temperature control activities. Equipment:

1.) Mega Level controller 2.) UNO Temperature controller 3.) L298N & E-Stop Relay 4.) Level control peristaltic pump 5.)

Temperature control diaphragm pump 6.) Temperature probes (not installed) 7.) HC-SR04 ultrasonic sensor 8.) Reaction vessel

with heat exchanger installed and a magnetic stir bar 9.) Hot plate with magnetic impeller 10.) Button Panel 11.) Reactor feed

material (water)

Not pictured: Chilled water vessel, reactor effluent collection

The temperature control system is pictured in Figure 8. The vessel was placed on a hot

plate with a magnetic impeller. The copper heat exchanger was suspended in the reaction vessel

6

2

1

3

4

5 8

9

7

10

11

 Macesich 22

above the stir bar, and tubing was connected between it and the pump outlet. The tubing on the

pump inlet was routed to the bottom of the chilled water vessel. Finally, the outlet of the heat

exchanger was routed to discharge at the top of the chilled water vessel. The chilled water vessel

comprised of a bucket filled with ice. The water, discharged into the top of the chilled water

vessel from the exchanger, flows down through the ice to the bottom where it’s drawn into the

inlet line and sent back through the exchanger. DS18B20 submersible temperature probes

connected to the UNO temperature controller were placed at the bottom of the chilled water

vessel where the pump draws water for the exchanger, at the outlet of the reactor, and at the

cooling water discharge after the exchanger. See comment in Methods: Activity 7 about

temperature probe placement for reading vessel temperature.

Activity 4:

Step tests were performed on the temperature controller to determine initial controller

tuning parameters. The level control system was enabled, and liquid level was held at 8 cm. A

trial was performed with the hot plate at 50°C. The temperature control pump was set at PWM

110, and temperature was allowed to come to steady state. It was then increased up to PWM 150,

and the temperature response was recorded. The temperature control pump setpoint was bumped

back down to PWM 110 and response recorded. Figure 17 shows the response of temperature to

pump setpoint change. It was noted that the system took more than ten minutes to come to a new

steady state when temperature pump setpoint was decreased, so the hot plate setpoint was

increased to 70°C so increase heat transfer into the vessel from the hot plate. The system was

allowed to come to steady state, and the setpoint of the temperature control pump was increased

from PWM 110 to PWM 150 and the response is shown in Figure 18.

Activity 5:

 Macesich 23

The data from the final step test was imported into Loop-Pro Trainer and fit with a First-

Order-Plus-Time-Delay (FOPTD) transfer function (Equation 12). Using the fitted FOPTD

response from Loop-Pro Tuner (Figure 19), the IMC method was used to derive a controller

equation (Equation 13) from Equation 12. Next, the system was operated in closed loop using the

derived controller tuning parameters. To test the system, the volume was held at 10 cm and hot

plate set to 70°C. The controller was allowed to come to steady state at 9C and the setpoint was

switched down to 6°C and then back to 9°C to analyze the impact of different initial conditions

on the system. The data was run through Loop-Pro tuner and the controller was re-optimized to

produce a faster response.

Activity 6:

 Activity 5 was repeated with only 8 cm of level in the vessel to determine the impact of

extra volume on the inability to hit setpoint. The hot plate was set to 70°C and the system was

allowed to come to steady state at T = 10°C. The setpoint was bumped down to 8°C and the

response was recorded. The higher setpoints compared to Activity 5 was due to inability to hit

6°C setpoint in Activity 5. At roughly t = 50 minutes, the temperature in the vessel and outlet line

was checked with a digital instant read thermometer. Noting the large discrepancy, the outlet line

was insulated. Further observation of the outlet probe reading was noted, and the run was

terminated at t = 67 minutes. The recorded data is displayed in Figure 21, and shows the system

was unable to reach its low temperature setpoint of 8°C.

Activity 7:

 The temperature probe was removed from the outlet line and suspended centrally in the

vessel as shown in Figure 7. Care was taken to assure the probe did not contact the copper pipe

 Macesich 24

of the cooling coil nor interfere with the ultrasonic level sensor reading. Activity 6 was repeated,

and the setpoint was cycled between 10°C and 8°C after attaining steady state at the new

setpoint. The results are displayed in Figure 22, showing successful temperature control.

Summary of Activities

 The performed activities were designed to evaluate equipment performance, create a

model of the system so that controller parameters could be determined analytically, and to

evaluate the performance of the controlled system in both maintaining steady state and in

response to changes in setpoint.

 Macesich 25

Data and Results:

Activity 1:

The spans of the pumps were determined by running them at their highest and lowest functional

input voltage. The relationship between pump input voltage via controller PWM setpoint and

pump flowrate is not linear, as demonstrated by the quadratic relationships in Figure 9 and

Figure 10. The nonlinearity increases the overall order of the system and reduces the accuracy of

the fitted FOPTD models. In the system, the magnitude of the gain in the response is dependent

on pump initial steady state setpoint. Resultingly, fitted models and the controller equations

derived from them are only relevant to the tested conditions due to system nonlinearity.

Figure 9: Pump curve generated from the peristaltic level pump relating the flow rate to the Pulse Wave Modulated (PWM) input.

y = -0.0015x2 + 0.8275x - 48.321
R² = 0.998

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Fl
o

w
 R

at
e

(m
L/

m
in

)

PWM

 Macesich 26

Figure 10: Pump curve generated from the diaphragm temperature control pump relating the flow rate to the Pulse Wave

Modulated (PWM) input

y = -0.0234x2 + 15.203x - 947.75
R² = 0.9989

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

Fl
o

w
 R

at
e

(m
L/

m
in

)

PWM

 Macesich 27

Activity 2:

Activity 2 demonstrates that the behavior of liquid level in the tank is more akin to an integrating

function, where there is only one steady state condition and deviation from that results in liquid

level change. The cause for deviation from the analytically derived model (Equation 4) may be

that the magnitude of outlet flow rate relative to liquid level change is not significant due to the

large pressure drop of the stopcock. Due to inability to perform a step test, a controller was

instead designed using rules-of-thumb for level control [19].

Figure 11: Attempted open loop step test of level controller. The liquid level setpoint was changed before steady state was

achieved and the vessel overflowed.

 Macesich 28

Figure 12: Second attempt to perform an open loop step test of the motor setpoint on the vessel level. The level in the vessel did

not respond as expected from the change in setpoint, as it decreased when pump motor setpoint was increased. The cause for the

response may have been due to the slow change in head height of the reagent feed container. For further level controller testing,

the feed and effluent lines were put into the same vessel to mitigate this phenomenon.

Activity 3:

The performance of the liquid level controller was evaluated by its response to a step change and

ability to maintain steady state. The first trial had undampened oscillations that persisted until the

outlet valve was opened further. As seen in Figure 13 the system was then able to maintain

setpoint and execute a setpoint change, but the high outlet flow rate relative to maximum pump

flow rate resulted in a long time to complete the setpoint change (20 minutes) in respect to the

systems intended purpose as a lab system with a quick response time. The noise in the

measurement data also caused large proportional responses to outlier values, so a low pass filter

was implemented in the measurement program. To combat the oscillating behavior, the controller

proportional and integral gains were both reduced. The magnitude of setpoint changes to be

performed were reduced and the outlet flow rate was adjusted to be more central in the level feed

pump span. Figure 14 shows that the changes were success full in reducing oscillation and

 Macesich 29

decreasing time to complete setpoint changes. The responses were fit with FOPTD transfer

functions to provide a means of evaluation in Figure 15 and Figure 16.

Figure 13: Closed loop system test of the level controller. KP = 50, KI = 0.33 (τI = 3) From 0-60 minutes, level control was

observed, but there appeared to be undamped oscillation. At 60 minutes, the response to a change to deviation variable (outlet

valve opened wider), was observed until new steady state achieved. At t=110 minutes, setpoint was changed from 8 to 10 cm, and

the response was observed. A 20 point moving average line was fitted to the line to smooth level readings.

 Macesich 30

Figure 14: Closed loop system test of the level control system. KP=30, KI = 0.2 (τI=5). The level data had a 20 point mean

filtered applied in the code. The vessel was allowed to fill, then the setpoint was changed from 7 to 8 cm, allowed to come to

steady state, and changed back down to 7 cm. After steady state was achieved, response to disturbance was tested by restricting

the flow through the outlet from 50 to 20 mL/min. Note: the low level reading at t=67 min was caused by an unintentional

disturbance to the level sensor. It was repositioned, and proper readings resumed.

Figure 15:Closed loop transfer function of the level control loop with KP = 30 and KI = 0.2 for setpoint increase.

 Macesich 31

Figure 16:Closed loop transfer function of the level control loop with KP= 30 and KI = 0.2 for setpoint decrease.

 Macesich 32

Activity 4:

The outlet temperature response to decrease in heat exchanger cooling water flow rate, seen in

Figure 17, appeared to be first order. The response to an increase in setpoint lacked a smooth first

order change, so a second trial was performed. The second trial (Figure 18), performed at a

higher hot plate setpoint, exhibited a more ideal response and was fit with a model (Figure 19)

for controller design purposes. The hot plate temperature setpoint was increased to show the

system could maintain a steady state with more heat being added to the system, simulating a

more exothermic reaction. Increasing the themal load demonstrated that the system was able to

find a new steady state with less than 1°C deviaiton and provide protection against runaway

reactions.

Figure 17: Activity 4 step testing. Hot plate set to 50°C, level at 8 cm.

 Macesich 33

Figure 18: Activity 4, temperature response to step change in pump PWM setpoint. Hot plate at 70°C, level at 8 cm.

Figure 19: Loop-Pro fit first order response to upward change in temperature pump setpoint seen in Figure 18. Hot plate at

70°C, level at 8 cm.

Equation 12 shows the First-Order-Plus-Time-Delay (FOPTD) transfer function fit to the process

data in from Activity 4 shown in Figure 18 and Figure 19. Equation 12 relates the manipulated

variable (heat exchanger cooling water pump PWM setpoint) to the temperature of the CSTR

outlet for step increase with hot plate at 70°C, level at 8 cm, and allows for the design of a

controller using the Internal Model Control (IMC) method.

𝑇∗(𝑠) = ⁡

−0.0273𝑒−1.505𝑠

1.129𝑠 + 1
∗ 𝑃𝑃𝑊𝑀

∗ (𝑠) (12)

0

20

40

60

80

100

120

140

160

7

7.5

8

8.5

9

9.5

10

60 70 80 90 100

P
u

m
p

 S
et

p
o

in
t

(P
W

M
)

O
u

tl
et

 T
em

p
er

at
u

re
 (

°C
)

Time (min)

Reactor Outlet Temp (°C) Pump Setpoint (PWM)

 Macesich 34

Activity 5:

The temperature controller designed using the results of Activity 4 was able to maintain its high

setpoint of 9°C, but was not able to reach the low setpoint of 6°C. The system maintained the

high setpoint with ~105 PWM output, but was unable to reduce the temperature to the low

setpoint using the rest of the available cooling water pump span. The liquid level in the vessel

was 2 centimeters greater than in Activity 4, and it was hypothesized that if the level was

returned to the conditions in Activity 4, then the performance of the control system would better

reflect the data from Activity 4.

Figure 20: Temperature control during Activity 5. The temperature measured was unable to reach the low setpoint of 6˚C despite

100% heat exchanger cooling water pump motor output for 15 minutes.

Activity 6:

Despite the changes implemented, the system was still unable to reach the lower setpoint and the

hypothesis of increased liquid level causing the poor controller performance was proven false.

 Macesich 35

During the experiment, the temperature in the vessel was checked with a digital thermometer and

it was discovered that it was 5°C less than the measured value at the end of the outlet line.

Insulating the pipe did not appear to impact the change significantly. A new hypothesis was

postulated; if the temperature reading was taken directly from the vessel, then the low setpoint

could be achieved in Activity 6.

Figure 21: Temperature control during Activity 6. The temperature measured was unable to reach the low setpoint of 8˚C despite

100% motor output about 30 minutes after setpoint change. Insulating the outlet line at t = 55 minutes had minimal effect. The

experiment was terminated without performing a setpoint increase.

Activity 7:

The temperature control system derived from Activity 4 was able to maintain setpoint and

quickly execute setpoint changes after moving the measurement point to the interior of the

vessel. The hypothesis postulated in Activity 6 was confirmed. The reactor temperature control

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

C
o

o
lin

g
W

at
er

 P
u

m
p

 S
et

p
o

in
t

(P
W

M
)

Te
m

p
er

at
u

re
 (

˚C
)

Time (min)

Temp Setpoint Reactor Outlet Temperature Cooling Water Pump Setpoint

 Macesich 36

system had a closed loop time constants of ~1.3 minutes and was able to execute setpoint

changes with less than 15% overshoot.

Figure 22: Temperature response to setpoint change in Activity 7, after moving the probe to the vessel interior. It is noted that the

system was able to reach setpoint using only a third of the pump setpoint span.

Discussion and Analysis:

Program Development

The code for each control element was written individually and tested, prior to being

transferred into the main program. Upon transfer to the main program, elements often needed

further debugging due to interactions with other systems. Programs to control the system were

continually updated as needed and the attached code reflects the most recent version of each

program.

0

20

40

60

80

100

120

140

0

2

4

6

8

10

12

0 10 20 30 40 50 60

C
o

o
lin

g
W

at
er

 P
u

m
p

 S
et

p
o

in
t

(P
W

M
)

Te
m

p
er

at
u

re
 (

˚C
)

Time (min)

Reactor Temperature Setpoint Reactor Outlet Temperature Cooling Water Pump Setpoint

 Macesich 37

One of the evolutions undergone by the control system was the inclusion of a second

Arduino to handle temperature measurement and control to reduce the impact of measurement

delay from temperature readings on the level control system. The total program execution time

for one reading of the level controller was observed to be about 50 milliseconds (ms). The

temperature probes, which operated using the OneWire [14] and DallasTemperature [15] libraries

to communicate with the Arduino on a digital pin, took 600 ms to give a temperature back to the

control system. To minimize the effects of the larger delay on the level controller, the

temperature control functionality was removed from the code for the Arduino Mega and given to

an Arduino Uno.

Liquid Level Activities

There were several difficulties in the level step tests and controller tuning (Activity 2).

The first issue to be remediated was the significant noise in the reading of vessel level by the

HC-SR04 ultrasonic sensor. During data analysis of Activity 3, a 20-value moving average low

pass filter was applied to the data to smooth it during the analysis phase. To reduce the controller

reaction to outliers during operation, the level control program was altered to include a 20-point

moving average data smoothing function (about one second of data readings). After introducing

the data smoothing function during measurement in the second trial of Activity 3, the impact of

high and low outliers was reduced on the level control system, and the manipulated variable

setpoint was more stable. A median filter was considered, but ultimately ruled out due to ease of

implementation of the mean filter and the difficulty in creating a computationally efficient

median filter.

For level control, steady state conditions could not be achieved in open loop with the

equipment available, shown in Figure 11. The level pump span was determined to be 13 – 65

 Macesich 38

mL/min as seen in Figure 9, so the reactor outlet flow rate was had to be within that span for

level control to be achieved. In order to provide both the fastest setpoint increase and decrease

response, the reactor outlet was set as close to the middle of the pump span as possible at 40

mL/min. In execution, drain speed varied between 35 – 45 mL/min. The reactor outlet had a

significantly higher flow rate ceiling at 400 mL/min drain rate, so closing it enough to get the

proper outlet flow rate required multiple trial-and error attempts and was prone to operator error.

The use of a globe valve, which has a more linear relationship between flow and valve position

[7, p. 200], might remediate this problem by providing finer control of the outlet flow rate. For

the available vessel, a stopcock with a smaller diameter hole could provide increased accuracy in

achieving lower flow rates.

Reactor Liquid Level Control

There was no data available describing the transition between two steady-states of vessel

level due to a change in the feed pump setpoint because of the integrating behavior of the system

observed in Activity 1. In the absence of a process model, rules of thumb were used to provide

initial tuning setpoints and the system was tested in closed loop mode. The rule of thumb, that

systems where the manipulated variable (i.e., the feed flow) causes a very slow reaction in a

process variable, the controller gain is usually 1 – 100 and the integral gain is 0.05 – 0.3 [19]. As

such, values of KP = 50 and τI = 3 (Ki = 0.33) were used for the first trial of closed loop testing.

The resulting response data is shown in Figure 13. While the vessel level was controlled at

setpoint, the heavy oscillation due to integral wind up and high gain indicated that the magnitude

of controller response to error had to be reduced. For the second closed loop setpoint test, seen in

Figure 14, KP was reduced to 30 and τI increased to 5 (KI = 0.2). The response seen appeared to

be first order, with a time constant of 3.06 for a setpoint increase (Figure 15) and 3.86 minutes

 Macesich 39

for a setpoint decrease (Figure 16). The discrepancy in time constants indicates that the level

control open loop equation is non-linear, thus the response depends on the initial steady state of

the system. Further differences in filling speed compared to draining speed comes from the

imperfect positioning of the drain speed within the center of the fill pump span. If the drain rate

was faster than the midpoint of the pump span, then the maximum volumetric flow rate of

draining would be faster than the maximum volumetric flow rate of filling the vessel, and vice

versa. The resulting system would exhibit nonlinear responses that aren’t within defined by the

process model.

Reactor Temperature Control

Temperature control open loop step testing proceeded successfully, shown in Activity T-1

(Figure 17). FOPTD responses were fit to the process data in Loop-Pro [17] (Equation 12). The

differences in response from a setpoint increase and decrease demonstrate that the process is

non-linear. The activity was repeated with the hot plate at a higher setting to simulate more heat

from the reaction and increase the rate of heating at low pump setpoints, shown in Figure 18. The

data was reformatted to fit the specifications of Loop-Pro Tuner [17] and a controller equation

(Equation 13) was fit to have less than 10% overshoot. The response 70°C was used for the

controller equation and moving forward due to concern that the lower setpoint would limit the

span of achievable temperatures in the vessel due to the relatively fast minimum flow rate of the

temperature control pump (235 mL/min) compared to the rate of reagent feed (~30 – 40 mL/min)

and to demonstrate the heat exchanger system can remove more heat from the reactor.

Gc⁡ = ⁡⁡⁡14.41⁡ + 0.67 ∗

⁡1

s

(13)

 Macesich 40

 Activity 5 was intended to demonstrate control over the system using the controller

equation (Equation 13), but the results shown in Figure 20 indicated that the system was not

responding as predicted to changes in setpoint. Responses were noted to be sluggish relative to

the process time constants determined in Activity 4 step testing, and when analyzed in Loop-Pro

Trainer, the observation was analytically confirmed. The time constants for the closed loop

system were on the order of 101 for a setpoint increase to 103 minutes for a setpoint decrease,

compared to the process time constant of 1.48 minutes. Activity 6 was then designed to

determine the root cause of the sluggish response, eliminating discrepancies between the step

tests in Activity 4 and the control testing in Activity 5.

Activity 6 was intended to be a repeat of activity 5 where the level was reduced to 8 cm,

to align with the data from Activity 4. During Activity 6, it was noted that there was only a small

(<1°C) difference between the heat exchanger inlet and outlet temperatures, indicating that

limited heat transfer between the vessel and heat exchanger was occuring. A measurement of the

outlet line and the vessel was taken, and it was found that the temperature at the outlet of the

CSTR line was approximately 5°C hotter than the temperature in the tank. The outlet line was

insulated with a towel to attempt to mitigate the effects of heat transfer into the line. It was

hypothesized that the difficulty in attaining fast responses in Activities 5 and 6 can be attributed

to heating of the reactor effulent en route to the temperature probe. To test the hypothesis that the

temperature response will be quicker if the probe was put directly into the vessel, the activity

was repeated under those conditions.

In Activity 7, the temperature probe placed inside the reactor vessel rather than on the

product outlet line produced significantly faster and more accurate results, leading to better

control of the temperature in the vessel overall. The hypothesis proposed after Activity 6 was

 Macesich 41

proven to be correct. The response of the process had a closed loop time constant of 1.3 minutes

and a maximum overshoot of 15% was observed during the run (~0.3°C).

Conclusion:

 The objective of the project was to create a chemical reactor system capable of

maintaining its level and temperature without operator intervention for use in CSTR

experimentation. Building such a control system required knowledge in programming,

electronics fabrication, and process control system analysis. Despite initial difficulties in each

system, both level and temperature control systems were successfully developed that were able

to control the process to setpoint and execute setpoint changes. The operating parameters of KP =

30 and KI = 0.2 for level control and KP = 14.41 and KI = 0.67 for temperature control provided

reasonably fast responses with some overshoot in response to a setpoint change. These responses

are appropriate for lab functionalities without an inline separations process. Using the control

systems, the reactor would be able to safely maintain vessel level, temperature, and record

significant operating parameters for later analysis. Thus, the viability of the system as a

controlled CSTR system was demonstrated.

Recommendations For Future Work

Reaction Analysis

 Prior to operation with reagent, it is recommended that the system be wet-tested with

water and a hot plate at the design setpoints to simulate real process conditions. A thorough

evaluation of the system, the reaction, and potential deviation variables must be completed to

reduce risk coming from operation outside of proven ranges. In high temperature applications,

the chilled water in the temperature control system could be replaced with normal process water,

 Macesich 42

but effective heat transfer is dependent on a large average temperature difference between the

vessel volume and heat exchange so the impacts of making this change on the system’s ability to

remove excess process heat would need to be assessed.

Reaction Completion Sensing

For the system’s intended purpose as a reactor system, it is recommended that another

analytical element be added to the control system: a product concentration sensor. Direct

monitoring of outlet product concentration would allow feedback control by means of

manipulating the temperature or the level in the vessel. In a chemical reactor, it is important to

attain steady state operation with a constant stream composition as downstream separations

operations can be greatly impact by small disturbances, which propagate as the deviated material

moves through more process units.

Liquid Level Data Filter

 The level controller was severely impacted by noise from the ultrasonic sensor. To

alleviate the problem, a 20-point mean filter was implemented to reduce the impact of single

outliers on the proportional aspect of the controller. A mean filter is simple to program and has an

efficiency of O(1) (number of computations is fixed), but it does not remove the impact of

outliers completely; it only spreads them over 20 data points, so they still affect the integral term

of the controller equation. A median filter would completely remove the impact of outlier

readings but is less efficient as it requires data sorting which has a best average efficiency of

O(n2) (the number of computations is related to the square of the number of data items). The

benefits to control would need to be weighed against the increase in processing time per data

 Macesich 43

read operation and potential impact on process transfer functions from further manipulating the

data.

Product Outlet Revision

 The span of outlet flow rate (0-400 mL/min) is significantly greater than the pump span,

and as a result sensitivity to outlet stopcock positioning on the vessel caused difficulties in

creating identical conditions between different runs if the stopcock was bumped or intentionally

manipulated. To alleviate this problem, the diameter of the hole in the stopcock can be

significantly reduced or a valve with a more linear flow characteristic like a globe valve can be

used. The use of an outlet flowmeter could reduce the time in outlet flow adjustments, but the

low flow rate may cause financial barriers in finding an appropriate instrument. An alternative

solution would be to use a pump with higher flow rate and then operating the entire system at a

higher flow rate, but this greatly compromises the maximum product concentration attainable by

the system by reducing the maximum space time at which the system can operate.

Pump Choice and Control

 The span of the pumps was limited to 48% of their 12V nominal voltages due to high end

losses from voltage drop and insufficient torque to rotate at low voltages under PWM 90. The

L298N H-bridge motor driver suffers from a voltage drop of 2 volts from the power source to the

motor terminals due to the H-bridge functionality. As reversing motor direction is not a necessary

functionality in this application, the L298N could be replaced with a less parasitic system and

attain a higher high-end voltage. A 14V power supply could also be used to achieve 12V at the

motor terminals. Changing the motor driver to a higher quality component would help slightly

with the low-end losses, but to have a full 0-255 PWM span, superior pumps with gearboxes

 Macesich 44

would be required to maintain rotation at low voltages. The current system is functional, but later

user application may necessitate a larger span in cooling water flow rate of feed flow later.

 Macesich 45

References

[1] L.-K. Ju, Class Lecture, Topic: Enzyme Reactors, Akron: CHEE 473 Bioreactor Design, The

University of Akron, 2023.

[2] H. S. Fogler, Essentials of Chemical Reaction Engineering, Indiana: Pearson Education, Inc., 2016.

[3] D. Crowl and J. Louvar, Chemical Process Safety, 4th Edition ed., Prentice Hall, 2019.

[4] D. Seborg, Process Dynamics and Control, Hoboken,NJ: John Wiley & Sons, Inc., 2016.

[5] Arduino, "Downloads," Arduino, [Online]. Available: https://www.arduino.cc/en/software. [Accessed

16 04 2023].

[6] T. Hirzel, "Basics of PWM (Pulse Width Modulation)," Arduino, 9 March 2023. [Online]. Available:

https://docs.arduino.cc/learn/microcontrollers/analog-output. [Accessed 12 March 2023].

[7] W. L. McCabe, Unit Operations of Chemical Engineering, New York, NY: McGraw-Hill, 2005.

[8] Tapflo UK, "Peristaltic Pump Guide," [Online]. Available:

https://www.tapflopumps.co.uk/blog/peristaltic-pump-guide/. [Accessed 23 03 2023].

[9] F. Petruzella, Programmable Logic Controllers, McGraw-Hill, 2022.

[10] S. Skogestad, "Simple analytic rules for model reduction and PID controller tuning," Journal of

Process Control, vol. 13, no. 4, pp. 291-309, 2003.

[11] I. L. Chien and P. S. Fruehauf, "Consider IMC Tuning to Improve Controller Performance,"

Chemistry Engineering Process, vol. 86, no. 10, pp. 33-41, 1990.

[12] S. Tatham, "PuTTY: a free SSH and Telnet client," 29 10 2022. [Online]. Available:

https://www.chiark.greenend.org.uk/~sgtatham/putty/. [Accessed 37 03 2023].

[13] B. Beauregard, "Arduino-PID-Library," 20 January 2021. [Online]. Available:

https://github.com/imax9000/Arduino-PID-Library. [Accessed 20 March 2023].

[14] P. Stoffregen, "OneWire Library," 4 June 2022. [Online]. Available:

https://www.pjrc.com/teensy/td_libs_OneWire.html. [Accessed 20 March 2023].

[15] M. Burton, "Dallas Temperature Control Library," Arduino, 15 01 2016. [Online]. Available:

https://www.milesburton.com/w/index.php/Dallas_Temperature_Control_Library. [Accessed 18

April 2023].

[16] Microsoft, "Microsoft Excel," Microsoft, [Online]. Available: https://www.microsoft.com/en-

us/microsoft-365/excel. [Accessed 16 04 2023].

[17] Control Station, "Loop-Pro Trainer," [Online]. Available: https://controlstation.com/education/.

[Accessed 17 04 2023].

 Macesich 46

[18] keyestudio, "052043 Super Learning Kit for Arduino," Micro Electronics, Inc., 26 April 2020.

[Online]. Available: https://wiki.keyestudio.com/052043_Super_Learning_Kit_for_Arduino.

[Accessed 24 January 2023].

[19] Cross Company, "How to tune a PID loop," 2022. [Online]. Available:

https://www.crossco.com/resources/technical/how-to-tune-pid-loops/. [Accessed 26 March 2023].

[20] Arduino, "What is Arduino?," Arduino, 5 February 2018. [Online]. Available:

https://www.arduino.cc/en/Guide/Introduction. [Accessed 12 March 2023].

[21] T. Hirzel, "Basics of PWM (Pulse Width Modulation)," Arduino, 09 03 2023. [Online]. Available:

https://docs.arduino.cc/learn/microcontrollers/analog-output. [Accessed 23 03 2023].

 Macesich 47

Appendices:

Appendix A: Level Control PI Code

Appendix B: Temperature Control PI Code

Appendix C: Derivation of Transfer Functions

Appendix D: Wiring Diagrams

 Macesich 48

Appendix A: Level Control PI Code

/*

 COPYRIGHT (C) 2023 Cameron Macesich (cwm40)

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Honors Project: Level and Temperature Controlled Vessel

 Author. Cameron Macesich

 cwm40@uakron.edu

 Version. 1.01 07APR23

 Purpose: This program is for an Arduino Mega 2560 for use as a level controller.
The level controller will hold the level to a user defined setpoint and reads user
input from a 4-button panel. The yellow button can perform a user defined function.

*/

#include <PID_v2.h>

//motor

#define motorPin 7 //Motor control pin, PWM, level

#define motorIN1 6 //level Dir N1 on L298N

#define motorIN2 5 //Level Dir N2 on L298N

//level indicator HC-SR04

#define echoPin 34 // Echo Pin

#define trigPin 30 // Trigger Pin

 Macesich 49

//bumpSwitch

#define bumpSwitch 42 //input to read yellow button. NORMALLY OPEN

#define start 41 //input read green start button. NORMALLY OPEN

#define stopBtn 43 //input read stop button. NORMALLY OPEN

#define eStop 40 //Read the estop button. NORMALLY CLOSED

#define com1 22 // Tell temp controller state of bumpSwitch

#define com2 23 // Tell temp controller to start/stop

//Ultrasonic Level Sensor HC-SR04

int maximumRange = 200; // Maximum range needed

int minimumRange = 0; // Minimum range needed

float duration, distance; // Duration used to calculate distance

double level = 0;

//Boolean Flags for system operation

bool switchFlag = 0;

long tSwitch = 0;

bool startFlag = 0;

bool stopFlag = 0;

//Setpoints for motor

double motorSP = 110;

int alarmSP = 0; //For when the level is too high send motor this value as setpoint

//USER ENETERED VALUES

double levelSP = 8; //cm; The PI controller will hold vessel level to this
value

float sensorHeight = 18.37; //cm; NEEDS TO BE ZEROED by the user. Should read 0.0 on
empty vessel

//Declaration for PI controller object

//Default: Kp=30, Ki=0.2 for level control

PID levelPID(&level, &motorSP, &levelSP, 30, 0.2, 0, DIRECT);

 Macesich 50

//Average filter: Array to read the Level into and smooth it by computing the average
value over 20 readings.

double levelRead[20] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

int readCtr = 0; //index of read variable

double sumRead = 0; //Holds the sum of all values in array

double avgLevel = 0; //holds the average level

void setup() {

 // put your setup code here, to run once:

 Serial.begin(19200);

 //Level sensor

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 //Level Control Pump

 pinMode(motorPin, OUTPUT);

 pinMode(motorIN1, OUTPUT);

 pinMode(motorIN2, OUTPUT);

 //Button Panel

 pinMode(bumpSwitch, INPUT);

 pinMode(start, INPUT);

 pinMode(stopBtn, INPUT);

 pinMode(eStop, INPUT);

 //communication with temp controller

 pinMode(com1, OUTPUT);

 pinMode(com2, OUTPUT);

 //Send headers for data to computer

 Serial.println();

 Macesich 51

 Serial.println("time, motor setpoint, level setpoint, level");

 //Send level pump direction to L298N

 digitalWrite(motorIN1, HIGH);

 digitalWrite(motorIN2, LOW);

 levelPID.SetOutputLimits(90, 255); //motor goes beep-beep below PWM 90 with 12 V
power source

}

void loop() {

 // put your main code here, to run repeatedly:

 //read the buttons to determine running state

 //if any stop button is triggerd OR system is already stopped, reamin true. Seal
in circuit broken by start button

 stopFlag = (!digitalRead(eStop) || digitalRead(stopBtn) || stopFlag) &&
!digitalRead(start);

 //if start buttun pushed and no stop buttons are pushed, start system and stay
running. Seal in circuit broken by stop buttons

 startFlag = (digitalRead(start) || startFlag) && !digitalRead(stopBtn) &&
digitalRead(eStop);

 //Tell the temp controller what the running state is

 if (startFlag) {

 digitalWrite(com2, HIGH);

 } else {

 digitalWrite(com2, LOW);

 }

 //Bump the change the state of the user designated button, only allow for switch
every 1 second to avoid double reads

 if (!switchFlag && (digitalRead(bumpSwitch)) && ((millis() - tSwitch) > 1000)) {

 switchFlag = true;

 tSwitch = millis();

 }

 if (switchFlag && (digitalRead(bumpSwitch)) && ((millis() - tSwitch) > 1000)) {

 switchFlag = false;

 tSwitch = millis();

 Macesich 52

 }

/* USER DESIGNATED FUNCTION

This will perfrom some user defined action depending on the state of the yellow
button.

Can be used to execute a setpoint change.

*/

 if (switchFlag == true) //tell temp controller state of user designated variable
and perform user defined function

 {

 digitalWrite(com1, HIGH);

 //ADD STATE HERE

 //example: levelSP =10;

 } else {

 digitalWrite(com1, LOW);

 //ADD STATE HERE

 //example: levelSP =8;

 }

 //Read the current level, compute new average level

 addValAvg(levelRead, sensorHeight - getDistance(), avgLevel, sumRead, readCtr);

 level = avgLevel;

 if (startFlag) {

 if (level > (16)) //high-high Level, send shut off signal to level pump

 {

 levelPID.SetMode(MANUAL);

 analogWrite(motorPin, alarmSP);

 } else //normal PID response

 {

 levelPID.SetMode(AUTOMATIC);

 levelPID.Compute();

 analogWrite(motorPin, motorSP);

 }

 Macesich 53

 } else //If startflag is false, send shutoff signal to motor

 {

 levelPID.SetMode(MANUAL);

 analogWrite(motorPin, 0);

 }

 //Print the time, motor setpoint, level setpoint and current level to serial for
PuTTY with comma to separate them

 Serial.print(millis());

 Serial.print(", ");

 Serial.print(motorSP);

 Serial.print(", ");

 Serial.print(levelSP);

 Serial.print(", ");

 Serial.println(level);

}

//return the distance of the surface from the sensor as a floating point number

float getDistance() {

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

 //Calculate the distance (in cm) based on the speed of sound.

 distance = duration / 58.2;

 if (distance >= maximumRange || distance <= minimumRange) {

 /* Return a negative number to indicate "out of range" */

 delay(50);

 return -1;

 Macesich 54

 } else {

 //Delay 50 to let echo die down then return distance

 delay(50);

 return distance;

 }

}

//This function reads a value into the array and calculates the average value of the
numbers in the array

void addValAvg(double arr[], double newVal, double &avgVal, double &sumArr, int &ctr)
{

 //subtract the old value from the current total of all numbers in array

 sumArr = sumArr - arr[ctr];

 //change set value at index equal to the new value

 arr[ctr] = newVal;

 //add the new value to the sum of all values in array

 sumArr = sumArr + arr[ctr];

 //compute the average value of the array

 avgVal = sumArr / 20;

 if (ctr < 19) //advance index variable by one for next read

 {

 ctr++;

 } else //reset the index variable to 0 once index 19 is read

 {

 ctr = 0;

 }

 return;

}

 Macesich 55

Appendix B: Temperature Control PI Code

/*

 COPYRIGHT (C) 2023 Cameron Macesich (cwm40)

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Honors Project: Level and Temperature Controlled Vessel

 Author. Cameron Macesich

 cwm40@uakron.edu

 Version. 1.01 07APR23

 Purpose: This program is for an Arduino UNO Rev3 for use as a temperature
controller. The temperature controller will hold the temperature to a user defined
setpoint and reads communications from the level control system. Can execute a user
defined function when told by level controller.

 THIS PROGRAM RELIES ON Level_Controller_Final running on an Arduino Mega 2560 to
tell it to run

*/

#include <PID_v2.h>

//For temperature probes

#include <OneWire.h>

#include <DallasTemperature.h>

#define tempPin 8 //temperature probe

OneWire oneWire(tempPin);

DallasTemperature sensors(&oneWire);

//motor

#define motorPinT 11 //Motor control pin, PWM, Temp

 Macesich 56

#define motorIN1 12 //Temp Dir N3

#define motorIN2 13 //Temp Dir N4

//bumpSwitch from level controller, yellow button

#define bumpSwitch 10 //input Source: Level controller COM1

//Reads the running state from the level controller

#define start 9 //input Source: Level controller COM2

//Temperatures read by the probe

double 4, 5, 6;

//variables for performing user designated function

bool switchFlag = 0;

long tSwitch = 0;

//Bool variables to hold running state

bool startFlag = 0;

//PID, setpoints for manip var and controlled var

double motorSPT = 90;

double tempSP = 10;

double Kp = 14.41;

double Ki=0.67;

//PID, object calculates new pump motor setpoint

PID tempPID(&4, &motorSPT, &tempSP, Kp, Ki, 0, REVERSE);

void setup() {

 Serial.begin(19200);

 //Temp Sensor

 sensors.begin();

 Macesich 57

 //Temp Control Pump

 pinMode(motorPinT, OUTPUT);

 pinMode(motorIN1, OUTPUT);

 pinMode(motorIN2, OUTPUT);

 //Inputs from level controller

 pinMode(bumpSwitch, INPUT);

 pinMode(start, INPUT);

 /*Note: the emergency stop is read by level controller. Pressing the button still
disables the motors by cuttin power to control relay

 regardless of the start state. there will be a delay in reading that the pumps were
de-energized, but they will cut out immediately

 */

 //print header for PuTTY

 Serial.println();

 Serial.println("time, motor setpoint, Temp setpoint, Temp out, HEX Out, HEX IN");

 //Set motor State to forward on L298N

 digitalWrite(motorIN1, HIGH);

 digitalWrite(motorIN2, LOW);

 //Set PID limits to working limits of pump

 tempPID.SetOutputLimits(90, 255); //motor goes beep-beep below 90

}

void loop() {

 //Read input from level controller to determine if the system should be running or
stopped

 startFlag = digitalRead(start);

 /*perform user designated function

 */

 Macesich 58

 switchFlag = digitalRead(bumpSwitch);

 if (switchFlag == true) {

 //Example: tempSP = 8;

 } else {

 //Example: tempSP = 10;

 }

 //read temperatures of all probes

 sensors.requestTemperatures();

 4 = getTemp(0); //Probe in vessel

 5 = getTemp(1); //Probe at HEX outlet

 6 = getTemp(2); //Probe near HEX inlet

 //Calculate the pump setpoint depending on temperature in tank: CLOSED LOOP MODE

 if (startFlag == HIGH) {

 tempPID.SetMode(AUTOMATIC);

 tempPID.Compute();

 analogWrite(motorPinT, motorSPT);

 } else {

 tempPID.SetMode(MANUAL);

 analogWrite(motorPinT, 0);

 }

 //Print to Serial for PuTTY

 printData();

}

//Cleaner funciton for reading temp sensor. Returns celsius temperature reading from
probe at index probeNum

float getTemp(int probeNum) {

 //returns the temperature detected by probe indexed at probeNum

 return sensors.getTempCByIndex(probeNum);

}

 Macesich 59

//Print the time in milliseconds, motor setpoint, temp setpoint, and all 3
temperature probe values to the serial port

void printData() {

 Serial.print(millis());

 Serial.print(", ");

 Serial.print(motorSPT);

 Serial.print(", ");

 Serial.print(tempSP);

 Serial.print(", ");

 Serial.print(4);

 Serial.print(", ");

 Serial.print(5);

 Serial.print(", ");

 Serial.println(6);

}

 Macesich 60

Appendix C: Derivation of Transfer Functions

Gravity Drained Tank Outlet Flow Rate Dependence on Liquid Height

 Macesich 61

Reactor Temperature Dependence on Cooling Water Flow Rate

 Macesich 62

Appendix D: Wiring Diagrams

	Level and Temperature Controlled Vessel
	Recommended Citation

	tmp.1682110171.pdf._bqkJ

