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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm || - |. Let® # C c H
be a convex and closed set. Let Fix(S) be the set of fixed points of a mapping S : C — C, i.e.,
Fix(S) := {x € C : x = Sx}. § is said to be asymptotically nonexpansive if 3{f,} C [0, +o0) s.t.
lim, . 68, =0and foralln > 1,

1S"u = S™|| < (1 + 6,)llu — V||, Yu,v e C. (1.1)

S is nonexpansive when 6, = 0, Vn > 1.
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Recall that the variational inequality (VIP) pursues to search z € C such that
(Fz,x—272) >0, Vx € C,

where F : H — H is an operator. Use VI(C, F) to denote the solution set of VIP.
Korpelevich [11] invented an extragradient method for solving VIP: The sequence {w,} is derived
from an initial point wy € C and

(1.2)
Wit = Pe(w, — (Fz,), Yn 20,

ﬁ=&mﬁwa
where ¢ € (0, %) with L being the Lipschitz constant of F. If VI(C, F) # 0, then {w,} is convergent
weakly to w* € VI(C, F). For solving VIP, many algorithms were introduced and adapted, see [1—
3,5,7,8,10,12-18, 20, 23, 28, 29, 31, 32]. Within the extragradient method, one needs to compute
two projections onto C per iteration. If C is a general convex and closed set, this might result in a
prohibitive amount of computation time. To overcome this drawback, Censor et al. [2] presented a
subgradient extragradient algorithm in which a half-space is constructed. Reich et al. [13] suggested
an iterate for solving the pseudomonotone variational inequality by constructing a hyperplane.

Let C be a nonempty, closed and convex subset of a p-uniformly convex and uniformly smooth
Banach space E with p,q € (1, o) and i + é = 1. Let E* be the dual space of E. Let J; and J7. be the
duality mappings of E and E*, respectively. Set f,(x) = |[x[|”/p, Yx € E. Use Dy, and Il to denote the
Bregman distance and the Bregman projection from E onto C with respect to (w.r.t) f,, respectively.
Eskandani et al. [ 18] introduced the hybrid projection method for finding a common solution of the VIP
for uniformly continuous pseudomonotone mapping F' : E — E* and the FPP of Bregman relatively
nonexpansive mapping 7. Their algorithm is formulated as follows.

Algorithm 1.1 ( [18]). Letu > 0, [ € (0,1), 1 € (O, ;lz) be three constants. Let x, € C be an initial
point.

Step 1. Calculate y, = Ic(JL.(Jpx, — AFx,)) and ry(x,) := X, — Yo If Tx, = X, and ry(x,) = 0, then
stop (in this case x, € Q = Fix(T) N VI(C, F)), otherwise, continue to the next step.

Step 2. Calculate t, = x, — T,ry(x,) in which T, := U'" with j, being the smallest nonnegative integer
such that

W%—H%—WMM»mwmsgDﬁmml

Step 3. Calculate v, = JL.(B,J5x, + (1 = B,)J(THc, x,)) and x,.1 = He(JE.(anpu+ (1 — a,)Jpv,)),
where C,, .= {x € C : h,(x,) <0} and h,(x) = (Ft,, x — x,) + ;—lefp(x,,,yn).
Letn := n+ 1 and return to Step 1.

Under suitable conditions, they proved the strong convergence of Algorithm 1.1 to Ilgu. Inspired
by the above research works, the main purpose of this paper is to introduce two Mann-type
accelerated projection methods for solving the VIP for a uniformly continuous pseudomonotone
operator and the CFPP of finitely many Bregman relatively nonexpansive mappings and a Bregman
relatively asymptotically nonexpansive mapping in p-uniformly convex and uniformly smooth
Banach spaces. Under mild conditions, we prove weak and strong convergence of the proposed
algorithms to a common solution of the VIP and CFPP, respectively. An illustrated example is
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provided to demonstrate the applicability and implementability of our suggested method. Our
algorithms are more advantageous and more flexible than the above Algorithm 1.1 because they
involve solving the VIP for uniformly continuous pseudomonotone operator and the CFPP of finitely
many Bregman relatively nonexpansive mappings and a Bregman relatively asymptotically
nonexpansive mapping. The main theorems presented in this paper are the improvement and
extension of the corresponding theorems obtained in [13,17, 18].

2. Preliminaries

Let {x,} be a sequence of a real Banach space E. Let w,,(x,) be the set of all weak cluster points of
{x,}, i.e., w,(x,) = {x" € E : x,, = xT for some {x,,,} C {x,}}.

Let E be a Banach space and U :={u € E : ||ul]| = 1}. (i) E is strictly convex if ||u+v||/2 < 1,Vu,v €
U and u # v. (i1) E is uniformly convex if Ve € (0, 2], 36 > O such that |[u + v||/2 < 1 - 6,Vu,v € U
when ||u —v|| > e.

E is uniformly convex & for all € € (0,2], 6(¢) > 0 where 6(¢) = inf{l — |lu + v|[/2 : u,v €
U with ||lu — v|| > €} is the modulus of convexity of E. Moreover, E is p-uniformly convex if dc¢ > 0
s.t. o(g) = ce?f for all € € [0,2]. E is uniformly smooth if lim,_ o 0r(7)/T = 0 where pg(r) =
sup{(|lu + 7v|| +|lu—1v|[)/2 =1 : u,v € U} is the modulus of smoothness of E. E is g-uniformly smooth
if AC, > 0s.t. pp(7) < C,714, Y7 > 0. E is p-uniformly convex & E* is g-uniformly smooth. For more
details, please refer to [19].

Let r > 0 and set B(O,r) = {x € E : ||x]| < r}. Let f : E — R be a function. For @ € (0, 1) and
u,v € B(0, r) with ||u — v|| = t. Define

p(0) = inf{[af@) + (1 - ) f(v) = flau+ (1 —aw)]/a(l - )}, 1 2 0.

E is uniformly convex on bounded set B(0, r) if p,(¢#) > 0 for all r,z > 0 (see [9, 18]) .
Set - + ¢ = 1 where p, g € (1, 00). The duality mapping J;, : E — E* is formulated below

Jpw) = {y € E*: (Y, u) = ||ull” and |lgll = llull”™"), Yu € E.

(i) E is smooth Jg is single-valued. (ii) E is reflexive JZ is surjective. (ii) E is strictly convex <
J1, is one-to-one.

Let f : E — R be a convex function. f is said to be Gateaux differentiable at x if for each y € E,
lim,_,o+ w exists. In this case, define (Vf(u),v) = lim,_¢- JM for each v € E. Suppose

f : E — Ris Gateaux differentiable. The Bregman distance ( [21]) w.r.t. f is formulated as
Dy(u,v) := f(u) = f(v) =(Vf(v),u-v), Yu,v € E.
The Bregman distance ensures existence and uniqueness of the Bregman projection and it has also
been used to generate generalized proximal point methods for convex optimization and variational
inequalities, see [30]. It is easy to check that

D(u,v) + Dr(v,w) = Dy(u,w) =(Vf(v) = Vf(w),u—v), Yu,v,w € E.
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Note that the Bregman distance w.r.t. f,, is formulated by Yu,v € E,

Dy, (u,v) = ull”/p = IMII"/p = {(Jp (), u = v)
= ull”/p +1MIIP /q = (T3 (v), u)
= (VP = Mleell™)/ g = (Tp() = Tp@w), u).

If E is p-uniformly convex and smooth Banach space E, then (see [26])
tllu = vIIP < Dy (u,v) < (Jpu) = Jp(v),u—v), 2 < p < oo, 7> 0. (2.1)
From (2.1) it is readily known that for any bounded sequence {x,} C E, the following holds:
Xp o u © Dp(u,x,) >0 (n— o0).

Let E be a reflexive, smooth and strictly convex Banach space and C C E a nonempty closed convex
set. For every u € E, there exists the unique element denoted by Ilcu € C such that Dy, (Ilcu, u) =

min,ec Dy, (v, u). Ilc is called the Bregman projection w.r.t. f,. Furthermore, if E is uniformly convex,
then ( [22,24])

(Jo(u) — Jp(Meu),v —cuy < 0, Vv € C, (2.2)
which equivalent to
Dy (v,lcu) + Dy (Ilcu, u) < Dy (v,u), ¥v € C. (2.3)
Let Vi : EX E* — [0, 00) ([18]) be a function defined by
Vi, u,u”) = ull’/p = " u) + lw’ll/q,  Y(u,u’) € EXE". (2.4)
Forallu € E, u” € E* and v* € E*, we have V; (u,u") = Dy, (u, JI.(u*)) and
Vi (u,u*) + (v, Jg*(u*) —u) < Ve (u,u” +v°). (2.5)

In addition, V; (x, ) is convex. Then, for allw € E, {u;}_, C E, {;};_, [0, 1] and Yiiti=1,we
have

Dy, (w, Jh.O>~ t65)) < " 1Dy, (w,w). (2.6)
i=1 i=1
Lemma 2.1 ( [24]). Let E be a uniformly convex Banach space. Let {u,} C E,{v,} C E be two

sequences and {u,} is bounded. Then, lim,_,c, D, (v, u,) = 0 = lim, o [[v, — || = 0.

Let T : C — C be an operator. A point x € C is an asymptotic fixed point of 7" ( [25]) if A{x,} c C
st. x, = xand x, — Tx, — 0. Let Fix(T) and IES((T) be the set of fixed points of 7" and the
set of asymptotic fixed points of 7, respectively. T is said to be Bregman relatively asymptotically
nonexpansive w.r.t. f, if Fix(T') = Fix(T) # 0, and 3{6,} C [0, c0) s.t.

Dy (u, T"V) < (1 +6,)D;, (u,v), ¥n > 1,
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forall v € C and u € Fix(T).
Recall that an operator F' : C — E™ is said to be
(1) monotone on C if (Fu — Fv,u—v) >0, Yu,v € C;
(i1) pseudomonotone if (Fu,v —u) > 0 = (Fv,v —u) >0, Yu,v € C;
(ii1) L-Lipschitz continuous if AL > 0 s.t. ||Fu — Fv|| < L|ju — v||,Yu,v € C;
(iv) weakly sequentially continuous if for any {x,} c C, x, = x = Fx, — Fx.

Lemma 2.2 ( [18]). Let E be a Banach space and f : E — R be a uniformly convex function on
B(0,r). Let {x};_, be a sequence in B(0,r) and {a;};_, be a real number sequence in (0, 1) such that
Yiet @ = 1. Then,

FO L x) < ) enf () — aiplx; = xjlD, Vi, j € (1,2, ...},
k=1 k=1

Lemma 2.3 ([15]). Let E| and E, be two Banach spaces. Let D C E| be a bounded set. If F : E, — E,
is uniformly continuous on D, then F(D) is bounded.

Lemma 2.4 ([6]). Let C be a nonempty closed convex subset of a real Banach space E. Let F : C — E*
be a continuous pseudomonotone operator. Then u € VI(C, F) & (Fv,v—u) >0, Vv € C.

Lemma 2.5. Let 2 < p < oo and let E be a smooth and p-uniformly convex Banach space with weakly
sequentially continuous duality mapping Jy. Let {x,} be a sequence in E and C be a nonempty subset
of E. Suppose that {Dy,(x, x,)} converges for every x € C, and w,(x,) C C. Then {x,} converges weakly
to a point in C.

Proof. Since the inequality (2.1) leads to 7{|x—x,||” < Dy, (x, x,), Yx € C, we know that {x,} is bounded.
Hence from the reflexivity of E it follows that w,,(x,) # 0. In what follows, we claim that w,,(x,) is
a single-point set. Indeed, let x,y € w,(x,) C C with x # y. Then, 3{x,,} C {x,} and I{x,,} C {x,}
s.t. x,, — x and x,, — y. By the weakly sequential continuity of Jg one has that Jf;(x,,k) — x and
Jp (X)) = y. Note that Dy (x,y) + Dy, (v, X,) = Dy (x, x,) = (Jpy — Jp.Xu, X — y). Since {Dy (x, x,)} and
{Dy,(y, x,)} are convergent, we obtain

—(Jgy = Jpx, x = y) = im[—(Jgy = Jpx,, x = y)]
= ,}i_)Ig[Df,, (x,¥) + Dy, (v, X2) — Dy, (x, x,)]
= im [—(Jpy = Jpxm, x = 3)]
= —(Jpy = Jpy, x = y) =0,

which immediately yields (Jpx— Jyy, x—y) = 0. Again from (2.1) we have 0 < 7|lx—y|I” < Dy (x,y) <
(Jox — Joy,x —y)y = 0. It is impossible. So, w,.(x,) is a single-point set. m]

Lemma 2.6 ( [16]). Let C be a nonempty closed convex subset of a Banach space E. Define D := {x €
C : g(x) < 0} where g is a real-valued function on E. If D # () and g is Lipschitz continuous on C with
modulus 6 > 0, then dist(x, D) > 6! max{g(x),0}, Vx € C.
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Lemma 2.7 ( [4]). Let {a,} be a sequence of nonnegative numbers such that a,., < (1 — A,)a, + A, +
v, Yn > 1, where the following hold for sequences {A,}, {u,}, {v.} C R:

(i) (4} C [0, 1] and 3.2, A, = oo;

(ii) limsup, ., ity < 0 and 3" | V4| < o0.
Then lim,_,o a,, = O.

Lemma 2.8 ( [27]). Let {®,} be a sequence of real numbers that does not decrease at infinity in the
sense that, D, } C {D,} s.t. O, < D, i, Yk > 1. Let ny > 1 and {y(n)},s,, be integers sequence

defined by y(n) = max{k < n: O, < O} satisfying tk < ng : Oy < Oyy1} # 0. Then,

(i) Y(no) < Y(ng + 1) < --- and Y(n) — co;
(ll)fOl” all n > no, (Dw(n) < (Dw(n)+l and (Dn < (I)w(n)+1-

3. Main results

Let C be a nonempty closed convex subset of of a p-uniformly convex and uniformly smooth
Banach space E. Suppose that

(CI) the mapping T : C — C is Bregman relatively asymptotically nonexpansive with {6,} and
uniformly continuous.

(C2) the mapping 7; : C — C(i = 1,...,N) is Bregman relatively nonexpansive and uniformly
continuous and 7, := T,moay for integer n > 1 with the mod function taking values in the set
{1,2,...,N}.

(C3) the mapping F : E — E* is uniformly continuous and pseudomonotone such that ||Fz|| <
lim inf,,_,, ||Fx,|| for any {x,} C C with x,, — z.

(C4) Q = O, Fix(T;) N VI(C, F) # 0 where T, := T.

Letu > 0,4 € (0, ﬁ) and [ € (0, 1) be three constants. Let {0}, {a,} be two sequences in (0, 1) s.t.
liminf,_, 0,(1 —0,) > 0 and liminf, ., @,(1 — a,) > 0.

Algorithm 3.1. Let x; € C be an initial point.

Step 1. Calculate w, = J1.(0,Jpx, + (1 — 0,)Jo(Tyx)), Yo = He(J 5 (Jow, — AFwy)) and ry(w,) :=
Wn = Yn.

Step 2. Calculate t, = w, — T,ra(Wy), where T, := Un with j, being the smallest nonnegative integer
J such that

(FW,, - F(Wn - ljr/l(wn))a Wp — yn> < ngp(Wm yn) (31)

Step 3. Calculate v, = J}.(a,Jow, + (1 — a,)J(T"w,)) and x,.1 = Hc,ng,(W,), where Q, = {x €
C: Dy (x,v,) < (1 +6,)Dy,(x,wp)}, Cy :={x € C: hy(x) <0} and

M@ﬂmwﬂm+%%wwﬂ (32)

Setn:=n+1and go to Step 1.

Lemma 3.2. Suppose that the sequence {x,} is constructed in Algorithm 3.1. Then the inequality holds:
<Fwn’ r/l(Wn)> 2 %Dfp(wn, yn)
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Proof. Using the property of I1¢, we obtain
(Jowy = AFW, — J0y, Wy — yu) < 0.
It follows from (2.1) that

Dfp(wn’ yn) < <ngn - ngn’ Wy — yn> < /l<FWna Wy — yn>

Lemma 3.3. The rule (3.1) and {x,} generated by Algorithm 3.1 are well defined.

Proof. Note that lim;_,o.(Fw, — F(w, — Ura(wy)), ra(wy)) = 0. If ry(w,) = 0, then it is obvious that
Jn = 0. If ry(w,) # 0, then there is j, > O fulfilling (3.1).

It is easy to see that for every n > 1, C, and Q, are closed and convex. Next, we show Q c C,, N Q,..
Take any z € Q. By (2.6) and the Bregman relatively asymptotical nonexpansivity of 7', we have

Dfp(Z, Vn) < CYanp(Z, Wn) + (1 - an)Dfp(Z’ ann)
< a,Dy (z,wy) + (1 = @,)(1 + 6,)Dy, (2, wy)
< (I +6,)Dy,(z, wn),

which immediately yields z € Q,.. Moreover, using Lemma 2.4, we have (Ft,,t, — z) > 0. Hence

Tn
hn(z) = <Ftn,Z - Wn> + _Dfp(wm yn)

21
=%ﬂww—m—wn%—@+%PMMJ0 (3.3)
s—WW%mwm+§§%m%hx

Thanks to (3.1), we have
(Fwy = iy rawn)) < 5D 0, 30)

Using this and Lemma 3.2, we have
<Ftn7 r/l(wn» > <Fwn7 r/l(wn» - %Dfp(wm yn)
1 pu
>(=-=)D .
> (/1 2) (Wi V)

Combining this and (3.3) to deduce

T, 1
ha(2) < —3(5 =Dy, (Wy, yn) < 0.

Consequently, Q c C, N Q,. Therefore, {x,} is well defined. O

Lemma 3.4. Let the sequence {w,} be defined by Algorithm 3.1. Then lim,_,., ||w, — y,|| = O implies
that w,,(w,) € VI(C, F).
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Proof. Let z € w,,(w,). Then, {w,,} C {w,}, s.t. w,, — zand lim,_ [lw, — y, |l = 0. Hence, it is
known that y,, — z. Since C is convex and closed and {y,} C C, z € C. Next, we consider two cases.
If Fz = 0, then z € VI(C, F). If Fz # 0, using the assumption on F, instead of the weakly sequential
continuity of F, we get 0 < ||Fz|| < liminf;_ [|[Fw,,||. So, we might assume that ||[Fw, || # 0,Vk > 1.
Using (2.2), we obtain

<J§Wnk - /lFWnk - Jzynkax _ynk> < 07

and hence
1
z<‘]£wnk - ngnk’ X = }’nk> + <FWnk’ }’nk - wnk> < <FWnk’ X = Wnk>- (3'4)
By Lemma 2.3, {Fw,,} is bounded. Note that {y,, } is also bounded as well. From (3.4) we get

liminf(Fw,,x—-w,)>0, VxeC. 3.5

k—o0

Let {&} be a sequence in (0, 1) fulfilling ¢ | 0 as k — oco. Let /; be the smallest positive integer
satisfying

(FWn,y—wp)+ 620, Vj=>1I. (3.6)
Since {¢} is decreasing, {/;} is increasing. For convenience, we denote {F W"tk} by {Fw,}. Note that
Fw, # 0, Vk > 1. Puty, = Fw’ki. We have <FWzk,Jg*Uzk> = 1, Yk > 1. Indeed, it is clear that
lFwy |4
(Fwy, JE vy = (Fwy,, (—)T UL Fwy)y = (——)YIFw|l¥ = 1, Yk > 1. So, using (3.6) one
1wy 19T [[Fw, |31

has (Fw,,y + eng*vlk —wy,) >0, Yk > 1. Since F is pseudomonotone, we have
(Fy+edru),y+eadtu, —w,) >0, VYyeC. (3.7)

We claim that lim;_, ekJZ* v, = 0. In fact, since {w; } C {w,,} and ¢ | 0, we have

) ) € lim su Sk
0 < limsup |lgJL.v, || = lim sup LI Piseo =
k—co k— 00 ”lek” lim lnfk—wo ”Fwnk”

Hence one gets eng*vlk — 0 as k — co. Thus, letting k — oo in (3.7) and from (C3), we have
(Fy,y—2z2) >0, Yy € C. According to Lemma 2.4 one has z € VI(C, F). O

Lemma 3.5. Let the sequence {w,} be generated by Algorithm 3.1. Then,
lim 7,Df,(W,,y,) =0 = lim Dy, (w,,y,) = 0.
Proof. Suppose that liminf,_,., 7, > 0. In this case, assume that 37 > 0 s.t. 7, > 7 > 0, Vn > 1. Then,
1 1
Dfp(wna Yn) = T_Tanp(Wn, Yn) < ; ’ Tanp(an Yn)- (3.8)
This together with lim,, . 7,Df, (Wy, y,) = 0, leads to lim,, .o Dy, (Wy, y,) = 0.
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Suppose that liminf, .., 7, = 0. In this case, assume that limsup, ,, D (W,,y,) = a > 0. Then we
know that I{n;} C {n} such that

limr, =0 and ]}1_210 Dy Wy, yn) = a > 0.

k—o0

We define 7, = %Tnkynk + (1 - %Tnk)wnk for each k > 1. Applying (2.1) and noticing that
limy o 7, D, (W Yo, ) = 0, we have limy oo 7, [[Wy, — ¥ |I” = 0 and hence

-1
lim |7, = w,,[I” = lim f;; T W, = yu,lIP = 0. (3.9)
It follows that
lim [|[Fw,, = Fi ]l = 0. (3.10)
So,
(Fwiye = e = Y) > 5D5, 0300 (3.11)

Now, letting k — oo and from (3.10) we have limy_, Dy, (Wy,,y,) = 0. It is a contradiction.
Therefore, lim, .. Dy, (Wy, ya) = 0. O

Theorem 3.6. Suppose that E is a p-uniformly convex and uniformly smooth Banach space with weakly
sequentially continuous duality mapping Jy. Let the sequence {x,} be defined by Algorithm 3.1. Then
{x,} is convergent weakly to a point in Q provided T"w, — T"*'w, — 0.

Proof. Take any z € Q. Using Lemma 2.2, we get
Dfp(za Wn) = pr(z» O-njgxn + (1 - O-n)JZTnxn)
1 o
< ;”Z”p - 0-n<J§xn7 Z> - (1 - O-n)<JZTnxm Z> + ?ll‘]gxn”q

LU=

”Jngxn”q - O-n(l - O'n)PZ”ngn - J}?Tnxn”

1 o
= I—JIIZIIP — Tl pXn, 2) = (1 = 0 I T X, 2) + ?lenll‘”

+ (1 _O-n)
q

”Tn-xn“p - o-n(l - O-H)pZ”ngn - JzTnxn”

= 0Dy (2, %) + (1 = 0,)Dy, (2, Tox) = 05 (1 = )yl 5%y = JoT x|
< Dy, (2, %) = 01 = o)yl pxs = T Tl

From (2.1) and (2.3), we obtain

Dy (z, Xp41) < Dy, (z,wy) = Dy, (Xp11, W)
= Dy (2, wn) — Dy, (Ilc,ng, Wn> Wn)
< Dy, (z, wn) — Dy, (g, Wy, wy)
< Dy, (z, wy) — 7lltc,wn — will”
< Dy, (z,wn) = 7llPc,wn — wall”
= Dy, (z, w,) — 7[dist(C,,, w,))]”.
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Combining the last two inequalities, we obtain
Dfp(Z, xn+l) < Dfp(Z, xn) - O-n(l - O'n)PZ”JZXn - JZTn-xn” - T[diSt(Cna Wn)]p- (312)

This indicates that lim,_,., Dy, (z, x,) exists and the sequence {x,} is bounded. It is easy to check
that {Fw,}, {y.}, {t.}, {v.}, {Tnx,} and {T"w,} are also bounded. Note that w, (x,) # 0. Next, we show
wy(x,) C Q. Let z* € w,(x,). Then, Ix,,} C {x,} s.t. x,, — z". From (3.12), we obtain

Dfp(xn+1’ vn) < (1 + en)Dfp(xn+1’Wn)
< (1 + gn)[Df,,(Za Wn) - Df,,(z’ xn+1)]
< (1 + en)[Dj,,(Zs -xn) - Dfp(Z, xn+l)]-

This implies that lim,, e Dy, (X441, Wa) = lim, e Dy (X441, v,) = 0 and hence
Im by —wll = 1im b — vl = 0.
Hence,
31_{{)10 W, — vl = 0. (3.13)
Using Lemma 2.2, we get
Dy (2, V) = Vi (2, andywy + (1 = @) T T"wy)
< Il = T = (1= @) IET 2+

LU-a)

T " wall? = (1 = @)yl pwn = JpT"will

1 a,
= l—)llzll” — W, 2) = (1 = @ I T "Wy, 2) + ;”Wn”p

LU-a)

||ann||p - a’n(l - a/n)PZ”Jng - J]I;ann”

= a’an,,(Z’ Wn) + (1 - a’n)Dfp(Z» Tan) - a’n(l - a’n)PZ”JZWn - JngWnH
< a’n(l + Qn)Dfp(Z’ Wn) + (1 - a'n)(l + gn)Dfp(Za Wn)
- an(l - an)pZ”JZWn - JZTan”
= (1+6,)Dy,(z, W) — an(1 = @)pllTpwy = JpT " will.
Therefore
a’n(l - a’n)PZ”Jan - JII;Tan” < (1 + gn)Df,,(Z’ Wn) - Dj},(z’ Vn)

< Dy (z,wn) = Dy, (2, V) + Dy, (W, vy) + 6,Dy (2, W)
= (Jfgvn - JZ'WIHZ —wy) + Ganp(Z, Wp).

By (3.13), we get lim,, e, o} [IlJowy — JpT"wy | = 0 and hence lim,, o [[/pw, — J.T"w,|| = 0. So,

lim ||w, — T"w,|| = 0. (3.14)
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In addition, from (3.12) we get o,(1 =), I/ pX0 = IR T Xl < Dy (z, x,) — Dy, (z, x,41). Noticing the
existence of lim, .., Dy, (z, x,) and liminf,_,., o,(1 — 07,) > 0, we have lim,,_,. 0} [I/px, = JL T/l = O
and hence lim,_,o |[J7.x, — J7T,x,/| = 0. Thus,

lim [lx, — T,x,| = 0. (3.15)
Since w, = J1.(oJbx, + (1 — 07,)J2T,x,,), we deduce that
IJown = Jpxll = (1 = o)W Tuxn = Jpxall < WETuxy = Jpxall = 0 (n — o0).
It follows that
lim [lw, = x,[| =0 and ’}I_)HOIO X041 — xall = 0. (3.16)

Now, we prove z* € VI(C, F). Since {Ft,} is bounded, we know that AL > 0 s.t. ||Ft,|| < L. This
ensures that for any x,y € C,,

1 (xX) = [ha (V)] = KF1y, x = Y| < [|Flllx =yl < Lilx = yl|.

This indicates that 4,(x) is L-Lipschitz in C,. Applying Lemma 2.6, we have

) 1 T,
> — = — . .
dlSt(Cna Wn) = Lhn(wn) 2/1LDfp(anyn) (3 17)
Using (3.12) and (3.17), we have
* * Tl’l
Dfp(Z »xn) - Dfp(Z ,xn+l) 2 T[z/lLDfp(Wn’yn)]p- (318)

Hence lim,, o 7,D,(Wy, y,) = 0. By Lemma 3.5, we get lim,, ., [[w,, — y,|| = 0. Besides, combining
(3.16) and x,, — z* leads to w,, — z*. According to Lemma 3.4, we conclude that z* € w,(w,) C
VI(C, F).

Next, we show z* € ﬂf; o Fix(T;) with Ty := T. Indeed, we first show that lim,_,« [|x, — Tx,l| = 0
for r = 1,..., N. Actually, according to the definition of 7),, we obtain that 7,, € {T,...,Ty} Vn > 1,
which hence leads to T,,; € {T, ..., Ty} Yn > 1,i = 1, ..., N. Observe that

||xn - Tn+i-xn|| < ”xn - xn+i|| + ||-xn+i - Tn+i-xn+i|| + ||Tn+i-xn+i - Tn+ixn||

N
< 16 = osill + s = Tosiusill + D IT s = Tyl
J=1

Thanks to (3.15) and (3.16), we have x,.; — T,4jxp; — 0 and T;x,,; — Tjx, — Ofor i, j =1,...,N.
Thus, we get lim,,_,«, ||x, — Tp1iX,|| = 0 for i = 1, ..., N. This immediately implies that

lim ||x, — T,x,|| =0, forr=1,..,N. (3.19)

So it follows from (3.19) and x,, — z" that z € lgi;(T,) = Fix(T,) for r = 1,...,N. Therefore,
z € NY, Fix(T}). In addition, observe also that

W = Twall < 1wy = T"Wall + 1T Wy = T will + 1T Wy = Tw . (3.20)
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Noticing the uniform continuity of T on C, we conclude from (3.14) that Tw, — T"*'w,, — 0. Thus,
using the assumption T"w, — T""'w, — 0, from (3.20) we get lim,_, |[w, — Tw,|| = 0. Again from
(3.16) and x,, — 7", one has that w,, — z". Hence, we obtain z* € IEi;(T) = Fix(T'). Consequently, z* €
ﬂﬁio Fix(T;), and hence 7* € Q = ﬂﬁo Fix(T;) N VI(C, F). This means that w,,(x,) C Q. Accordingly,
applying Lemma 2.5 we conclude that x, — z*. O

Next, we show a strong convergence result.

Algorithm 3.7. Let x;, € C, u > 0, [ € (0,1) and A € (0, /ll). Choose {o,},{a,}, {6} € (0,1) s.t.
(i) liminf, ., 0,(1 — 0,) > 0 and liminf, . B,(1 —B,) > 0, and (ii) )", @, = oo, lim, e @, =
0, lim,5«6,/a, =0and 3}, 6, < co.

Step 1. Set w,, = J}.(0nJpx, + (1 — 0,)Jo(Tx,)), and calculate y, = Hc(Jt.(Jow, — AFw,)) and
ra(wp) i=wy, — Yn-

Step 2. Calculate t, = w, —T,ry(wy,) in which T, := " with j, being the smallest nonnegative integer

Jj fulfilling
WW—ﬂw—mwmmWﬂms§%me

Step 3. Set z, = Il¢,(w,), and compute v, = Jr.(BJpw, + (1 — B)Jp(T"z,)) and
Xppl = HC(Jg*(anJZM +(1 - a,,)ngn), where C, := {x € C : h,(x) <0} and

M@ﬂﬂwﬂm+%%wwﬂ

Letn:=n+1and go to Step 1.

Theorem 3.8. Suppose that the conditions (C1)—(C4) are satisfied. Then, the sequence {x,} constructed
in Algorithm 3.7 converges strongly to Tlqu provided T"z, — T"'z, — 0.

Proof. We divide our proof into four claims.

Claim 1. The sequence {x,} is bounded. Indeed, set # = Ilou. According to Theorem 3.6 and
Lemma 2.2 , we have

Dy (i, wy) < Dy (@, x,) = 00(1 = )l T oxn = JpT 1. (3.21)
Using (2.3), (2.6) and (3.21), we deduce

Dy (@, Xp11) < Dy, (i1, T3 (nJpu + (1 = @) Jpvy)
< aanp(it, u)+ (1 - ozn)Dfp(it, Vi)
< @, Dy, (1, u) + (1 — @,)[B,Dy, (@1, wn) + (1 = B,)Dy, (i1, T"z,)]
< @Dy, (i, u) + (1 — a)BuDy, (i, wy) + (1 = By)(1 + 6,)Dy, (i, 2,)] (3.22)
< @Dy, (i1, u) + (1 — @) [B, Dy, (@, wy) + (1 = B)(1 + 6,) Dy, (i1, wy,)]
< @Dy (i) + (1 = )1 + 6,)D, (i, x,)
< max{Dy, (&, u), (1 + 6,)Dy (&, x,)}.
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From (3.22) that
Dfp (ﬁa xn+2) < maX{D‘fp(l//\t, u)7 (1 + 9n+1)Dfp(aa -xn+l)}

< max{(Dy, (@, 1), (1 + Gy max{ [ [(1+ 69Dy @ w), [ |(1 + 69Dy, (0, x1)1)
i=2 i=1
n+l n+l

<max{| |1+ 6Dy, @ w, | [(1+6)Dy, (@, x)).
i=2 i=1

Noticing >.>>, 6, < oo, we obtain that {D 1, (@1, x,)} is bounded. This together with (2.1), implies that
{x,} is bounded. Hence, {T,,x,}, {Fwy,}, (Wu}, {vuhs {8}, {20}, {T"2,,} and {v, } are also bounded.
Claim 2. We show (1—8,)(1+6,)Dy, (zn, wn) < (1+6,)Dy, (i1, wy) = Dy, (it, Xp1) + (S e — J i, 5, — ).
Set b = sup,, {llwa”", [IT"z,]1”~"}. By Lemma 2.2, we obtain
Dy (i, v,) = Vi (it B 2w, + (1 = B)JET"2,)
1
< ;llﬁllp — Bl T W, 1) = (1 = B (I T" 2y, 1) +
(1 -5,
q

Ba
q

I Ewall?

+

”J]I;Tnzn”q _ﬁn(l _IBn)pZ”J]’;"Wn - J]I;Tnzn”

I . . 0 A W
= ;Ilull” = Bal W, i) = (1 = BT T "2, 1) +%|Iwnll”

(1 =) ) .
+ —q’B IT"2ll” = Bu(1 = Byl pwn — J2T"2,|
= Dy, (W) + (1 = B)Dy (&, T"2,) = Bu(1 = Bpyllgwn = JET" 2l
< Bu(1 +6,)Dy (i1, wy) + (1 = B,)(1 + 6,)Dy (i, z,)
_ﬂn(l _,Bn)PZ”Jan - JngZn”
< (1 + 6Dy, (@, wy) = Ba(1 = Bpy Il wn = JET" 2.

(3.23)

Set s, = JE. (@, Jou + (1 — @,)Jpv,. Using (2.5), we have

Dy, (@, Xp1) < Dy, (i1, Jg. (nJ pu + (1 = @) Jpvy)
= Vi (@, apJpu + (1 — a,)J5v,)
< Vi (i, anJou + (1 = ) pvy — an(Jpu — Jpi) + (T pu — J3it, s, — it)
< @Dy (@, it) + (1 = ) Dy, (i1, v,) + (S pu — J i1, s, — i)
= (1 — @)Dy, (1, v,) + @, (Jpu — Jpit, 5, — i)
< (1 = a)l(1 +6,)Dy (i1, w,) = Bu(1 = Byl pwn — TR T"z,ll]
+a,(Jou — Joil, s, — )
= (1 - a’n)(l + en)Dfp(i/\l’ Wn) - (1 - an)ﬁn(l —ﬁn)PZ”JZWn - JZTnZn”
+ @, (Jpu — Jpi, s, — i)

< (1 = a)(1 + 6,)Dy (i1, wy) + an(Jpu — J3it, s, — ).

(3.24)
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On the other hand, we have
Dy, (it,v,) < BuDy, (8, wy) + (1 = B,)(1 + 6,)Dy (i1, 2,)

< ﬁanp(l’/\t, Wn) + (1 _ﬁn)(l + gn)[Dfp(ﬁ’ Wn) - Dfp(zn, Wn)]

< (1 +6,)Dy, (@1, wn) — (1 = B)( + 6,) Dy, (zp, Wi).
This together with (3.24) implies that

Dy (@1, Xy41) < (1 = @)Dy, (i1, v,) + @ Jpu — Jpit, s, — i)
<(1+46 )Dfp(u wy) — (1 =B,)(1 + 9,,)Dfp(z,,, wp) + cyn(qu - qu S, — ).

This immediately arrives at

(1 _IBn)(l + Hn)Dfp(Zna Wn) < (1 + Hn)Dfp(ﬁa Wn) - Dfp(a’ xn+1)

+ a, (Jou — Joi, s, — ).

(3.25)

Claim 3. We show that

(1 a,)(1 =B +6,)7[ 5 =D, (Wa, y)I” < @, Dy (@, u) + (1 + 6,)Dy, (@1, w,) = Dy, (it, Xp11)-

2AL

Using the similar inferences to these of (3.18) in Theorem 3.6, we get

D (i < D¢ (it - D 2
fp(u’zn)— fp(u’wn) [Z/lL fp(wn’yn)] (3 6)

Applying (3.26), we get
Dy (@, Xp11) < Dy, (i1, T3 (nJpu + (1 = @) Jpvy)
< @, Dy (it,u) + (1 — a,)Dy (i1, v,)
< @Dy, (f,u) + (1 — @) [BuDy, (@, wn) + (1 = Bu)(1 + 6,) Dy, (4, 2,)]
= @Dy, (i1, u) + (1 — @,)B.Dy, (i, wy) + (1 - an)(l =B +6,)Dy (i1, z,)
< @Dy, (8, 10) + (1 = @)Dy (2 w,) = Tl 5Dy (W, )17 (3.27)

+ (1 =) =) + 6,)[Dy, (i, wy)
< @Dy, (it u) = (1 = a,)(1 = B,)(1 + 6,7

2AL

D nsJn
L 1, (W yu)1”

+(1+ Hn)Dfp(ﬁ, W,).

Claim 4. Finally, we prove x, — @i as n — oo. Note that w,(x,) # 0. Letz' € w,(x,). Then,
A{x,,} c {x,} s.t. x,, — 7. Foreach n > 1, we write ®, = = Dy (@1, x,). Put @, = ||x,, — 2.
Case 1. Suppose that {®,}7 is nonincreasing for some ng > 1. Then lim, ., ®, = d < +oo and
lim,,_, o (P, — ®,11) = 0. By (3. 21) and (3.25) we get
(1 =B + 6,)Dg (25, W) < (1 + 6,)Dy (i1, W) = Dy, (@, Xpi1) + @u{Jpu — Joi, 5, — i)
< (1 + 6Dy, (@1, x,) = 0(1 = TPl pxn = JET ]
— Dy (i1, Xp41) + an{Jpu — R, 5, — i)
< (1 +6,)Dy (@, x,) = Dy, (@4, Xp1) + (S pu — Jpit, 5, — 1)
- (1 + 9,,)0',,(1 - O-n)pb”‘lgxn - Jngxn”»
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which immediately yields
(1 _IBH)(I + Hn)Dfp(Zm Wn) + (1 + 6,,)0',1(1 - O'n)P;*,”JZXn - JZTan”
< (1 +6,)Dy, (@, x,) = Dy, ({1, Xp41) + @, (Ju = J5it, s, — i)
= (1 +60,)D, — Opuy + @, (Jou — Joil, s, — ).

Since lim,,,6, = 0, lim, @, = 0, liminf,..B,(1 — B, > 0, liminf,,,o0,(1 — 0o, >
0, lim, .., ®, = d and the sequences {s,} is bounded, we obtain that lim, ., Dy,(z,,w,) = 0 and
lim, o IJ5x, — JpTux,ll = 0. Noticing w, = Jr.(o,Jox, + (1 — 0)J;T,x,), we also have

limy, e [ /oWy — Jpxll = 0. So it follows from (2.1) that
lim ||z, — w,|| = lim [|x, — T,,x,|| = lim [jw, — x,|| = 0. (3.28)

Furthermore, from (3.24) we have

(1 - an)ﬂn(l _ﬁn)pZ”JZWn - J]I;Tnzn”
< (1 - an)(l + Hn)Dfp(i\t, Wn) - Df,,(ﬁ9 xn+l) + an<-’§u - JZLA!, Sn — ﬁ>

By the similar inferences, we infer that lim,_ . |[Jpw, — JpT"z,]l = 0, which hence leads to
limy oo /20, — 2w, = 0. Then,

lim |jw, — T"z,|| = lim ||v, — w,|| = 0. (3.29)
Combining with (3.28), we have

r}lglo llzn = T"zall = }g{}o Vi = xll = 0. (3.30)
Since s, = JE. (@, Jou + (1 — @,)J}v,), it can be readily seen from (3.30) that
’}1_)11010 lls» — xall = 0. (3.31)
In addition, using (2.3) and (3.23), we achieve

Dfp(ft, xn+1) < Dfp(ﬁa sn) - Dfp(xn+1, Sn)
= Dfp(i/\t’ Jz:*(an-]f;u + (1 - CYn)JZVn) - Dfp(xn-#la sn)
< aan,,(ﬁ’ M) + (1 - an)Df,,(ﬁa vn) - Df,,(-xn+l > sn)
< a’an,,(i/L M) + (1 - a/n)(l + Qn)Df,,(ﬁ9 Wn) - Dfp(xn+la Sn)
< aanp(ﬁ, Lt) + (1 - a/n)(l + Qn)Dfp(ﬁa xn) - Dfp(xn+la Sn)a
which hence arrives at
Df,,(-xn+1’ sn) < a’anp(ﬁ’ I/t) + (1 - a’n)(l + Qn)Dfp(ﬁa xn) - Dfp(ﬁ’ -xn+1)
< @, Dy (it,u) + (1 — @)1 + 6,)P, — Dy
Then, lim,, e Dy, (x,11, 5,) = 0 and hence lim, .« [[X,+1 — 4|l = 0. This together with (3.31), leads to

lim ||x,4+1 — x,|| = O. (3.32)
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Note that
”Zn - TZn” < ”Zn - Tnzn” + ”Tnzn - T’len” + ||Tn+lzn - Tzn”- (333)

By (3.30), we have Tz, — T"*'z, — 0. This together with (3.33) implies that lim,,_, ||z, — Tz, = O.
Again from (3.28) and x,, — z', one has that z,, — z'. Hence, we obtain 7' € Fix(T) = Fix(7T).
In the meantime, let us show that z € ﬁf\il Fix(T;). Indeed, by the definition of 7, we know that
T,€({T,.. Ty}, Yn > 1, which hence leads to T,,,; € {T1,...,Tn}, Yn > 1,i =1, ..., N. Observe that

“xn - Tn+ixn|| < ”xn - xn+i|| + ||~xn+i - Tn+ixn+i|| + ||Tn+ixn+i - Tn+ixn||
N

< 16 = eill + 16t = Tl + Y IT i = Tyl
j=1

Since each T'; is uniformly continuous on C, we deduce from (3.28) and (3.32) that x,,,; — T4iXpsi — 0
and T'jx,.; —Tjx, — Ofori, j=1,..,N. Thus, we get lim,_,« [|x, — Tpsix,|| = O fori = 1, ..., N. Hence,
lim,e |1X, = Tix,ll = 0G = 1,...,N) and so 7' € F/S((Ti) = Fix(T;) for i = 1,...,N. Consequently,
7" e MY, Fix(T;) with Ty := T.

Next, we prove z' € VI(C, F). Using (3.21) and (3.27), we have

Tn A A A
(1= @)1 = B)(1 + Ou)tl o Dy, W y)l” < @Dy, (1) + (1 + 6,)Dy, (11, %) = Dy, (11, X11).

Then, lim,,_, 2;—"LD 1, (Wn, yn) = 0 and hence lim,,_, 7,D,(W,, y,) = 0. Using Lemma 3.5, we infer that

lim [[w, —y,ll = 0. (3.34)

By Lemma (3.34) and 3.4, we obtain that z € VI(C, F), and hence 7' € Q = NY, Fix(T;) n VI(C, F)
with Ty := T. This means that w,,(x,) C Q. Lastly, we show that lim supn_)oo(JZu - Jgit, s, — ity < 0.
We can choose a subsequence {x,,} of {x,} such that

lim sup(Jpu — Jyit, x, — &) = im{Jou — Joi, x,,, — it).

n—oo J—00

Without loss of generality, assume that x,, — Z. So it follows from (2.2) and Z € € that

lim sup(J2u — J2a, x, — ) = im(J2u — J20, x,, — ) = (Jou — Jha,Z — @) < 0. (3.35)

n—oo J—

This together with (3.31) ensures that

lim sup(Jou — Joit, s, — ) < 0. (3.36)

n—oo

Using (3.21) and (3.24), we get

Dfp(-xn+1’ ﬁ) < (1 - an)(l + gn)Dfp(ﬂ’ xn) + (I,KJZM - ng//\l, Sp — ﬁ)
< (1 = @)Dy (i1, x,) + an(Jpu — Jpit, s, — ity + 6,Dy (1, X,).
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Since {Dy, (i1, x,)} is bounded and )7, 6, < oo, one has that 3.7, 6,D; (i1,x,) < oco. Noticing
{a,} € (0,1)and 3", @, = co, by Lemma 2.7 and (3.36), we conclude that lim,_, Dy (i1, x,) = 0 and
lim,, e (1 = x,[| = 0.
Case 2. Suppose that {®,, } C {D,} s.t. D, < D, .1, Yk € N. Define an operator i : N — N by
Y(n) :=max{k <n: O < Oyy}.

Based on Lemma 2.8, we have

(Dl/,(n) < (Dw(n)ﬂ and (Dn < q)l//(n)+1. (337)
From (3.21) and (3.25), we have

(1 = By + Oy D s, iy W) + (1 + Oyn)) Ty (1 = )OI gy = T o T gy X ||
< (1 + 6y) Dy, (@1, Xyny) = D, (f1 Xyuy1) + @y Tt = T sy — )
= (1 + Oyn)Pyiny = Pyt + @y (gt = Jpit, sy — ).

Noticing Wy = J1(Tymd 2xpm + (1 = 0y I 2Ty Xumy), we deduce that
Iim lzy e = wyell = im lbxye = TyoXyenll = M [1wye) = Xyell = 0. (3.38)
Furthermore, by (3.21) and (3.24), we obtain

(1 = @y)Buan(1 = Buay)Py oWy = J5T" 2yl
< (1 = ay)(1 + Oy Dy, (@, Xyny) = D, (8 Xyuy1) + QI gt = J5i sy — ).

Since vy = JE. By Towym + (1 = By IoT"Pz4)), by (3.38) we get
1im [z ) — T zywll = Im [y = xymll = 0. (3.39)
Noticing sy = Jo. (@ dou + (1 = @ye) I ovym), from (3.39) we get
Iim lsye) = xyall = 0. (3.40)

Using (3.37) and exploiting the similar inferences to those in the proof of Case 1, we conclude that
limn_,oo ||)C¢,(n)+1 - xw(,,)ll = 0, limn_,oo ||Xw(n) - T,xw(,,)ll =0forr= 1, ...,N,

’}1_{130 lzyoy — Tzymll = r}l_{{)lo Wy@my = Yol = 0, (3.41)
and
lim sup(Jou — Joit, Sy — ) < 0. (3.42)

Using (3.21) and (3.24) we have

Dy < (1 = )Py + Oy Py + (Tt = TRt sy — ). (3.43)
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Combining with (3.37), we have
@y Py < Pyiny = Pyimyst + Oy Py + QT gt — Jpil, Sy — i)

< Oy @yiny + g (Tt — T, Syny — ).

Since % — 0, from (3.42) we deduce that

W(n)

lim @, = 0. (3.44)

From (3.42), (3.43) and (3.44), we get that
’}1_&10 Dy = 0. (3.45)
Now from (3.37), we deduce lim, ., Dy (i1, x,) = lim, ., ®, = 0. Hence lim,, . [|x, — &|| = 0. O

Putting F' = 0 in Algorithm 3.1, we have the following corollary.

Corollary 3.9. Let E be a p-uniformly convex and uniformly smooth Banach space with weakly
sequentially continuous duality mapping J,. Let T : C — C be a uniformly continuous and Bregman
relatively asymptotically nonexpansive mapping with and T; : C — C(i = 1,...,N) be a uniformly
continuous and Bregman relatively nonexpansive mapping. Assume that Q := fio Fix(T;) # 0 with
Ty :=T. For an initial x, € C, let {x,} be the sequence constructed by

Wy = JL (o5 x, + (1 = o )J(Taxn)),

vy = S Jow, + (1 — a)Jo(T"w,)),
0,={xeC: Dy (x,v,) < (1 +6,)Dy (x, wol,
Xoet = g, (w,), V> 1,

where {o,},{a,} € (0,1) s.t. liminf,_, o,(1 —0c,) > 0 and liminf,_. a,(1 — a,) > 0. Then, {x,}
converges weakly to a point in Q provided T"w, — T" 'w, — 0.

Setting T = I in Algorithm 3.7, we obtain the following algorithm and corollary.
Algorithm 3.10. Let x;, € C, u > 0, [ € (0,1) and A € (0, /ll). Choose {0}, {a,},{B.} € (0,1) s.t. (i)
liminf, . 0,(1 —0,) > 0 and liminf, . B,(1 = B,) > 0, and (ii) )., | @, = oo and lim,_,., @, = 0.

Step 1. Set w, = Jr.(o,Jpx, + (1 — 0,)Jo(T,xy)), and compute y, = Hc(JE.(Jpw, — AFw,)) and
r/l(wn) = Wi~ Y .

Step 2. Calculate t, = w, —T,r,(w,) in which t,, := " with j, being the smallest nonnegative integer
j fulfilling

(Fwy = FOw, = Pra0n)). wa = ) < 5Dy, 0w 30).

Step 3. Compute v, = J}.(B,Jyw, + (1 = B)Jn(Lc,wy)) and x,41 = He(J g (@, Jpu + (1 — a,)Jhv,),

where C, :={x € C : h,(x) <0} and

Tn
hn(x) = (Fty, x —wy) + ZlDfp(Wn’ yn)

Setn:=n+1andgo to Step 1.

Corollary 3.11. Suppose that (C1)—(C4) are satisfied. Then, {x,} constructed in Algorithm 3.7
converges strongly to Tlqu.
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4. Examples

In this section, we provide an illustrated example to demonstrate the applicability and
implementability of our proposed method. We first provide an example of Lipschitz continuous and
pseudomonotone monotone mapping F, Bregman relatively asymptotically nonexpansive mapping T
and Bregman relatively nonexpansive mapping 7, with Q = Fix(7;) N Fix(T) N VI(C, F) # 0.

Let C = [-3,3] and H = R with the inner product {a, b) = ab and induced norm || - || = | - |. The
initial point x; is randomly chosenin C. Putu =1, =4 = % and o, = %
LetF:H — HandT,T, : C — C be defined as Fx := m_%lxl’ Tx:=32sinxand Tyx := sinx

for all x € C. Now, we first show that F' is pseudomonotone and Lipschitz continuous. Indeed, for all
x,y € H we have

1 1 1
|IFx— Fy|l =| - - - - + |
L+|lsinx]] 1+]xll 1+][siny]]l 1+]yll
Il — [1x]] |l sin y|| — || sin x]|
<] |+ |

@ DA+ I (L + I sinx|D(L + || sinyl[)
< |lx —y|| + || sin x — sin y||
< 2|lx = yll.

This implies that F is Lipschitz continuous. Next, we show that F' is pseudomonotone. For each
X,y € H, it is easy to see that

1
1+ [sinx] 1+ x|

(Fx,y=x) =( )y —x) >0

which implies that

1 1
)y —x) = 0.

F’ - = . -
(Fy,y =% (1+|smy| 1+

Furthermore, it is easy to check that T is asymptotically nonexpansive with 6, = (%)" ¥n > 1, and
for each {p,} € C one has ||[T""'p, — T"p,|| — 0 as n — co. Indeed, we observe that

3 e 3.,
IT"x =T < ZIIT” =Tl < < ()l =yl =< 1+ 8u)llx = yll,
and
n+1 n 3 n—1 2
T pn = T7pall < ()" NT"pu = Tl
3 3 3
= (Z)H”Z Sin(T' pn) = 7 sin pu|
3
< Z(Z)" — 0 (n > ).
It is clear that Fix(7T)) = {0} and T 1s also Bregman relatively asymptotically nonexpansive with
6, = (%)” Vn > 1. In addition, it is clear that Fix(7;) = {0} and T is Bregman relatively nonexpansive.

Therefore, Q = Fix(T;) N Fix(T) N VI(C,A) = {0} # 0.
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Example 4.1. Putting o, = ﬁ Vn > 1, we can rewrite Algorithm 3.1 as follows:
_1 1

Wn = 5Xn + ETlxn’

Yn = PC(Wn - %FW,,),

I, = (1 - Tn)wn + TnYns
— n n+2

Vn = 355myWn T 3en L Was

O, ={xeC:lx=v,2<(1+E)x—w, ),

Xn+1 = Pe,no,Wn, Y > 1,

where for each n > 1, C,, and 7, are chosen as in Algorithm 3.1. Then, by Theorem 3.6, we deduce
that {x,} converges to 0 € Q = Fix(T) N Fix(T) N VI(C, A).

Example 4.2. Putting «,, = m and 8, = ﬁ, Vn > 1, we can rewrite Algorithm 3.7 as follows:
W, = %xn + %T]x,l,

Yn = Pc(w, — %FWn),

th = (1 = T)Wy + TyYn,

2o Wn T 2(”,;21)T”Pcnwn,

_ 1 2n+1
Xp+l = Pc(—z(n+1)u + 2(n+1)vn),\7’n > 1,

Yy =

where for each n > 1, C,, and 7, are chosen as in Algorithm 3.7. Then, by Theorem 3.8, we obtain that
{x,} converges to 0 € Q = Fix(T) N Fix(T) N VI(C, A).

5. Conclusions

In this paper, we investigate iterative algorithms for solving the variational inequality and the
common fixed-point problem in p-uniformly convex and uniformly smooth Banach spaces. With the
help of accelerated projection methods and line search technique, we construct two algorithms for
finding a common solution of the pseudomonotone variational inequality and the common fixed-point
problem of finitely many Bregman relatively nonexpansive mappings and a Bregman relatively
asymptotically nonexpansive mapping. We provide convergence analysis of the proposed algorithms
by using standard conditions and new techniques.
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