
Estimation of key potentially toxic
elements in arid agricultural soils
using Vis-NIR spectroscopy with
variable selection and PLSR
algorithms

Said Nawar1*, Elsayed Said Mohamed2*,
Safa Essam-Eldeen Sayed3, Wagih S. Mohamed3,
Nazih Y. Rebouh4 and Amr A. Hammam3

1Soil and Water Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt, 2National
Authority for Remote Sensing and Space Sciences, Cairo, Egypt, 3Soil Science Department, Faculty of
Agriculture, Minia University, El-Minia, Egypt, 4Department of Environmental Management, Institute of
Environmental Engineering, RUDN University, Moscow, Russia

Potentially toxic elements (PTEs) pose a significant threat to soil and the
environment. Therefore, the fast quantification of PTEs is crucial for better
management of contaminated sites. Versatile technique such as Visible near-
infrared spectroscopy (Vis–NIRS) (350–2,500 nm) has attracted tremendous
attention for assessing PTEs and has achieved promising results combined with
successful multivariate analysis. This research investigated the potential of
Vis–NIRS combined with partial least squares regression (PLSR) and variable
selection methods to assess key PTEs (Cd, Co, Cu, Cr, Pb, and Zn) in
agricultural soils under arid conditions. The soil samples (80) were collected
from a polluted area around Al-Moheet drainage, Minya Governorate–upper
Egypt. The samples were scanned using an ASD FieldSpec-4
spectroradiometer. Simulated annealing (SA) and uninformative variable
elimination (UVE) were used to select the effective wavelengths in predicting
PTEs. PLSR was used to develop the spectral models using the full range (FR-PLS)
and feature-selected spectra techniques SA (SA-PLS) and UVE (UVE-PLS). The
results indicated that UVE-PLS models performed better than FR-PLS and SA-PLS
models in predicting the key PTEs. The obtained coefficient of determination (R2)
and the ratio of performance to deviation (RPD) were 0.74 and 2.48 (Cr), 0.72 and
2.03 (Pb), 0.62 and 1.86 (Cd), 0.59 and 1.78 (Cu), 0.52 and 1.68 (Co), and 0.46 and
1.41 (Zn), respectively. The results suggested that the UVE-PLS spectral model is
promising for predicting Cr, Pb, and Cd, and can be improved for predicting Cu,
Co, and Zn elements in agricultural soils.
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1 Introduction

Potentially toxic elements (PTEs) accumulation in agricultural
soils can cause serious health problems for humans and negatively
impact ecosystems (Khan et al., 2008; Zhang et al., 2009). PTEs, such
as cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead
(Pb), and zinc (Zn), constitute a significant group of soil
contaminants (Bruemmer et al., 1986). These elements endanger
human and animal health by entering the water, soil, plants, and
food chain (Gholizadeh et al., 2018). Because of their persistence and
long biological half-lives, they disrupt the nutrient balance in the soil
and reduce plant growth (Shi et al., 2018). As a result, quantification
of PTEs in the soil is critical for efficient monitoring and subsequent
remediation. Traditionally, PTEs have been quantified using wet
chemistry, such as inductively coupled plasma (ICP) analysis or
atomic absorption spectrometry (AAS). These methods are time-
consuming, expensive, and unsuitable for many soil samples (Nawar
et al., 2020). Therefore, there is a rising need for detection and
measurement equipment that can be used on-site and in real-time,
which has contributed to advancing new techniques such as visible
and near-infrared spectroscopy (Vis-NIRS).

Vis-NIRS is a commonly effective tool for soil analysis, such as
soil organic carbon (SOC), texture, nutrients, and PTEs. Modern
instrumental spectroscopic technologies analyse samples at high
resolution, yielding many spectral variables per sample. The high-
resolution measurement can result in large predictors (p) and small
(n) samples, which occur when the number of spectral variables
exceeds the number of samples, and have posed difficulties in
analysing the relationship between the target (e.g., soil properties)
and spectral variables. Therefore, appropriate statistics algorithms
are required to extract useful information from spectra. Partial least
squares regression (PLSR) is a widely used algorithm coupled with
variable selection strategies (Xiaobo et al., 2010). PLSR is a popular
multivariate regression technique that can handle many noisy and
correlated variables and small samples (Wold et al., 2001; Forina
et al., 2004). The potential of Vis-NIRS coupled with PLSR was
examined by Kooistra et al. (2001), who reported a coefficient of
determination (R2) of 0.88 and 0.90 for estimating Cd and Zn,
respectively, in river floodplains (Netherlands). The PLSR was also
used to estimate Cr and Ni concertations in soil samples (Han et al.,
2021), reporting R2 of 0.69–0.71. However, removing uninformative
variables improves PLS calibration performance (Spiegelman et al.,
1998; Andries et al., 2011, 2017). Besides better PLS model
interpretation, lower measurement costs and a lower risk of
overfitting may be obtained (Andersen and Bro, 2010).

Variable selection algorithms are well-known for improving
model robustness and precision, excluding noisy spectral regions
and collinear wavelengths (Xiaobo et al., 2010). For PLS, many
variable elimination methods have been published (Gauchi and
Chagnon, 2001; Xiaobo et al., 2010; Huang et al., 2019;
Mehmood et al., 2020), among which are the uninformative
variable elimination (UVE) for PLSR (UVE-PLS) (Centner et al.,
1996) and simulated annealing (SA) (Kalivas et al., 1989). UVE-PLS
is a variable elimination method based on the PLSR regression
coefficients’ significance. Variable importance is determined by
PLSR regression coefficients and the standard deviation is
calculated based on cross-validation (e.g., jackknifing). The
variables with values less than the calculated threshold from the

random process within the cross-validation are removed. SA has
shown promising results in improving PLSR calibrations in various
matrices (Balabin and Smirnov, 2011; Liu et al., 2019; Guo et al.,
2020). The SA is a probabilistic optimization technique that accepts
non-optimizing solutions with a predetermined probability of
avoiding being trapped in a local minimum (Swierenga et al., 1998).

Industrial activities and long-term applications of inorganic
fertilizers have heavily impacted agricultural soils in several
regions of Egypt and other countries over the last few decades.
Furthermore, the high-cost laboratory analysis of PTEs for large
samples compared with the proximal sensing method (Nawar et al.,
2020). Therefore, there is a growing need for versatile and cost-
effective methods that can be developed based on limited reference
samples for rapidly quantifying soil contaminants by PTEs. This
study aimed to investigate the feasibility and cost-effectiveness of
Vis–NIRS to quantify key PTEs (e.g., Cd, Co, Cu, Cr, Pb, and Zn) in
limited samples from arid agricultural soils of a polluted area close to
the Nile River in Egypt. The main objectives were: (i) to explore the
potential of vis–NIRS for predicting the key PTEs and (ii) to
compare the performance of spectral models using the PLSR
method with spectral full-range (FR-PLS) and selected spectral
datasets based on uninformative variable elimination (UVE-PLS)
and the simulated annealing (SA-PLS), for models calibration and
predictions of the target key PTEs.

2 Materials and methods

2.1 Study area

The study area is located along with both sides El-Moheet
drainage, Minya Governorate, Upper Egypt (Figure 1). This
drainage extends south to north of serving the Governorate, with
a length of about 100 km. However, it is considered the most
dangerous source of pollution to the environment in this area.
The study area occupied about 28,94 km2 (27° 56′30″to 28°

04′35″N, and 30° 43′09″to 30° 48′51″E). The area is almost flat,
with elevations between 38 and 41 m above sea level. Arid conditions
characterize the study area, including a hot summer, a warm winter,
high evaporation, and low rainfall intensity. The average annual
temperature during the winter months is about 29°C, while it reaches
41°C in the summer (Mayhoub and Azzam, 1997). The soil of the
study area is located among the alluvial floodplain deposits of the
Nile River, with dominant texture ranges between silt and clay.
Based on the soil taxonomy (Soil Survey Staff, 2022), the soils were
classified to the suborder level as Entic Calcitorrerts, Typic
Haplotorrerts, and Haplotorrrerts. The study area is mainly
cultivated with wheat, corn, soybeans, cotton, potatoes, and sugar
cane (Hammam et al., 2022).

2.2 Soil analyses and spectral measurement

Eighty soil samples were collected (60 at 0–20 cm and 20 at
20–40 cm) to create the soil spectral library. Sixty sampling locations
were selected randomly to cover the soil spatial variability regarding
land use, texture, and slope variation within the study area. For the
surface sampling (0–20 cm), around 1 kg of soil was taken at each
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location, and the sampling positions were recorded using GPS
(Hammam et al., 2022). To introduce the PTEs variability with
depth to the spectral library, additional twenty subsurface samples

(20–40 cm) were randomly selected at 20 locations out of the sixty
locations. The limited subsurface samples were due to budget
limitations. The samples were prepared by manually removing

FIGURE 1
Location map of the study area and the soil samples.
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the non-soil materials (e.g., grass, roots, stone/gravel). Each soil
sample was thoroughly mixed and quartered, bringing the total
weight down to about 300 g, and is air-derided before being ground
and sieved (2 mm) to obtain the fine earth (Liu et al., 2020;
Gholizadeh et al., 2021). Finally, each sample was divided into
two parts of about 150 g each for chemical and spectral analyses.

2.2.1 Soil chemical analyses
Each sample was first transferred to the National Authority for

Remote Sensing and Space Sciences (NARSS), where the chemical
analyses were performed. The soil organic carbon (SOC) content was
determined byWalkley and Black procedure (Walkley and Black, 1934).
For the extraction and quantification of total PTEs, the aqua regia
digestion method was used (Page et al., 1982). Briefly, 0.25 g of soil was
extracted with a mixture of concentrated nitric and hydrochloric acids
(7 mL and 2 mL, respectively) using themicrowave instrument at 200°C.
The extractionwas thenmade up to 50 mL volume by addingwater. The
PTEs analysis was performed by ICP-MS (Thermo, model iCAP-RQ).
Using 1:2.5 soil water suspension, the soil pH was measured by the pH-
meter Jenway (Hammam et al., 2022).

2.2.2 Spectra collection
The second part of each sample was thoroughly mixed and placed in

plastic cups with diameters of 4.9 and 2 cm in height. The sample surface
was leveled and smoothed with a spatula to achieve optimal diffuse
reflection. The soil spectra were measured in reflectance format using an
ASD FieldSpec 4 spectroradiometer (Malvern Panalytical Inc.,
Westborough, USA) with a full range (350–2,500 nm). The spectral
resolution varies from 3 nm in the 700 nm range to 6 nm in the
1,400–2,100 nm range. The samples were scanned by a high-intensity
probewith a light source (built-in) that was used in contact with complete
darkness conditions. Before sample scanning, the ASD instrument was
started and allowed to warm up for 30 min and then calibrated with a
white reference (99% reflection). Five successive spectra were taken and
averaged to produce one representative spectrum of each soil sample.

2.2.3 Spectral data preprocessing
The same spectral data preprocessing was performed for all

PTEs investigated using Python. First, the noise at both edges was
removed by cutting the range outside 450–2,450 nm. Then, spectra
were subjected to a second derivative with a Savitzky–Golay
smoothing (SDSG) technique (Savitzky and Golay, 1964). The
SDSG was calculated using a second-order polynomial, which fit
13-point-width spectral windows. The derivatives methods can
eliminate the spectra’s baseline drift, enhance absorption features,
and extract relevant information from the near-infrared range
(Ertlen et al., 2010). The derivatives of spectral data (first and
second) have been used to improve the prediction of PTEs, e.g.,
Cd, Cu, Pb, and Zn (Khosravi et al., 2018; Liu et al., 2018).

2.3 Statistical analysis

2.3.1 Model based on full spectral range and partial
least squares regression (FR-PLS)

PLSR is a multivariate analysis technique that projects the X
variables (predictors) and the Y variable (response), to a new space
to model the linear relationship (Wold et al., 2001). The algorithm

projects information in the original X data onto a small number of
essential orthogonal variables (components).

To develop the FR-PLS models, a two-dimensional data matrix
comprised of the Xi variables (full spectral data (450–2,450 nm))
and Yi variables (PTEs values) was created. Before running the
analysis, the entire dataset was divided into 75% for calibration and
25% for prediction using the Kennard-Stone (KS) algorithm
(Kennard and Stone, 1969). PLSR with k-fold cross-validation
(k = 5) correlated the variation in a target variable (e.g., PTEs) to
the variation in multi-component variables (wavelengths) by using
the sklearn. decomposition module available in Python. The optimal
number of components (NC) (latent variables) was determined
based on the NC with the smallest root mean squared error of
cross-validation (RMSEcv). The best performance calibration model
(lowest RMSEcv) was tested using the validation (prediction) set.

2.3.2 Models based on features selection
algorithms and PLSR

Removing unrelated variables, omitting redundancies, and selecting
the most relevant variables from spectral data are necessary to improve
model accuracy (Xu et al., 2019). The feature selection methods reduce
complexity while retaining the most valuable wavelengths highly
correlated with the predicted variables (Xiaobo et al., 2010). In the
current study, two algorithms, uninformative variable elimination
(UVE) (Centner et al., 1996) and simulated annealing (SA)
(Kirkpatrick et al., 1983), were used to choose the essential spectral
features for PTE assessment. These methods were used to develop
spectral models and compared with those based on full-range
spectral data (FR-PLS) developed in section 2.3.1.

2.3.2.1 Models based on simulated annealing (SA) and PLSR
(SA-PLS)

SA is a stochastic global search optimization algorithm. Variable
selection by SA improves the model’s transferability and predictive
accuracy (Swierenga et al., 1998). For wavelength selection, the SA
solution is denoted as a string of numbers containing k values
representing the variables to be selected from N variables from the
calibration set (X). The X variables combined with PTEs values (Y) were
used to develop a PLSRmodel with predetermined components (Xiaobo
et al., 2010). SA typically defines and attempts to reduce a cost function,
namely, the root mean square error in cross-validation (RMSECV). The
goal is to define a hyper-parameter—the number of bands that must be
retained (N)—that is less than the total number of bands during the
optimisation process. The procedure includes fitting a PLSR model with
the optimal number of latent variables and calculating the RMSECV (cost
function) iteratively. At each step, three bands were randomly swapped,
and the RMSECV of the optimised PLSR was calculated. The selected
bands are returned at the end of the procedure, along with the optimal
number of PLSR model components associated with such a band
selection and the value of the RMSECV at each iteration.

2.3.2.2 Models based on uninformative variable elimination
(UVE) and PLSR (UVE-PLS)

The UVE technique selects variables with the highest correlation
with the response, observing only the properties inherent in the spectral
data. The variable selection-based VE method uses the PLSR algorithm
output to identify only a subset of important variables for variable
identification. Variables are chosen in two stages when using a filter.
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First, the PLSRmodel is developed based on the given data, and then the
variables are selected by introducing a threshold based on the results of
the developed model. The feature’s relevance score is then calculated
individually, excluding feature interactions. The UVE-PLS method was
developed in the following steps: (1) optimise the PLSR using the entire
spectrum, (2) extract the regression coefficients that associate each
wavelength with the response, and (3) discard the lowest correlation
wavelengths one at a time, (4) rebuild the calibration model using the
lowest RMSE of cross-validation as the metric in iteration until the
RMSE decreases, and (5) remove a fixed number of wavelengths
iteratively until the RMSEcv decreases.

2.3.3 Models accuracy assessment
The performance of the spectral models in predicting the PTEs

was assessed based on the calculated values of the coefficient of
determination (R2), RMSE, and the ratio of performance to
deviation (RPD) described as follows:

R2 � 1 − ∑n
i xi − yi( )2∑n
i xi − �x( )2 (1)

RMSE �
������������
1
n
∑n

i
xi − yi( )2√

(2)

RPD � std

RMSE
(3)

Where the measured (xi) and predicted (yi) are the values for
sample i; �x and �y are the mean of the observed and predicted values,
respectively. The std is the standard deviation of the samples. Six
performance classes were adopted according to the suggested classes
by Viscarra Rossel et al. (2006): very poor model (RPD <1.0), poor
(RPD = 1.0–1.4), fair (RPD = 1.4–1.8), good (RPD = 1.8–2.0), very
good (RPD = 2.0–2.5), and excellent (RPD >2.5).

3 Results

3.1 Soil and spectral data

Table 1 presents the statistics of pH, SOC, and the tested elements. The
soil pH values ranged between 7.79 and 8.56 with a mean value of 8.15.
The SOC content ranged between 2,460mg kg-1 and 25710mg kg-1 with a
mean value of 10948mg kg-1. The contents of Cd have the lowest content,

ranging between 0.05 and 2.07mg kg-1, with mean and SD of 0.79 and
0.46mgkg-1, respectively. The values of Fe, Zn, andCr followed the highest
contents with mean values of 137.55, 83.11, and 79.52mg kg-1, maximum
values of 210.43, 131.13, and 127.16mg kg-1, and SD of 21.43, 12.67, and
18.57mg kg-1, respectively. The contents of Pb and Co are comparable
with mean values of 30.04 and 28.54mg kg-1 and maximum values of
106.54 and 43.52mg kg-1, respectively. The contents of Cu ranged between
34.25 and 91.40mg kg-1, with a mean value of 50.22mg kg-1.

Figure 2 presents the calculated Pearson correlation coefficients (r)
between pH, SOC content, and PTEs concentrations. A positive
correlation was observed between the tested PTEs, except a negative
correlation between Co and Fe. The highest coefficient value was
observed between Cr and Cd (r = 0.82). The high correlations were
observed between Cr and the other PTEs with r values of 0.60 with Cu,
0.53 with Pb, and 0.43 with Zn, but a very low correlation with Co (r =
0.23). The correlation between Cr and Fe was high (r = 0.63). SOC
demonstrated a low correlation with Cu, Co, and Zn, very low with Cd,
Cr, and Pb, and negative with Fe (r = - 0.11). The pH showed moderate
negative correlations with Cd, Cr, Zn, Pb, andCu (−0.33≤ r≤−0.49), but

TABLE 1 Descriptive statistics of the soil samples (80) analysed for pH, soil organic carbon (SOC), iron (Fe), cadmium (Cd), copper (Cu), cobalt (Co), chromium (Cr),
lead (Pb), and zinc (Zn) analysed with inductively coupled plasma mass spectrometry (ICP-MS) for the total contents (mg kg-1).

pH SOC Fe Cd Cu Co Cr Pb Zn

mg kg-1

No. 80 80 80 80 80 76 76 78 76

min 7.79 2,460 85.82 0.05 34.25 20.61 53.09 13.52 61.71

Q1 8.07 7,565 121.78 0.52 44.64 24.17 66.97 20.75 74.12

Med 8.16 11080 137.23 0.64 48.43 27.27 74.14 24.67 81.36

Q3 8.26 14005 150.41 1.07 52.53 32.78 90.09 32.26 88.98

max 8.56 25710 210.43 2.07 91.40 43.52 127.16 106.54 131.13

mean 8.15 10984 137.55 0.79 50.22 28.54 79.52 30.04 83.11

SD 0.15 4,753 21.43 0.46 10.53 5.54 18.57 16.50 12.67

Note: SD, standard deviation, Q1 = first quartile, Q3 = third quartile.

FIGURE 2
The correlation coefficients (Pearson) between the measured
PTEs, e.g., chromium (Cr), cobalt (Co), cadmium (Cd), zinc (Zn), copper
(Cu), iron (Fe), and lead (Pb), soil organic carbon (SOC), and pH.
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showed the negative weak correlations with Co and Fe
(r = −0.21 and −0.18). Also, a medium negative correlation was
found between pH and SOC (r = −0.36).

3.2 Soil spectra

The raw and processed spectral data of the soil samples are
presented in Figure 3. The main features at 450–550 nm, 900 nm,
1,400 nm, 1900 nm, and 2,200 nm are observed (Figure 3A), but the
absorption characteristics were not significant enough. The second
derivative spectra indicated that the baseline drift and mixed
overlapping peaks were gradually eliminated, thereby more
detailed information and characteristic peaks appeared
(Figure 3B). The second derivative spectra showed six regions of
the spectrum that exhibit distinct absorption features around
480–550 nm, 1,400 nm, 1900 nm, 2,200 nm, 2,300, and 2,400 nm.
The absorption features in the visible region are typically broad,
while the features in the infrared region (e.g., 2,200 or 2,300 nm) are
usually narrower and sharper. The absorption features around
1,400 and 1900 nm are associated with hydroxyl (OH) and water.
The region between 2000 and 2,400 nm is associated with the
components of organic matter.

3.3 Performance of PLSR-based full spectral
range (FR-PLS) models

The results of estimating PTEs based on the FR-PLS models in
cross-validation and prediction are presented in Table 2. The
performance of the models in cross-validation was poor to fair
(1.07 ≤ RPD ≤1.47). Table 2 shows that the best results were

obtained for the Cr (R2 = 0.54, RMSEcv = 13.40 mg kg-1, and
RPD = 1.47), followed by Zn, Pb, Co, and Cu, respectively. The
worst results were obtained for Cd (R2 = 0.13, RMSEcv = 0.40 mg kg-1,
and RPD = 1.07).

The prediction results were less than the cross-validation with very
poor performance (1.00≤RPD≤1.10). The best results were obtained for
Cr (R2 = 0.39, RMSEP= 28.97 mg kg-1, andRPD=1.10), followed byCu,
Co, Pb, and Zn, respectively (Table 2). The worst results were obtained
for Cd (R2 = 0.12, RMSEP = 0.45 mg kg-1, and RPD = 1.00).

3.4 Performance of PLSR-based simulated
annealing (SA-PLS) models

The results of SA-PLS models in cross-validation and prediction
are presented in Table 2. The performance of SA-PLS models in
cross-validation and prediction was better than those of FR-PLS
models. The SA-PLS models’ performance in cross-validation was
fair (1.41 ≤ RPD ≤1.65). The best results were obtained for the Cr
(R2 = 0.62, RMSEcv = 13.13 mg kg-1, and RPD = 1.65) followed by
Zn, Cu, Cd, and Co, respectively (Table 2). The worst results were
obtained for Pb (R2 = 0.42, RMSEcv = 13.21 mg kg-1, and RPD =
1.41) (Table 2). The prediction results followed the trend of cross-
validation with fair to poor performance (1.30 ≤ RPD ≤1.62). The
best results were obtained for Cr (R2 = 0.56, RMSEP = 18.79 mg kg-1,
and RPD = 1.62), followed by Cu, Cd, Co, and Zn, respectively
(Table 2). The worst prediction results were obtained for Pb (R2 =
0.31, RMSEP = 9.57 mg kg-1, and RPD = 1.30).

3.5 Performance of PLSR-based
uninformative variable elimination (UVE-
PLS) models

In all cases, the UVE-PLS outperformed the SA-PLS and FR-PLS
models, resulting in a good cross-validation performance and
predictions (Table 2; Figure 4 &5). The performance of UVE-PLS in
cross-validation was fair to very good (1.75 ≤ RPD ≤2.03). The highest
cross-validation performance was for Cr (R2 = 0.76, RMSEcv = 8.71 mg
kg-1, and RPD = 2.03), followed by Pb, Cd, Cu, and Co, respectively. The
worst performance was obtained for Zn with R2 = 0.67, RMSEcv =
7.54 mg kg-1, and RPD = 1.75 (Table 2; Figure 4). The prediction results
showed the same trend of the cross-validation, with fair to very good
performance (1.41 ≤ RPD ≤2.48). The best performance was obtained
for Cr (R2 = 0.74, RMSEP = 8.29 mg kg-1, and RPD = 2.48), followed by
Pb, Cd, Cu, and Co. The worst performance was obtained for Zn with
R2 = 0.46, RMSEP = 5.85 mg kg-1, and RPD = 1.41 (Table 2; Figure 5).

3.6 Comparison of the models (FR-PLS, SA-
PLS, and UVE-PLS) performance

The spectral models based on PLSR and different spectral datasets
provided diverse performances. The UVE-PLS method outperformed
the SA-PLS in reducing variables and improving the prediction results.
The best prediction results were achieved with UVE-PLS with very good
performance for Cr with R2 = 0.74, RMSEP = 8.29 mg kg-1, and RPD =
2.48 (Figures 6A–C, respectively). The SA-PLS provided a fair prediction

FIGURE 3
The raw spectra (A) and the processed spectra using the second
derivative (B).
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for Cr with R2 = 0.56, RMSE of 18.79 mg kg-1, and RPD of 1.62. Where
the performance of Cr prediction based on FR-PLS was very poor R2 =
0.39, RMSE = 28.97 mg kg-1, and RPD = 1.10. These results indicated a
substantial accuracy improvement in the Cr UVE-PLS model. The
improvement in R2 (increasing by 89.7%), a reduction in RMSE by
71.4%, and an increase in RPD by 125.4%, compared with Cr FR-PLS
models. Compared the results of Cr UVE-PLS with the results of Cr SA-
PLS, R2 increased by 32.1%, RMSE reduced by 55.9%, and RPD
increased by 53.1%. Similarly, the predictions of the other PTEs (Cd,
Co, Cu, Pb, and Zn) based UVE-PLS models were improved as R2

increased by 67%–440% and 11.3%–132.2%, RMSE reduced by 32.4%–
81.3% and 11.1%–55.9%, and RPD increased by 56.4%–83.0% and
4.4%–53.0% compared with the results of Cd, Co, Cu, Pb, and Zn based
on FR-PLS and SA-PLS models, respectively.

4 Discussion

The PTEs concentrations are characterised by considerable
variability as a result of the soil composition, the land use, and
the arid nature of the study area. The soils of the study area were
classified into three levels: moderate, considerable, and very high
levels of contamination. The majority (70.7%) of the study area

had high PTEs concentrations, with average concentrations (mg
kg-1) of Cr, Co, Cu, Cd, Pb, and Zn being 91.23, 29.44, 53.83,
1.12, 36.04, and 101.29, respectively (Hammam et al., 2022). The
positive relationship between PTEs each other and with Fe
content (except Co) signifies that PTEs have the same source
in the study area. The location of the study area–around the El-
Moheet drainage—on the west side of the Nile River (Egypt),
strongly contributed to the soil characteristics and the
contamination in the study area. The mineralogical
composition of the study area is composed of Holocene silts
and clays, due to Nile flooding deposition, which covers the
whole area (Abou Heleika et al., 2018). The low SOC content
(1.1%) and pH values that ranged from slightly alkaline (7.79) to
moderately alkaline (8.56), can be attributed to the arid nature of
the study area (low precipitation) accompanied by the
domination of basic cations such as magnesium (Mg2+) and
calcium (Ca2+) (Al-Soghir et al., 2022). These findings are in line
with those reported that soils in this area of Egypt have low SOC
content and high pH (7.73–9.45) (e.g., Al-Soghir et al., 2022;
Hammam et al., 2022). More importantly, the significant impact
of the intensive agricultural practices of using mineral fertilizers,
pesticides, and polluted irrigation water (Hammam et al., 2022).
The El-Moheet drainage is considered a pollution source as some

TABLE 2 The cross-validation and prediction (validation) results of PLSR models based on: a full range (FR-PLS), simulated annealing (SA-PLS), and uninformative
variable elimination (UVE-PLS) of Vis-NIR spectral data for estimating cadmium (Cd), copper (Cu), cobalt (Co), chromium (Cr), lead (Pb), and zinc (Zn).

Cross-validation Validation

Data set R2 RMSEcv RPD R2 RMSEP RPD

NC NV (mg kg-1) (mg kg-1)

Cd FR-PLS 2 2,150 0.13 0.40 1.07 0.12 0.45 1.00

SA-PLS 8 200 0.58 0.31 1.55 0.47 0.27 1.52

UVE-PLS 6 252 0.73 0.23 1.92 0.62 0.24 1.86

Cu FR-PLS 4 2,150 0.20 9.40 1.11 0.19 9.29 1.05

SA-PLS 9 200 0.59 6.77 1.60 0.53 5.75 1.61

UVE-PLS 5 239 0.72 6.08 1.88 0.59 3.83 1.78

Co FR-PLS 3 2,150 0.30 5.57 1.08 0.15 4.28 1.02

SA-PLS 9 200 0.57 3.63 1.53 0.46 3.26 1.47

UVE-PLS 9 370 0.69 3.13 1.80 0.52 2.49 1.68

Cr FR-PLS 3 2,150 0.54 13.40 1.47 0.39 28.97 1.10

SA-PLS 10 200 0.62 13.13 1.65 0.56 18.79 1.62

UVE-PLS 17 118 0.76 8.71 2.03 0.74 8.29 2.48

Pb FR-PLS 10 2,150 0.40 18.83 1.39 0.14 25.87 1.02

SA-PLS 9 200 0.42 13.21 1.41 0.31 9.57 1.30

UVE-PLS 10 120 0.75 8.28 2.00 0.72 7.79 2.03

Zn FR-PLS 4 2,150 0.48 21.736 1.39 0.14 27.86 1.01

SA-PLS 10 200 0.60 21.33 1.57 0.40 7.89 1.35

UVE-PLS 6 219 0.67 7.54 1.75 0.46 5.85 1.41

Note: RPD, ratio of performance to deviation; NC, the number of components; NV, number of variables.
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farmers use such water for irrigating their crops due to the
deficiency of clean irrigation water (Abou Heleika et al., 2018;
Hammam et al., 2022).

The estimation of PTEs using Vis-NIRS mainly relies on the
indirect relationship with active soil components (e.g., clay, OC, and
Fe). PTEs have no direct spectral features in the Vis-NIR region. Still,
they can be detected indirectly through correlation with spectrally active
soil attributes such as clay, OC, and Fe in the Vis-NIR region (Cipullo
et al., 2019; Nawar et al., 2020). The correlation with total Fe can be the
major predictive mechanism (Wu et al., 2005). Thus, the reflectance
spectra can indirectly assess the PTEs concentrations in soil samples
based on the correlation between contaminant concentrations and

spectrally active soil attributes. For example, a considerable positive
correlation of Fe with the tested PTEs concentrations (e.g., Cd, Cu, Zn,
As, Pb, andMn) has been reported (Gholizadeh et al., 2021), suggesting
that PTEs were closely bonded to Fe (Wu et al., 2005). In the current
study, the spectrally active soil component (Fe) strongly correlated with
the PTEs (Cd, Cu, Pb, Zn, and Cr) with a medium to strong correlation
(r= 0.24–0.63). The correlation between the SOC andPTEswas weak to
medium positive (r = 0.09–0.42). These results indicate that Fe more
significantly influenced the prediction of PTEs contents from spectra
than other soil components such as SOC (Khosravi et al., 2018;
Gholizadeh et al., 2021). Therefore, in arid conditions (low SOC) as
the case of current research, the role of Fe in estimating PTEs can be

FIGURE 4
The cross-validation results of the UVE-PLS models for the tested PTEs Cd (A), Cu (B), Co (C), Cr (D), Pb (E), and Zn (F).
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larger than the SOC and can significantly influence soil spectra (Wu
et al., 2007).

Estimating soil PTEs using Vis–NIRS was reported with
different modelling accuracy (Wu et al., 2005, 2007; Cipullo
et al., 2019; Hong et al., 2019; Gholizadeh et al., 2020). The
strong correlations between PTEs and Fe–have a spectral
response, and are responsible for the viability of the Vis–NIRS
estimation of PTEs in soils (Kemper and Sommer, 2002; Araújo
et al., 2014; Gholizadeh et al., 2021). Wu et al. (2007) successfully
predicted low levels of PTEs in agricultural soils with descending
order of prediction accuracy Ni > Cr > Co > Cd. They attributed
such order of accuracy to the order of their correlation coefficients

with Fe. The high performance of Cr and Pb predictions has been
confirmed based on 2,160 samples used to assess selected PTEs (Cr,
Cu, Pb, Zn, and Al) in forest soils in the Czech Republic (Gholizadeh
et al., 2021). The current study found different modeling
performances for the PTEs models (Table 2), with the order
Cr > Pb > Cd > Cu > Co > Zn. The fair prediction of Co, Cu,
and Zn can be explained by the fact that a greater proportion of those
elements penetrate and precipitate from the solution phase in the
soil. As a result, a large amount of these PTEs are allocated naturally
in the soil profile by an independent process, making them
undetectable when scanning surface soil samples by Vis-NIRS
(Simón et al., 2001; Gholizadeh et al., 2021).

FIGURE 5
The prediction results of the UVE-PLS models for the tested PTEs Cd (A), Cu (B), Co (C), Cr (D), Pb (E), and Zn (F).
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Based on the RPD classes of model performance (Viscarra Rossel
et al., 2006), the prediction performance for Cr, Pb, and Cd, based on
UVE-PLS, belonged to good to very good classes (RPD = 1.86–2.48).
Cu, Co, and Zn models’ performance is considered fair (RPD =
1.41–1.78). Our results are in agreement with those reported by Xu
et al. (2019), who have reported the highest accuracy for Cr with a
correlation coefficient (ρc) of 0.80, RPD of 1.63, and RMSEP of 9.47,
which is higher than those obtained in the current study
(8.29 mg kg−1). Our results are better than those reported by
O’Rourke et al. (2016), using a prediction set of 80 soil samples
analysed with a full range Vis-NIRS coupled with a cubist modelling
method for the prediction of the total concentration of 40 soil
elements. The authors reported poor results for Cr with R2 = 0.26,
RMSEP = 24.93 mg kg−1, and RPIQ = 0.44), with a concentration

range from 5.56 to 221.7 mg kg−1. In this context, Todorova et al.
(2014), who used 124 soil samples and full-range Vis-NIRS coupled
with PLSR, reported excellent to poor prediction for Cu, Zn, Pb, Ni,
and Cr with R2, RPD, and RMSEP of 0.89–0.38, 3.16–1.3, and
4.75–21.35 mg kg−1, respectively. They found the highest accuracy
for Cu and the worst for Cr. Also, poor results have been reported for
estimating Cr based on PLSR and full spectral range (Xu et al., 2021).
The authors reported R2 = 0.45, RPD = 1.38, and RMSEP of 20.33 mg
kg−1, and they suggested using appropriate dimensionality reduction
methods for optimal results.

The first derivative provided higher-performance PTEs models
than the second derivative when estimating PTEs in soils using
spectral derivatives (Nawar et al., 2016; Chakraborty et al., 2017).
The first derivative improves the spectral data while keeping the
information’s continuity and integrity, while the second derivative
adds more noise to the spectral information (Nawar et al., 2016;
Khosravi et al., 2018). In this study, however, the performance of the
models-based derivative spectra was higher than those of the
models-based first derivative when estimating the target key
PTEs using the selected wavelengths. The advantage of using the
second derivative can be attributed to the capabilities of the second
derivative to improve the spectral resolution, reduce the background
noise, and pick out spectral peaks (Kong et al., 2018). Finding the
spectral peaks that overlap is the critical part of the second derivative
ability to improve the resolution of second derivative spectra, which
helps to find out where the samples are different and locate the best
wavelengths close to the spectral peaks (Saranwong et al., 2004). In
this context, high-order derivatives showed better capabilities than
low-order derivatives in assessing PTEs (Cr, Cu, and Ag) (Xu et al.,
2021). Therefore, the above reasons may explain why models based
second derivative outperformed the models based on the first
derivative spectra when using variable selection techniques.

In the current study, the usefulness and benefit of feature selection
algorithms, UVE and SA, were tested for selecting optimal variables for
PTEs prediction. Using the feature selection algorithms resulted in
removing the redundant and unuseful variables, reducing the spectral
data dimension, selecting fewer variables of the spectral data, and avoiding
potential over-fitting (Vohland et al., 2011; Gholizadeh et al., 2021). The
UVE set fewer spectral variables in this research and provided better
results than full-range spectra and SA (Table 2). The superiority of UVE
over SA has been reported (Balabin and Smirnov, 2011; Ong et al., 2022)
and explained that UVE subjectively removes variables based on either
high noise or low detector response in an automated way for the
calibration of Vis-NIR data (Centner et al., 1996). Besides, the
strength of UVE is due to the selection of the valuable wavelengths
based on the stability of each wavelength evaluated by the calculated
regression coefficients within the PLSR calibration (Ong et al., 2022).
Therefore, the variables selection-based UVE method helps to develop
robust and stable spectral predictivemodels (Balabin and Smirnov, 2011).

However, compared to most of the mentioned studies, the
prediction samples used in this study were relatively small (n =
20). The dataset significantly impacted the accuracy of
calibration and prediction of soil properties, e.g., OC and
PTEs (Nawar and Mouazen, 2017; Gholizadeh et al., 2021).
The number of samples influences the model accuracy
(Douglas et al., 2018; Cipullo et al., 2019), leading to various
counterintuitive and unfamiliar side effects, leading to non-
reasonable performance (Douglas et al., 2018; Nawar et al.,

FIGURE 6
The histogram plots of R2 (A), RMSEP (B), and RPD (C) based on
values resulted from the spectral models FR-PLS, SA-PLS, and UVE-
PLS for the tested PTEs (Cd, Co, Cu, Cr, Pb, and Zn).
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2019), with a general trend that the prediction capability
increases with the sample’s number. However the limitation
of the prediction set in the current study, the results obtained
here are better for some elements, e.g., Cr, Pb, and Cd, and
comparable to others, e.g., Cu, Co, and Zn. One of the reasons for
the better prediction results of PTEs could be a good distribution
of samples with minimum and maximum values (Table 2).
Therefore, a good pre-selection of the calibration and the
prediction sets with the wide range of concentration will
improve prediction performance. Consequently, further
investigation of the impact of a different dataset is needed to
determine the optimal sample size and concentration range for
enhancing the prediction accuracy obtained in this work,
particularly for Cu, Co, and Zn.

5 Conclusion

The current research investigates the potential of visible and
near-infrared spectroscopy (Vis-NIRS) combined with PLSR and
feature selection algorithms (uninformative variable elimination
(UVE) and simulated annealing (SA)) to predict the PTEs (Cd,
Cu, Co, Cu, Pb, and Zn) contents in agriculture soils under the arid
conditions in a polluted area in Egypt. The results showed that (i) the
Vis-NIRS has the potential for predicting the tested PTEs, (ii) the
full-range spectral dataset (FR) resulted in very poor models
performance for all the PTEs (R2 < 0.40), (iii) the predictions
obtained from the selected variables of the spectra based on UVE
algorithm combined with PLSR (UVE-PLS) improved all the PTEs
models’ accuracies (0.46 ≤ R2 ≤ 0.74) comparing with the models
based the full spectral range, (iv) Cr models resulted in the highest
performance for all methods (FR-PLS, SA-PLS, and UVE-PLS), and
(v) the prediction results based on UVE-PLS for Cr, Pb, and Cd can
be classified as very good (RPD values of 2.48, 2.03, and 1.86,
respectively), and less accurate predictions (good to fair) obtained
for Cu, Co, and Zn (RPD values of 1.78, 1.68, and 1.41, respectively).
The results suggested that Vis-NIRS combined with the PLSR and
feature selection algorithm (UVE) is promising for screening PTEs
in agricultural soils. Future research should focus on testing these
findings on larger datasets with a wider range of contents from
different sites to be combined with other powerful machine learning
methods such as cubist and random forest.
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