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Introduction: Brain Network Models (BNMs) are mathematical models that 
simulate the activity of the entire brain. These models use neural mass models to 
represent local activity in different brain regions that interact with each other via a 
global structural network. Researchers have been interested in using these models 
to explain measured brain activity, particularly resting state functional magnetic 
resonance imaging (rs-fMRI). BNMs have shown to produce similar properties 
as measured data computed over longer periods of time such as average 
functional connectivity (FC), but it is unclear how well simulated trajectories 
compare to empirical trajectories on a timepoint-by-timepoint basis. During task 
fMRI, the relevant processes pertaining to task occur over the time frame of the 
hemodynamic response function, and thus it is important to understand how 
BNMs capture these dynamics over these short periods.

Methods: To test the nature of BNMs’ short-term trajectories, we used a deep 
learning technique called Neural ODE to simulate short trajectories from 
estimated initial conditions based on observed fMRI measurements. To compare 
to previous methods, we solved for the parameterization of a specific BNM, the 
Firing Rate Model, using these short-term trajectories as a metric.

Results: Our results show an agreement between parameterization of using 
previous long-term metrics with the novel short term metrics exists if also 
considering other factors such as the sensitivity in accuracy with relative to 
changes in structural connectivity, and the presence of noise.

Discussion: Therefore, we conclude that there is evidence that by using Neural 
ODE, BNMs can be  simulated in a meaningful way when comparing against 
measured data trajectories, although future studies are necessary to establish 
how BNM activity relate to behavioral variables or to faster neural processes 
during this time period.

KEYWORDS

Brain Network Model, fMRI, deep learning, Neural ODEs, initial condition

1. Introduction

Brain Network Models (BNMs) represent whole brain activity as the coordination of many 
distinct neural populations that are connected via a structural network consisting of long-
distance white matter tracts (Sanz-Leon et al., 2015; Breakspear, 2017). Simulations of these 
network models are being compared to experimental measurements such as functional magnetic 
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resonance imaging (fMRI). At this spatiotemporal scale in fMRI, the 
measured activity is thought to be an averaged property of the neural 
populations and occurs relatively slowly (<1 Hz) compared to the 
faster neural information processes and the measured fMRI signal is 
thought to represent the coordination between brain regions over the 
structural network (Deco et  al., 2009). BNMs have been able to 
reproduce properties observed in fMRI, especially during rest where 
the brain is not exposed to a structured experimental task or stimulus 
and the whole brain activity is thought to mostly arise from intrinsic 
network loops between cortical regions (Honey et al., 2007; Cabral 
et al., 2011; Sanz-Leon et al., 2015). Thus, BNMs have been used as a 
generative framework in order to analyze how local neural activity 
could translate to global coordination and how changes due to neural 
pathologies translate to observed aberrant dynamics (Ritter et al., 
2013; Sanz-Leon et al., 2015; Saenger et al., 2017; Schirner et al., 2018).

Current research does not utilize a single type of population 
model to construct BNMs. Instead, depending on the application and 
the underlying assumptions, different neural mass models are selected 
to represent whole brain activity (Sanz-Leon et  al., 2015). For 
replicating rs-fMRI, several models have been shown to reproduce 
time-averaged properties such as functional connectivity (FC), 
computed via cross correlation of long time-courses of pairs of brain 
regions (Cabral et al., 2017). Due to the lack of a stimulus onset used 
as a reference in rs-fMRI, comparisons between simulations and 
measured data are made over a long time window and use time 
averaged metrics rather than direct comparisons of the predicted 
trajectories with the measured timeseires (Cabral et al., 2011, 2017; 
Kashyap and Keilholz, 2019). Researchers are interested in BNM 
predictions on a time-point basis because many neural processes 
observed in fMRI occur over these timescales, such as responses to 
task stimuli or aberrant responses due to neural pathologies. While 
previous studies have examined faster processes in BNM’s, such as 
comparing them with multimodal recordings such as EEG data 
(Schirner et al., 2018), no prior investigations have examined how well 
short-term trajectories, defined by a series of consecutive fMRI 
measurements, are being reproduced by current BNMs. To address 
this gap, we  solve for initial conditions relative to an observed 
trajectory for a given BNM and then compare the synchronized 
predictions of the simulation with the observed timeseries.

We hypothesize that the BNMs that are better approximation of 
the underlying dynamical system in whole brain dynamics determined 
using traditional long-term measures, will evolve more closely to the 
measured rs-fMRI trajectories. An agreement of parameterization 
between the long-term metric and the investigated short term metrics 
would support the evidence that BNM’s are simulating meaningful 
trajectories. Moreover with these initial conditions, BNMs can be later 
used to simulate and investigate neural processes during these short 
timeframes such as relation to task fMRI behavioral variables.

The initial conditions are estimated, by utilizing a novel method 
developed in the Machine Learning community that utilizes a 
sequence of observations and a given dynamical system to output the 
initial conditions of the dynamical system that would be the closest fit 
to the current observed data trajectory. The technique, known as 
Neural Ordinary Differential Equations (ODE), uses a recurrent 
neural network (RNN) that keeps track of information from previous 
timepoints, in order to predict the initial conditions of a given 
dynamical system based on previous observations (Chen et al., 2019). 
The neural network model is trained via one step prediction, namely 

from the estimated initial conditions we  integrate the known 
dynamical system to predict the next timestep and compare it with the 
true next step. The algorithm, therefore, regardless of the dynamical 
system, gives similar predictions over the first-time interval but the 
trajectories diverge over longer periods of integration due to 
differences in the dynamical system and become less dependent on 
initial RNN predictions.

A potential issue to this approach is that both the signal simulated 
as well as the measured rs-fMRI signal are thought to be produced by 
stochastic processes. For simulations this is achieved by adding noise 
to the models differential equations. This noise might affect the 
approaches’ ability to discriminate correctly between different BNMs 
on their ability to simulate rs-fMRI, as it adds variance to the data. 
However, previous studies have shown that despite their variability 
dynamic metrics are better than metrics computed over a long period 
of time to parameterize BNM, thus suggesting that even in shorter 
windows allows for discrimination between models (Kashyap and 
Keilholz, 2019).

To test whether this approach can correctly identify components 
of a known BNM, we used the Firing Rate Model (FRM) from Cabral 
et al. (2012), as a candidate dynamical system to fit to the rs-fMRI 
data. The FRM is a linear model that defines the change in dynamics 
in a single neural population as a weighted sum of its network 
neighbors and applies an exponential decay term to prevent runaway 
excitation (Cabral et al., 2012). The model contains three components 
(global coupling, noise amplitude, structural matrix), which are varied 
independently, and a specific Neural ODE is trained for each variation 
to solve for the initial conditions. The results show that without noise, 
maximizing accuracy over the short time window yields trivial BNMs 
that do not depend on the structural connectivity. However, in the 
presence of noise the trend reverses and models with strong structural 
connectivity perform better than the models with weak or no network 
influence. Since the value of noise is unknown, an additional 
parameter, namely the structural connectivity was varied by slowly 
adding noise to the original connectivity, and the sensitivity due to this 
change in network was measured. The FRM that exhibited the greatest 
changes in accuracy due to perturbations of the structural connectivity 
had a parameterization that was in agreement to the one established 
using long term metrics.

In short, the manuscript demonstrates that Neural ODE approach 
can simulate FRM trajectories that can be meaningfully compared 
with measured rs-fMRI data. The differences in parameterizations of 
the model with respect to rs-fMRI data observed during this 
timeframe are similar to those observed over longer simulations. 
Therefore, this tool can be used in the future to analyze BNM on 
shorter timescales with respect to measured data such as for task 
fMRI. Furthermore, it can serve as an unbiased metric to directly 
compare the signal with the models and aid in the development of 
discovering more powerful models that recapitulate whole 
brain activity.

2. Methods

2.1. Overview

This section is organized by first describing functions that are used 
to fit to the rs-fMRI data, mainly BNMs but also certain null models 
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that are used for comparison. The subsequent sections then describe 
how the Neural ODE algorithm is used to infer the initial conditions 
of a given dynamical system based on previous measurements. 
We describe our own implementation of the Neural ODE algorithm 
that was specifically designed to train on large amounts of imaging 
data (Chen et al., 2019). The algorithm was validated using synthetic 
data from a simple spiral dynamical system described in detail in the 
Supplementary sections. The subsequent sections after describing the 
algorithm, deal with the processing of experimental fMRI and DTI 
data used to construct the models. The final section outlines how the 
simulated trajectories are compared with empirical trajectories.

2.2. Brain Network Models

Brain Network Models are used as models for whole brain 
network activity. BNMs combine a mathematical description of the 
intrinsic activity of a neural population with the global brain structure 
that coordinates the activity between populations. To construct a 
BNM, researchers first define a structural network, based on a 
parcellation scheme that outlines which cortical areas work cohesively 
as a neural population. In this manuscript, the Desikan Killiany atlas 
is used as a parcellation scheme as it has been used successfully before 
for whole brain simulations (Cabral et  al., 2011, 2012). Only the 
cortical areas without the insula are represented in the model 
constituting a total of 33 regions for each hemisphere for a total of 66 
brain regions. These regions serve as the nodes in the network model, 
while network neighbors are defined using tractography to map out 
fibers that connect two regions of interest. The change of the activity 
in the ith brain region is defined as follows:
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The first term represents the network component which is 
described by a function F that depends on its own activity xi, activity 
in its neighbor xj, and the physical properties of the fiber represented 
by the vector ρ (i.e., the number of fibers between regions, the delay 
in propagation). The second term consists of a function G that 
represents external input, whose activity is represented by a 
k-dimensional vector u representing all sub-cortical and sensory 
inputs, and the vector π representing again the physical properties that 
project these inputs into the cortical model (i.e., thalamic tracts into 
cortex). The last term represents a zero-mean Gaussian noise from the 
neuronal populations or from omitted higher order terms from the 
network equations. For resting state activity, the assumption is that uk 
(t) = 0 ∀ t and the first term dominates the change in activity. This still 
leaves a large family of functions that are used to approximate F, with 
many parameters that can widely change the dynamics of the system. 
In theory, all of these functions can be used to fit the fMRI data with 
the Neural ODE algorithm, and for each of them initial conditions can 
be estimated from empirical data. In this manuscript, we focus on the 
Firing Rate Model, the simplest model that can recapitulate whole 
brain activity, and use it to solve for initial conditions in the 
Neural ODE.

2.2.1. Firing Rate Model
The FRM represents the activity of a brain region as the mean 

firing rate. The change in firing rate of a region depends on a weighted 
sum of all its neighbors’ activity (Eq. 1). The FRM has two parameters: 
the global coupling parameter k, which controls the strength of 
network input, and the level of noise amplitude σ, which simulates 
random activations of brain regions due to unknown neuronal activity 
(Cabral et al., 2012). At values of k < 1/(max eigenvalue of W), the 
system is stable and the system decays to the origin without extraneous 
noise input. Typical values are k = 0.9/(max eigenvalue of W) and 
σ = 0.3 (based on the Desikan Killiany atlas) where there is a trade-off 
injecting noise in order to perturb the dynamics and the relative 
strength of the network to keep the neural areas functionally linked 
over time (Cabral et al., 2012).
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2.2.2. Parameter and structural perturbations
Each of the components of the FRM are varied. These components 

include the global coupling parameter k, the amplitude of the noise 
level σ, and the structural weight matrix W. The global coupling 
parameters and the structural matrix are fixed before using the Neural 
ODE algorithm, such that for each specific set of values for k and W a 
separate LSTM network is trained to generate initial conditions. To 
vary the global coupling parameter, the parameter k in Eq.  1, is 
adjusted from 0.9 to 0  in 0.15 intervals. To generate structural 
perturbations, a random percentage of the original edges are swapped 
to connect two different nodes while keeping the graph symmetric. 
This creates random perturbations from the original structural matrix 
while maintaining the number of edges. Each of these graphs would 
result in different dynamics, but the trajectories from the model 
containing the original structural connectivity should be the closest 
to the measured rs-fMRI data. The noise parameter is not used in 
training the LSTM Neural ODE model. However, during testing after 
the initial conditions are estimated the noise is introduced by testing 
σ using values [0.0001, 0.15, 0.3, 0.45].

2.2.3. Null models
To compare the effects of fitting to the Neural ODE with other 

functions, the rs-fMRI data is fitted with null models that do not 
simulating network activity. The simplest of these models sets the 
Neural ODE equations to 0, such that the prediction of the LSTM is 
the output of the model. This quantifies how well the LSTM network’s 
initial condition prediction matches the next predicted output without 
any of the BNM functions. For future timesteps, it acts as a simplified 
autoregressive model by holding the current input as the output, i.e., 
x(n + 1) = x(n). This is implemented by setting the connectivity matrix 
in Eq. 2 to an identity matrix which cancels out with the first term and 
sets the equation to 0, and is referend to as the Autoregressive (AR) 
model. The second null model is obtained by setting the global 
coupling parameter to zero in the FRM and the differential equations 
reduce to an exponential decay. This model should perform worse 
than the BNM equations but test the limits of the global coupling 
values. Finally, we compare it to a pure Machine Learning Inference 
model as published in Kashyap and Keilholz (2020), where at each 
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timestep, the output of the LSTM is fed in as the next input. This 
model is non-deterministic as the output of the LSTM is sampled from 
a distribution. The function implemented by the LSTM in this case is 
completely unknown, as even the noise level changes as a function of 
the input. This model, however, gives a good estimate of an upper-
bound on predictability on a short time window and does better than 
using traditional BNMs and can replicate complex resting state 
processes as Quasi Periodic Patterns and dynamic functional 
connectivity analysis performed using K-means (Kashyap and 
Keilholz, 2020).

2.3. Neural ordinary differential equations

The Neural ODE algorithm is designed to estimate the initial 
conditions of a given dynamical system based on past observations. 
Figure 1 provides an overview of the algorithm, which involves fitting 
to a spiral dynamical system based on noisy observations using Neural 
ODE. The task of the recurrent neural network is to predict the true 
initial conditions of the spiral dataset (shown as blue underlying 
trajectory in Figure  1) based on the sequence of observed 

measurements shown in green. A RNN implementation known as 
Long Short Term Memory (LSTM) was used to perform this task, as it 
keeps the information of past data observations [x0 to xt-1] in its hidden 
state pt-1 (Graves and Schmidhuber, 2008). Thus, when the timeseries 
is fed into the RNN one timepoint at a time, the current information is 
incorporated into the hidden state and is passed forward as shown in 
the LSTM unrolled version, in order to aid in the prediction of future 
observations. The LSTM’s predictions become more accurate as it 
observes more data, up to a certain limit beyond which newer data 
does not add any new information to the hidden state (Graves and 
Schmidhuber, 2008). For this particular task, the LSTM’s output is 
defined as the initial conditions of a given dynamical system. Since the 
initial conditions are not known and thus an effective gradient cannot 
be computed based on initial conditions alone. Therefore, the algorithm 
assumes that the next observation is the integral of the predicted initial 
conditions and the given dynamical system with some noise added to 
it (Chen et al., 2019). The loss function is calculated based on the 
measurement at the next timestep in ensure the output of the LSTM to 
converges to the correct initial conditions for the given timepoint. A 
schematic of the algorithm as well as the Tensorflow implementation 
are shown in Supplementary sections 7.1, 7.2.

FIGURE 1

Schematic of the neural ODE algorithm. Schematic of the neural ODE algorithm. An example spiral trajectory is shown in panel B with green points 
representing the data sequences. The RNN takes in one data point at a time and updates its hidden state as well as outputs its prediction for the initial 
condition. The hidden state keeps track of information from previous observations and is carried forward to future time steps, as illustrated in the RNN 
unrolled diagram. The output of the RNN represents the initial condition of the dynamical system at that timestep. For the spiral dataset, the true 
ground truth initial condition xt∗ is known and is illustrated in bottom right. The ground truth distance is used to evaluate the trained RNN network’s 
ability to predict the initial conditions in the constructed dataset. The next timepoint is predicted by integrating the ODE system based on the given 
dynamical system. The loss function is defined as the difference between the next predicted timepoint and the next observed time point, xt+1. 
Minimizing the loss function distance minimizes the distance to the ground truth initial conditions. (Mars, 2020).
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2.4. Experimental data

2.4.1. Structural network for Brain Network Model
To estimate the structural network, tractography was run on 5 

HCP Diffusion Weighted Images using the freely available software 
Mrtrix (Van Essen et al., 2013; Kashyap and Keilholz, 2019). The fiber 
orientations in the DWI images were first estimated using constrained 
spherical deconvolution. Next, using a probabilistic streamline 
algorithm, 100 million fibers set at a maximum length of 250 mm were 
computed for each individual and then filtered to 10 million fibers. To 
construct the structural network, we determined the number of fibers 
that intersected two ROIs in the Desikan-Killiany atlas and normalized 
the power by dividing by the surface area of the receiving region 
(Desikan et  al., 2006; Hagmann et  al., 2008; Cabral et  al., 2011). 
Finally, the matrix is normalized by dividing by the largest eigenvalue 
such that the graph Laplacian (k*SN-I) has only negative eigenvalues 
(Cabral et al., 2012). This normalization ensures that the feedback 
decays and prevents an exponential increase in the signal over time.

2.4.2. fMRI data
The fMRI data used to test and train the models were obtained 

from the Human Connectome Project 447 Young Adult subjects 
release. The scans were pre-registered to Montreal Neurological 
Institute (MNI) space in surface format (MSMAII) and denoised 
using 300 Independent Component Analysis, following the 
recommended steps by Salimi-Khorshidi et al. (2014). The surface-
vertex or grayordinates time series were transformed to the ROI time 
series by averaging all vertices based on the Desikan-Killiany atlas 
parcellation. This was done on an individual level since the surface 
parcellations are provided to by HCP and Freesurfer for each 
individual subject (aparc and aprac2009 files). The signal was then 
bandpass filtered from 0.0008 to 0.125 Hz and then the global signal 
was regressed using a general linear model using the mean timeseries 
of all cortical parcels as the global signal. Finally, the signal is 
subsequently z-scored as described in Kashyap and Keilholz (2019). 
For the task data, each dataset (language, working memory, motor, 
social, emotional, gambling, relational) was processed separately and 
then concatenated together. Each task dataset was truncated to the 
closest multiple of 50 timepoints and the autoencoder was fed 
alternating segments of task and the rest data for training. The 
algorithm was trained using both task data as well as rest data, because 
the algorithm performed better on most metrics with more varied 
data. Furthermore, it is believed that during task activity, resting state 
networks dominate most of the cortical activity and task networks 
often look indistinguishable from rs-fMRI networks (Smith et al., 
2009). However, during evaluation, only the results on predicting 
future rs-fMRI were presented, while task will be  addressed in 
future work.

2.5. Metrics and evaluation between 
simulated and empirical trajectories

The dynamical models are evaluated on how well they fit with the 
empirical observations from the estimated initial conditions. For the 
spiral dataset, the true initial conditions were known, allowing for 
direct calculation of results using a Euclidean distance between the 
estimated and true initial conditions. For the fMRI data, the r-squared 

and the mean squared error at each timepoint between the predicted 
and observed data vectors representing the activity of 66 brain regions 
were calculated. Since the loss function of the Neural ODE algorithm, 
converges to zero during training across most models, this metric 
tends to be  most similar when comparing across models (see 
Supplementary section 7.7). Therefore, in order to differentiate 
between the models, the error was calculated for subsequent 
timepoints to gauge how well the trajectory follows the timeseries over 
a longer period of time. The results were calculated across a set aside 
test dataset using a batch of subjects (N = 80). The Supplementary 
section 7.5 discusses the differences in variances between group and 
individual models, and the effect of testing at every timepoint versus 
a few timepoints. While there is no pronounced difference in testing 
a few timepoints and evaluating the system at every timepoint, there 
is a large difference in variance between the averaging the error out in 
a batch of subjects (N = 80) vs. in the individual models. The group 
metric was selected for its smaller variance and greater robustness, 
given the purpose was fit a group model rather than an individual 
model for the HCP resting state dataset using the Neural 
ODE algorithm.

3. Results

The objective of this study was to assess the feasibility of using 
Neural ODEs to solve for the initial conditions of BNMs, and 
subsequently differentiate between different models based on how well 
they follow the resulting rs-fMRI measurements. To validate this 
approach, the methodology was applied on a constructed spiral 
dataset where the true underlying dynamical system was known and 
the correct coefficients are shown to be  determined using this 
approach. Subsequently, the technique is applied to fit with the 
rs-fMRI dataset using a FRM, and the model parameters and 
coefficients are estimated and shown to be similar to previous literature.

3.1. Differentiating between dynamical 
systems on spiral data

The process of generating the spiral dataset was explained in detail 
in Supplementary sections 7.3–7.7, but, in essence, it involved a two 
variable linear dynamical system and that was often used as an 
example in machine learning literature to show the feasibility of 
solving for initial conditions. The Supplementary sections began by 
showcasing the results from the previous paper Chen et al. (2019), 
where the Neural ODE algorithm’s predictions converged to the right 
initial conditions after observing a sufficient number of previous 
timesteps to allow the LSTM to make valid predictions. The 
subsequent sections detailed the methodology used to determine the 
network hyperparameters such as the hidden size and number of 
layers. Larger networks were found to be more sample-efficient as they 
could predict the initial conditions based on fewer timepoints. At a 
certain size, the accuracy did not improve much with alterations to the 
network and was used as the model to perform the following 
experiment on system identification.

The spiral data was generated using a known system of differential 
equations as presented in Figure 2 (top right). The objective of the 
Neural ODE algorithm was to solve for the initial conditions for each 
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of the candidate dynamical systems with respect to the observed data. 
Each of the systems contained distinct coefficients in their respective 
weight matrices, where W1 represented the original dynamical system 
and W2, and W3 contained the original structural matrix perturbed 
with increasing noise. The findings illustrated in Figure 2 depicted 
three instances of fitting these spirals to generated spiral data for 
different weight matrices. The results demonstrated that, in short time 
periods after the initial conditions, the other candidate systems fit the 
data as well as the original system for the first few points after the 
initial conditions. Nonetheless, in the long run, the spiral matrix W1 
was found to be the closest to the data in Euclidean distance, as shown 
in Figure 2 (bottom right). Therefore, since the Neural ODE fits any 
dynamical system tangentially in time, it is important to observe 
dynamics sufficiently long enough to differentiate between the models. 
At very long intervals, the distance starts to decrease as all trajectories 
converge to an attractor based at the origin, which is special for the 
spiral dynamical system and not present in the neural data. In 
summary, the results on the synthetic spiral data show that it is 

possible to use this method as a system identification, but the systems 
need to be simulated for a long enough time interval for the differences 
to manifest, as the distances close to the initial condition are harder to 
tell apart, since the output of the LSTM minimizes the prediction error 
at the first timestep.

3.2. Fitting differently parameterized firing 
rate models to resting state fMRI data

The dynamics of BNMs were influenced by many parameters and 
were tuned to fit fMRI data. Therefore, it was essential to test whether 
this method allowed us to parameterize different BNMs. The FRM was 
chosen as it has been well studied in the past, and the Neural ODE can 
be validated by reproducing previous estimates (Cabral et al., 2012).

Figure 3 compares various differently parameterized FRM models 
and three Machine Learning Null models in terms of their ability to 
reproduce the future trajectory. After estimating the initial conditions, 

FIGURE 2

Differentiating between dynamical systems on spiral data. The study utilized a number of candidate spirals, which were a perturbed version of the 
ground truth spiral, to fit using the neural ODE algorithm to the spiral data. The top left shows a spiral that was well aligned with the data, as it was used 
to generate the data. The top right and bottom left figures showed spirals that were increasingly further away from the ground truth. The neural ODE 
algorithm was able to fit any of the spirals to the data for a given set of observations, but over time, the candidate spirals that were further away from 
the ground truth diverged much faster from the future data points. This divergence was quantified by the plot on the bottom right, where the 
distribution of the distance between the three different spirals and the observed data points was plotted from the predicted initial conditions. Initially, 
the distance between the spirals of different weights and the observed data points was close, but it diverged further away when compared to future 
timepoints. It is noteworthy that due to all trajectories going toward the origin, the distance at very large timescales converged to zero, but this is not 
expected in the brain data, where the signal does not approach a single attractor. (Mars, 2020).
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the distribution of distances between the predicted and the actual 
trajectory was plotted over time. At the first timestep (Figure 3, top 
left), all the models perform relatively similarly as a direct result of 
minimizing the loss function using an LSTM. Similar to the spiral 
example, the models diverge in performance when moving forward in 
time. Surprisingly, at the fourth timestep (Figure 3 top right), the 
exponentially decaying null models with a zero global coupling, and 
the autoregressive null model without a BNM (labeled as AR) perform 
better than models that contain the brain structure. This suggests that 
introducing any BNM, decreases the accuracy of the model, and the 
model performs best using just the LSTM predictions. The null model 
utilizing LSTM inference (Kashyap and Keilholz, 2020) performs the 
best and represents an estimate of an upper bound in predictability of 
the rs-fMRI signal.

However, interestingly this trend completely reversed in the 
presence of noise. In Figure 4, both the standard deviation of the 
noise as well as the global coupling parameter have been varied. 
The models with low global coupling perform better at low noise 

levels, but as the noise level increases, the BNMs with stronger 
network effects outperform those with low levels of global 
coupling. This suggests that noise plays a critical role in 
establishing the parameters of the FRM, and the properties of the 
structural network become more significant when the system has 
high noise. The overall r-squared of the models decreases with the 
introduction of noise, but the rate at which they diverge from the 
measured trajectories appears to depend on the global coupling 
parameters. Previous FRMs that used the same brain parcellation, 
were simulated with k = 0.9 and σ = 0.3, and noise was seen as 
essential in simulating the BNMs (Cabral et al., 2012). However, 
since both parameters are unknown and the overall r-squared 
decreases with the introduction of noise, just based on varying 
these two parameters it is difficult to conclude which 
parameterization yields the best result using this approach. 
Moreover, the AR null model still performs better than the 
introduction of a BNM, but the difference is much smaller than 
before. The inference model is not included in the noise 

FIGURE 3

Effects of global coupling in the noiseless firing rate model. Evaluating the FRM (Eq. 1) with different global coupling parameters. The performance was 
quantified by the r-squared value between the simulation and the model. Top Left: Error per timestep from the estimated initial conditions for various 
different parameters compared. Examples of the model timeseries vs. the resting state timeseries are given on the bottom at two different 
parameterizations but the distribution shown in the top panels quantify their performance across 2500 trials across unseen test data. Top Right: At the 
fourth timestep, the distribution of the r-squared across all the models is plotted. For the FRMs, the accuracy decreases with the increase of global 
coupling, and the model with zero global coupling performs the best. The Autoregressive (AR) model utilizes the LSTM for the first timestep prediction 
and then outputs the next prediction as the previous timestep and does as well as the FRMs with zero global coupling. The inference model using 
LSTM at every timestep as implemented in Kashyap and Keilholz (2020) performs the best in terms of accuracy, but the model dynamics are unknown 
as they are implemented using deep learning. (Mars, 2020).
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estimations, as the dynamical system is represented as a RNN and 
cannot be manipulated in a controlled manner as the other models.

The introduction of noise changes the resulting dynamics, which 
is apparent from the time traces. Illustrated in bottom of Figure 4, the 
trajectories without noise decay to zero, in line with well-known 
analytical solutions to the consensus equation, where the values of a 
connected network with eigenvalues less than 1 converge to the 
origin (Mesbahi and Egerstedt, 2010). However, the introduction of 
noise results in more complex trajectories as depicted in Figure 5 
bottom, where the values do not decay to zero, but rather randomly 
oscillate around the origin which serves as an attractor in the system 
(Cabral et al., 2011). The role of the structural network, in this case 

becomes more important as it integrates the noise inputs through the 
network, and results in trajectories more similar to the measured 
rs-fMRI signal.

3.3. Differentiating between BNM due to 
differences in structural connectivity

In the previous section, only the parameters of the FRM, the 
global coupling strength as well as the magnitude of the noise were 
changed. However, in this section, the effects of simulating six 
different SC matrices at high and low different global coupling 

FIGURE 4

Effect of varying global coupling and noise on the 4th timestep accuracy of the firing rate model. The effect of varying the two parameters in the FRM, 
the global coupling K and the standard deviation of the noise σ. The introduction of noise lowers the accuracy of all models but does so in an uneven 
fashion. At low levels of noise, the exponential only model (k = 0) outperforms the BNMs with structural connectivity matrices. However, with increasing 
noise power, the BNM with stronger global connectivity matrices appears to outperform the naïve exponential models. The autoregressive model’s 
performance also worsens with increasing noise levels, although it still outperforms the FRMs regardless of the coupling strength, the gap between 
them is reduced. (Mars, 2020).
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(k = 0.1, 0.9), are quantified while varying the high and low noise levels 
(σ = 0.001, σ = 0.3). The SC matrices are varied from the measured SC 
by flipping edges and results in SC seen in Figure 5 bottom row. The 
r-squared value at the fourth timestep, between the different models 
is plotted in Figure 5 top two rows. Unlike the previous sections where 
the correct parameter values were unknown, in this experiment, the 
original SC is expected to outperform the models with altered 
SC configurations.

At low noise levels (σ = 0.001), there was no significant relationship 
between altering the structural connectivity and either of the coupling 
strengths. However, at the high noise levels (σ = 0.3), although the 
model has a lower r-squared than at the low noise levels, the effects of 
the network are evident, with the original SC configuration 
outperforming the corrupted SC configurations for both low and high 

coupling strengths. The trend was once again more prominent for the 
high global coupling (k = 0.9) than the low global coupling (k = 0.1).

3.4. Estimating the parameterization and 
noise level of the firing rate model

In the previous sections, the effects of varying the global coupling 
and noise levels on the accuracy of the simulated system were 
explored, but the relationship between the system and the underlying 
structural connectivity remained unclear. To investigate this, the 
system was simulated with different SC matrices while varying the 
noise levels and global coupling values. The slope was calculated at 
different time steps to find where the system was most sensitive to the 

FIGURE 5

Effects of global coupling, noise, and structural connectivity on the 4th timestep accuracy of the firing rate model. Examining the effects of 
parameterization and estimating the correct SC. At top left, we show the results of changing the structural connectivity for a low global coupling 
model and low noise levels. It does not vary as a function of the structure and performs relatively similarly to the LSTM only null model. At high global 
coupling and high noise levels, the models show that they are more of a function of the correct structural network (bottom right). The slope across the 
performance of different structural connectivity (bottom right of Figure 5) is used as a metric in the next section to solve for global coupling and noise 
levels. (Mars, 2020).
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underlying structural connectivity to find the correct parameterization 
of the models. The slope is plotted from timesteps 2 to 5, across 
different global coupling values and noise steps in Figure  6. At 
timesteps close to the initial condition, higher levels of noise are 
needed to differentiate the systems sensitivity to the structural matrix. 
However, at later timesteps, the opposite is true where higher noise 
levels perturbs the system too much and the overall r-squared drops 
so low that the models become indistinguishable to each other. 
Therefore, the fourth timestep is used where the max differentiation 
between models occurs regardless of the coupling values, where the 
trajectory is far enough from the effects of the LSTM fitting and close 
enough in time to test the predictability of the models. At this 
timestep, the maximum occurs at the values (k = 0.925, σ = 0.35). This 
value is very close to what has been used to be simulate FRMs (k = 0.9, 
σ = 0.3) from previous publications (Cabral et  al., 2012). Their 
approach of parameterization here has been reproduced in Figure 6 
(right most panel), which calculates the FC of a 20 min simulation and 
correlates the FC with the FC of the empirical data. The maximum at 
[0.875, 0.3] is in good agreement with the short-term measures and 
the previous estimates.

3.5. Evaluating the initial conditions of the 
NODE model

In the previous sections, the application of NODE algorithm to 
correctly bias the BNM models and recover coefficients by using short 
term metrics that match those of previous literature were highlighted. 
In the following section the NODE (k = 0.925, σ = 0.35) is utlized to 
evaluate the initial conditions of the algorithm vs. null initial 
conditions. The null initial conditions were generated by taking the 
previous timestep, and integrating the BNM from that timestep. For 
long term simulations shown in  Figure 7A, the functional connectivity 
is characterized in  Figure 7B  with a correlation of 0.45 with the 
empirical measured signal. While the initial conditions did not change 
the functional connectivity of a long term simulation, Figure  7C 
illustrated that the trajectories from NODE initial conditions followed 

the signal more closely than the null initial conditions. Moreover, this 
difference is also present when comparing rest vs. task as shown in  
Figure 7D , indicating that the algorithm is producing non-trivial 
results for its initial condition prediction.

4. Discussion

4.1. Overall discussion and significance

The study proposed the use of the Neural ODE technique for 
estimate initial conditions in different candidate BNMs and 
subsequently evaluating the predicted trajectories compared to the 
real data. To test this methodology, the technique was first applied to 
a well-studied spiral dataset, which demonstrated its ability to 
correctly identify parameters in a constructed example of system 
identification where the ground truth was known. The method was 
then applied to fit different Firing Rate BNMs to neural fMRI data by 
varying their parameterizations, noise level, and by changing the 
structural connectivity. By using all three, the system was correctly 
able to identify the parameters of the FRM, which were close to 
previous estimations of the model’s parameterization using the same 
whole brain parcellation (Cabral et al., 2012). Moreover, these initial 
conditions were shown to be non-trivial as they perform better than 
just using the previous timepoint as initial conditions.

Therefore, pertinent information to parameterize BNMs is present 
in short term trajectories analysis. Unlike older metrics, this technique 
allows for direct timeseries comparisons between the theoretical 
models with measured experimental data, and circumvents the 
reliance on a certain metric/interpretation of rs-fMRI. Therefore, this 
technique provides a unbiased metric that can be extended to compare 
and parameterize more complex BNMs. Moreover, it allows pathway 
forward in studying whole brain dynamics on a faster timescale, and 
illuminate what our current theoretical models can and cannot explain 
in terms of transient dynamics.

The interpretation of the initial condition is difficult in rs-fMRI, 
as rest is not labeled with respect to stimulus, but they can provide 

FIGURE 6

Parametrization of FRM using short term measures vs. parameterization using long term measures. Examining the effects of changing the structural 
connectivity matrices vs. accuracy (slope in Figure 6) under different parameterization/noise levels of the Firing Rate Model. The sensitivity of the 
system to changes in the SC matrix is the only metric where the expected outcome is observed, where the original structural matrix outperforms a 
random one. The change in r-squared value is represented using a color bar and is plotted for different timesteps. At the fourth timestep (t = 2.88) the 
maximum differences occurs on all the models regardless of the parameters, since at that time step the system has diverged enough from the initial 
conditions and while not far enough in time to cause the overall r-squared to drop too low and make the models indistinguishable. At this timestep, a 
maximum slope occurs at (k = 0.925, σ = 0.35). Comparison to the traditional parameterization is shown on the right. Here the differently parameterized 
FRM models were simulated for 20 min and then the FC matrices of the resulting simulation were compared against the empirical FC. The traditional 
approach has a maximum at [0.875, 0.3], and previous reproductions of this experiment found a maximum at [0.9, 0.3] (Cabral et al., 2012), showing 
good agreement on which BNM recapitulates rs-fMRI in both short and long term measures. (Mars, 2020).
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information of the phase of cyclical brain processes such as quasi 
periodic patterns (QPPs) that have been identified in the literature to 
exist in both rest and task data (Thompson et al., 2014). The phase is 
thought to be important improving the correlates to response time in 
task fMRI, and thus estimating these conditions might prove relevant 
in understand the current state of these cyclical brain processes 
(Abbas et al., 2020).

4.2. Parameterization and noise levels of 
the firing rate model

The study focused on the Firing Rate Model (FRM), which is the 
simplest of the BNM used to simulate rs-fMRI. The model has two 
variable parameters - the magnitude of global coupling and the level 
of noise (Eq. 1). Previous literature has suggested the global coupling 
value of a traditional FRM is set slightly less than 1, around 0.9, which 
is just before the system becomes unstable. The noise is usually set 
around 0.3 and global coupling to 0.9 for this parcellation scheme 
(Cabral et al., 2012; Kashyap and Keilholz, 2019), where closer toward 
zero it simplifies to the well-known consensus problem where the 
timeseries converge to the attractor at the origin (Mesbahi and 
Egerstedt, 2010), and at higher degrees of noise the system becomes 

completely chaotic and non-deterministic. Searching for the correct 
parameterization of the FRM between the global coupling and the 
magnitude of the noise is therefore an important to simulate the 
model in the correct regime.

In practice, this relationship was not so easily ascertained by 
analyzing the short-term trajectories as it was confounded by the 
presence/absence of noise. The simulated trajectories that were the 
closest to the empirical trajectories were models that contained no 
noise resulting in a parameterization of a trivial exponential decay null 
models (Figure  3). However, in the presence of noise, the role of 
network structure became important, as at higher global coupling 
values the signal would deviate less from the empirical trajectories. 
The role of the structural connectivity here can be  thought to 
averaging out the noise, and the trajectory became more robust to 
local deviation due to noise introduced at each ROI. Supporting this 
argument, Figure 5 demonstrated that in the presence of noise, the 
models also exhibited a dependence to changes in the structural 
connectivity, where the true structural connectivity resulted in 
dynamics closer to the empirical signal than noisy perturbations of the 
original structural connectivity. Although the exact value of noise 
cannot be solved by maximizing the r-squared accuracy while varying 
the noise amplitude as it results in favoring noiseless models; at the 
right noise/ global coupling parameterization, the accuracy of the 

FIGURE 7

(A) Comparison of BNM simulation with measured brain activity derived from rsfMRI. Simulation of 66 regions for 10 min is first synchronized using the 
NODE algorithm such that the initial conditions are set for the BNM. (B) Functional connectivity of the simulated model and the empirical signal (cross-
correlation ~0.45). (C) For the first few timepoints, the simulated signal follows trajectory more closely using the solved for initial conditions than using 
the measurement at that timepoint as initial conditions (null initial conditions). The signals diverge due to the noise added at the simulation as well as 
the drift that occurs in rsfMRI. We define the Region of Predictability (RP) based on the first 3.6 s and compute the across all timepoints in that interval, 
at which the NODE initial conditions perform significantly better than the null model. (D) The RP is plotted from every timepoint during a working 
memory task, where the cue is presented at 0. All models lose predictability during the task onset and predictability stays lower during the task interval 
compared to the average rest average. The predictability during the task onset is closer to the predictability during the rsfMRI scans than during the 
resting state portion of the task scans. (Mars, 2020).

https://doi.org/10.3389/fnins.2023.1159914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kashyap et al. 10.3389/fnins.2023.1159914

Frontiers in Neuroscience 12 frontiersin.org

FRM should be  maximally dependent on the correct structural 
connectivity. This hypothesis was tested in Figure 6, where the change 
in accuracy of due to the changes in the structural connectivity was 
plotted. Using this metric, the FRM with (k = 0.925, σ = 0.35) is the 
most dependent to changes in the structural connectivity and is very 
close to previously known values that was being used for the FRM 
(k = 0.9, σ = 0.3) as well as our computed maximum using long term 
FC estimates (k = 0.875, σ = 0.3) (Cabral et al., 2012). The previous 
process used long term FC as a metric to maximize to parameterize 
the models, rather than using the short trajectories as in this 
manuscript, but here they show they give similar estimates on which 
FRM is closest to measured rs-fMRI dynamics. The evidence that 
these two values are close, suggests that our approximation of the true 
underlying dynamical system is at least scale free across the observed 
timeframes and models that have been used to simulate long periods 
of time, can capture meaningful dynamics in the shorter timeframe.

4.3. Comparison to other neural ODE 
architectures

The original Neural ODE implementation uses a backward time 
architecture, where the timeseries is inverted and fed into the RNN 
network, such that the first timepoint is fed into the RNN last and the 
final prediction is used to infer the initial condition of the whole 
timeseries and then integrated forward in order to compute the loss 
function (Chen et al., 2019). They do not evaluate the RNN prediction 
at every timepoint like in our implementation, but explicitly state that 
such an architecture would speed the training process. The Tensorflow 
RNN implementation page also recommended a parallel use of the 
RNN in order to speed up the training process.1 The innovative 
backwards time architectural method gets rid of the initialization 
problem of the RNN that exists in our forward time implementation but 
runs into a causality problem where future inputs influence the 
predictions of previous initial condition. Because BNMs are defined as 
a function of previous network activity, and because our intended use 
of the trained model is a continuous correction of the accompanying 
BNM model, the time forward architecture is used in order to solve for 
the initial conditions. The other significant difference is that our 
implementation of the Neural ODE also uses a LSTM after the ODE 
integration (Chen et  al., 2019). This methodology is extensively 
evaluated in Kashyap and Keilholz (2020) but confounds our goal of 
comparing the fit of different dynamic systems, so it is simply presented 
as a null model labeled as inference in this paper. This model 
outperforms all other models in terms of short term prediction, but 
cannot be manipulated as in terms of the noise level, coupling strength 
or other meaningful biological variables. Rather it represents an estimate 
of an upper bound in terms of predictability seen in the rs-fMRI dataset.

4.4. Comparison to other techniques in 
literature

The Neural ODE algorithm presented here is a relatively new 
technique first presented in 2019. To our knowledge this exact 

1 tensorflow.org/guide/keras/rnn

technique has not been applied in the context of fitting whole brain 
models with empirical rs-fMRI data. However, our methodology is 
quite similar to our own previously published work (Kashyap and 
Keilholz, 2020), but differs in the important following manners. In the 
previous paper, the system was trained in a very similar manner, but 
in the generation of new data from the initial conditions the older 
methods utilized the entire Machine Learning architecture, LSTM and 
the Brain Network Model to synthesize new data, whereas in this 
paper, the future timeseries is generated from initial conditions by 
integrating the Brain Network Model. The older method allowed to 
generate more realistic brain data and replicate brain dynamics better 
than traditional BNM as it utilized the LSTM in every timestep. 
However, this brought into unknowns into the dynamics and it was 
not possible to evaluate the BNM on their own. Therefore, in order to 
isolate the performance of BNM for the purposes of system 
identification, the LSTM was excluded from the inference process and 
was only used to generate initial conditions. A recent preprint (Wun, 
2020) also utilizes the Neural ODE approach to fit to rs-fMRI data. 
However, in that methodology it does not use the Neural ODE tool to 
fit trajectories from the BNM rather analyzes latent variables of a 
model to predict task states. Many other approaches have started using 
different techniques for uncovering principles of dynamical systems 
in order to represent rs-fMRI (Zalesky et al., 2014; Hjelm et al., 2018; 
Vidaurre et al., 2018; Nozari et al., 2020; Singh et al., 2021). Nozari 
et al. (2020) uses a similar r-squared metric to quantify the difference 
at the first time point prediction but does not extend this by predicting 
further out in time. In this paper, to our knowledge is the first to use 
these tools for comparing short term trajectories of given BNMs to 
measured rs-fMRI data.

4.5. Assumptions and limitations

The error from the model’s prediction comes from multiple 
different sources such as (1) the mismatch between the differential 
equations and the actual dynamics, (2) from the error in predicting 
the initial conditions, and (3) inadequate descriptions of structural 
connectivity and/or the lack of including subcortical areas in 
the simulations.

 1. A major limitation of this approach is to have an estimation of 
the underlying dynamical system that represents the data. This 
requires vast knowledge of what model including the specific 
parameterization might fit the dataset. However, the Neural 
ODE system is able to tangentially fit any dynamical system 
even trivial ones such as the exponential decay. Therefore, it is 
not really necessary to have a really good estimation of the 
underlying system and can be  tested how well they predict 
subsequent timesteps.

 2. We assume that for any assumed dynamical system the error 
from the RNN is uniform no matter what the function is, and 
the subsequent error calculated from the trajectories is due to 
the mismatch between the data and the dynamical system. 
However, this might not be true, and more complex models 
might have a larger errors in estimating initial conditions and 
therefore is a potential confounder in our analysis.

 3. The inadequate description of the brain network is also a 
limitation and can be  improved with higher resolution 
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parcellations and subcortical areas. Another major drawback 
is the network is quite ill-defined because there is no consensus 
what constitutes a ‘cohesive’ neural population. However, 
different atlas and network definitions seem to give similar 
results suggesting that the principles of BNM are at least 
consistent across many parcellation schemes that are used 
today. However, results from previous literature, show that a 
more detailed description of the network only improves the 
models performance and its ability to recapitulate rs-fMRI and 
that coarser models are good enough for a proof of 
concept application.

Moreover, another major assumption and limitation of the 
approach is our choice of metric, r-squared used to compare the 
distance between two high dimensional vectors. It assumes that better 
models have a higher r-squared value, although they might 
be explaining trivial components of the signal. Other metrics such as 
derivative, or the relative phase between different regions of interest 
might prove as a much more useful metric to compare the predictions 
against the empirical signal. The method also introduces another 
variable on when to evaluate the differences of the model. Close to the 
initial conditions the trajectories are too close to differentiate, and as 
seen from the null models where the output of the LSTM already 
captures a large amount of the variance in the signal. Too far from the 
initial conditions yields trajectories that are too far away from 
empirical measurements and all models become completely 
indistinguishable. For our results, the fourth timestep (2.88 s) was the 
most useful in differentiating between models, but this could vary 
from implementation and careful consideration needs to be used in 
interpreting the results and is a limitation in the approach.

4.6. Future applications

The Neural ODE techniques has a lot of potential as an additional 
tool in conjunction with BNM. It can be  used to evaluate any 
differential for brain data in real time by solving for the initial 
conditions. Moreover, it can be used to compare across increasingly 
disparate brain models that are being constructed for specific 
applications. For individual data, it seems especially promising, since 
the trained network can make predictions on an individual fMRI data 
and thus parameters of the BNM as well as the structural connectivity 
can be adjusted on the individual level. Furthermore, it allows for 
modeling BNM trajectories during task fMRI, where the component 
of the signal due to network activity can be estimated, and enhance 
the response due to stimulus. Our results in Figure 7, indicate that the 
initial conditions of the Neural ODE outperform the null estimation 
of using the measurement as initial condition, and therefore results in 
trajectories that better recapitulate the short term trajectories. 
Therefore in the future, this algorithm can aid in separating network 
and task dependent activity intrinsic to fMRI.

For future approaches on more complex BNMs, it might be easier 
to assume the noise level and then the parameters can be solved in a 
more straightforward manner. The noise level seems to be endemic in 
the system, and rather than a parameter of the model. Since our 
mean surface area parcel is 858 mm2 according to our atlas, 
we  estimate the cortical noise per area to 
be N Surface Area mmµ σ= = ∗( )0 0 35 858

2
,  . /  and not to be  a 

function of BNM. Once the noise level has been established, the 
structural perturbations are not necessary and the coefficients of the 
BNM can be determined directly by comparing the r-squared of the 
models with the empirical signal. In this manner many more complex 
BNMs can be compared against each other.

5. Conclusion

This manuscript investigated whether by solving for the initial 
conditions of a Brain Network Model for a given observation of 
rs-fMRI data using Neural ODE, the estimated BNM trajectories 
based on these initial conditions would serve as a metric to 
differentiate between BNMs and the measured rs-fMRI timeseries. 
The approach used several different FRM to fit to the rs-fMRI data by 
varying the global coupling, noise, and structural connectivity. The 
results show that the parameterization of global coupling and noise 
that maximizes the model’s sensitivity to the structural connectivity, 
yields a model comparable to earlier parameterizations of the 
FRM. Therefore, the Neural ODE tool has the potential to differentiate 
and develop more complex BNMs to fit rs-fMRI data and a path to 
train the parameters on individual fMRI data.
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