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Artificial intelligence and
bioinformatics analyze markers of
children’s transcriptional genome
to predict autism spectrum
disorder

Huitao Tang1*†, Jiawei Liang2†, Keping Chai1, Huaqian Gu1,

Weiping Ye1, Panlong Cao1, Shufang Chen1* and Daojiang Shen1*

1Department of Pediatrics, Zhejiang Hospital, Hangzhou, China, 2College of Life Science and

Technology, Huazhong University of Science and Technology, Wuhan, China

Introduction: Autism spectrum disorder (ASD), characterized by di�culties in

social interaction and communication as well as restricted interests and repetitive

behaviors, is extremely challenging to diagnose in toddlers. Early diagnosis and

intervention are crucial however.

Methods: In this study, we developed a machine learning classification model

based on mRNA expression data from the peripheral blood of 128 toddlers with

ASD and 126 controls. Di�erentially expressed genes (DEGs) between ASD and

controls were identified.

Results: We identified genes such as UBE4B, SPATA2 and RBM3 as DEGs, mainly

involved in immune-related pathways. 21 genes were screened as key biomarkers

using LASSO regression, yielding an accuracy of 86%. A neural network model

based on these 21 genes achieved an AUC of 0.88.

Discussion: Our findings suggest that the identified neurotransmitters and 21

immune-related biomarkers may facilitate the early diagnosis of ASD. The mRNA

expression profile sheds light on the biological underpinnings of ASD in toddlers

and potential biomarkers for early identification. Nevertheless, larger samples are

needed to validate these biomarkers.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by the

impairment of social and communication skills and repetitive movements in early childhood

(1). Genetic factors are associated with the susceptibility to and development of ASD, with

an estimated heritability of 50–83% (2). To date, the pathological mechanisms and curative

treatment of ASD have not been clarified (3, 4). Early diagnosis and interventions could

significantly improve the life of ASD toddlers (5). Reportedly, ASD is difficult to diagnose in

toddlers under 53 months of age (6).

The current methods are either expensive or subjective, and their application in the

diagnosis of ASD is limited. Research on the use of electroencephalography (EEG) data

from children with ASD to train neural networks for predicting ASD has yielded promising

results. However, EEG signals are susceptible to ambient noise, and there may be significant

individual differences, which pose practical limitations in their application (7). Similarly,

studies utilizing infant functional magnetic resonance imaging (fMRI) data and machine
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learning methods have shown potential for the classification of

ASD. Nevertheless, fMRI scanning can be challenging for infants

who require a calm and still environment, leading to poor

image quality and motion artifacts (8). Additionally, genomic data

analysis has identified genetic risk variants associated with ASD.

However, single gene mutations alone are not sufficient for fully

explaining the complexity of ASD (9). Therefore, further research is

necessary to explore the potential of these approaches in accurately

predicting ASD in children.

Identifying ASD biomarkers may help with the early diagnosis

of ASD. However, the well-known neural system biomarkers of

ASD are rarely applied due to the difficulty of sample collection.

Compared to neural system tissue, peripheral blood is more

readily available to screen for biomarkers, but identifying blood

biomarkers for ASD and using them to diagnose ASD are two

core issues that need to be resolved. The impetus herein was

interrogating mRNA expression profiles of peripheral blood from

ASD subjects and controls to obtain biomarkers that are amenable

to ASD diagnostics. Expression microarray data from 128 ASD

and 126 control toddlers were analyzed. Differential expression

analysis revealed that 1,027 genes (adjusted P < 0.05) were

dysregulated in ASD; the ingenuity pathway analysis of the top

200 genes identified immune response, neurotransmission, and cell

proliferation pathways as enriched. The least absolute shrinkage

and selection operator (LASSO) regression identified 21 candidate

biomarkers, including GDI1, HYAL3, and ANAPC7. Binary logistic

regression and neural network models were developed utilizing

these 21 biomarkers, achieving a satisfactory accuracy of 86 and

88%, respectively. These models demonstrated the potential of the

identified biomarkers for the early detection of ASD.

In aggregate, we adduced 21 candidate peripheral blood

biomarkers related to immune functions, growth factors, and

neurotransmitter functions in ASD. Our methodology and results

adumbrate the value of biomolecular approaches coupled with

machine learning for illuminating pathological mechanisms

underlying ASD and developing diagnostic modalities. Although

the findings are promising, further validation in larger,

heterogeneous populations and comparison with prevailing

diagnostics are necessary to determine their clinical utility.

2. Methods

2.1. Data acquisition and preprocessing

The data used in this study were obtained from the Gene

Expression Omnibus (GEO) database in NCBI (Gene Expression

Omnibus, http://www.ncbi.nlm.gov/geo), and the access number is

GSE111175 (10, 11), GSE42133 (12, 13). The platform is Illumina

Abbreviations: ASD, Autism spectrum disorder; GEO, Gene Expression

Omnibus; CON, control; DEGs, di�erentially expressed genes; AUC,

accuracy; ROC, receiver-operating characteristic; LASSO, least absolute

shrinkage and selection operator; IPA, ingenuity pathway analysis;

GSEA, gene set enrichment analysis; PCA, principal component analysis;

ADOS, Autism Diagnostic Observations Schedule; MSEL, Mullen Scales

of Early Learning; fMRI, functional magnetic resonance imaging;

EEG, electroencephalography.

HumanHT-12 V4.0 Expression BeadChip. Gene expression data

of 128 ASD and 126 CON samples were identified. In addition,

38 developmental delay (27 language delay samples, 9 pervasive

developmental disorder not otherwise specified samples, 1 socially

and emotionally delayed sample, 1 global developmental delay

sample) samples in GSE111175 were identified for specificity

detection of the machine learning model. Principal component

analysis (PCA) was performed to visualize the batch effect between

the two datasets. The batch effect was eliminated using the SVA

package based on the R language (14). Expression matrix probes

without corresponding annotation were removed. Finally, we

obtained normalized and batch effect-removed RNA expression

data, which contained 254 samples and 24,698 genes.

2.2. Diagnostic criteria and procedures for
ASD

The diagnosis of ASD was determined using the datasets

GSE111175 and GSE42133, which also provide the age, the Autism

Diagnostic Observation Schedule (Module T, 1, or 2) (ADOS)

scores (15), the Mullen Scales of Early Learning (MSEL) (16)

scores of the ASD and CON samples, and the Vineland Adaptive

Behavior Scales (17) scores of the ASD and CON samples. A t-

test was performed to calculate the p-values of scores between the

two groups.

2.3. Clustering methods

A cohort of 128 toddlers diagnosed with ASD was assessed

using a dataset consisting of 12 clinical features, including scores

from the ADOS, MSEL, and Vineland. In particular, ADOS

scores encompassed communication, sociability, circumscribed,

and repetitious behaviors, while MSEL scores encompassed

precocious learning aggregate and fine motor skills. The

Vineland scores encompassed activities of daily living and

motor adaptive functioning.

To analyze the data, both hierarchical and K-means clustering

methods were employed, with the number of clusters set to two for

each technique. The K-means algorithm utilizes a random state of

42. By calculating the spatial distances among the 12 indices across

the entire cohort, the toddlers were effectively stratified into two

distinct clusters, providing valuable insights into the heterogeneity

of ASD profiles.

2.4. Identification of di�erential expression
genes

The Wilcox test in the R-package “limma” was performed

to screen for differentially expressed genes (DEGs) (18). The

Benjamini–Hochberg method, which is a multiple testing method,

was performed to calculate the adjusted p-values and reduce false-

positive DEGs. The heatmap and scatter plot of DEGs were plotted

using the R language packages “pheatmap” and “ggpubr.” A total of
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FIGURE 1

(A) A heatmap of the clinical feature score for CON and ASD samples. (B) Distribution of hierarchical clusters 0 and 1 of ASD in PC1 and PC2 spaces.

(C) Logistic regression identifies the receiver-operating characteristic (ROC) curves of hierarchical ASD-0 and ASD-1 (D) Distribution of ASD-0 and

ASD-1 clusters in PC1 and PC2 spaces identified by k-means. (E) Logistic regression identifies the ROC curves of k-means ASD-0 and ASD-1. (F) The

boxplot shows the di�erence in clinical feature scores between ASD-0 and ASD-1.

200 DEGs with the largest absolute value of LogFC were used as the

top 200 candidates for subsequent analysis.

2.5. Functional enrichment analysis of DEGs

The Gene Ontology enrichment analysis of DEGs was based

on R language packages “org.Hs.eg.db” and “enrichplot.” The gene

set enrichment analysis (GSEA) function enrichment analysis was

performed using the R language package “ReactomePA” (19, 20).

The number of permutations was set to 100, and a p-value

of <0.05 and an FDR of <0.25 were considered statistically

significant. Ingenuity pathway analysis (IPA) was conducted using

IPA software with input data for the gene symbol and the logFC

value of DEGs with an adjusted p-value of <0.05.

2.6. The construction of machine learning
models

The LASSO regression model, which is suitable for

dimensionality reduction of high-dimensional data, was used

to screen genes with non-zero coefficients. The expression data of

the screened genes were used to train the logistic regression model

and construct the nomograph. The glmnet (21), rms, and regplot

(22) packages based on the R language were used to implement

the above method. The expression data of the screened genes were

used to train and optimize the neural network model using the

sklearn package in Python.

2.7. The acquisition and pre-processing of
the test dataset

The test dataset was GSE26415 (23). The platform was Agilent-

014850 Whole Human Genome Microarray 4x44K G4112F. The

original datasets contained four groups of 21 toddlers each: toddlers

with ASDs, healthy age- and sex-matched subjects (ASD and CON,

ages ranging from 18 to 35 months), healthy mothers who had

toddlers with ASD (ASDmos), and CONmos (ages ranging from

33 to 55 months). Gene expression data of the 21 ASD and 21 CON

participants were retained. The normalized data were downloaded,

and the expression matrix was obtained.

2.8. Validation of ASD early diagnosis
nomogram

A calibration curve method was adopted to evaluate the

coordination between the predicted and actual ASD. A decision
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FIGURE 2

Identification of DEGs between ASD and CON and DEGs functional enrichment analysis. (A) Volcano diagram: Each point represents a protein:

downregulated (blue), upregulated (red), and not significant (yellow). (B) A heatmap of the expression of DEGs in ASD and CON. (C) TOP-6 GSEA

analysis of the KEGG pathway in DEGs. (D) Statistically significant Gene Ontology terms with a false discovery rate of <0.05. (E) The canonical

pathway of IPA shows the signaling pathways in which DEGs are involved.

curve was adopted to quantify the net benefits of different

threshold probabilities in the ASD cohort and evaluate the

clinical utility of the strong line chart. The net benefits were

calculated by subtracting the proportion of all false positive

patients from the proportion of true positive patients. The

relative harm caused by the intervention was balanced, and

the negative consequences of unnecessary interventions were

eliminated. The visualization of the decision curve was based

on the RMDA package of the R language. The generalization

ability and accuracy of the trained model were evaluated using the

test datasets.

3. Results

3.1. Identification and removal of batch
e�ects and normalization of datasets

We identified an obvious batch effect between the

two datasets (GSE111175 and GSE42133) via PCA

(Supplementary Figure S1A), which could be removed

via the SVA package (Supplementary Figure S1B). To

eliminate the within-group inconsistency and normalize the

dataset, limma packages were used (Supplementary Figures

S1C, D).

3.2. The analysis of participant
characteristics and clinical information

First, differences in the clinical scores between the ASD

and CON participants were identified (Supplementary Table S1,

Figure 1A). Specifically, we compared the ADOS scores of the ASD

and CON participants and observed that the ASD participants

had significantly higher ADOS scores than the CON participants.

Similarly, MSEL score differences between the two groups were

identified. Furthermore, we also observed that the Vineland

scores of the ASD participants were lower than those of the

CON participants.

To assess whether there was a within-group bias within the

ASD cohort, such as the presence of a good or poor ASD group,

hierarchical cluster methods were employed. In particular, 61 ASD

toddlers in cluster 0 and 67 ASD toddlers in cluster 1 were identified

(Figure 1B). The confidence of the clusters was verified by logistic

regression (AUC = 0.92, Figure 1C). To improve the accuracy

of clustering, the k-means clustering method was employed.

Ultimately, 66 ASD toddlers in cluster 0 and 62 ASD toddlers

in cluster 1 were identified (Figure 1D). The confidence of the

clusters was verified by logistic regression (AUC= 0.98, Figure 1E).

Furthermore, we identified that early learning composite (ELC) and

adaptive behavior (AB) scores in ASD cluster 1 were higher than

those in ASD cluster 0 (Figure 1F).
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FIGURE 3

Blood feature gene selection using the LASSO binary logistic regression model. (A) LASSO coe�cient profiles of the 200 DEGs. (B) A coe�cient

profile plot was produced against the log (lambda) sequence in the LASSO model. The optimal parameter (lambda) was selected as the first black

dotted line indicated. (C) A bar graph of the coe�cients of the 21 genes selected.

3.3. Identification of DEGs between ASD
and CON, and the functions of DEGs

We identified 1,027 DEGs between 128 ASD and 126

CON participants based on the pre-processing expression data

(Figures 2A, B). GO analysis was performed to identify the

function of these DEGs; regulatory region nucleic acid binding and

transcription regulatory region sequence-specific DNA binding

were identified as the main molecular functions. Furthermore,

the results of GSEA indicated that the main function of DEGs

was APC-mediated degradation of cell cycle proteins, the immune

system, and so on (Figures 2C, D). We also analyzed the canonical

pathways of DEGs through IPA and found that the functions of

the DEGs are enriched in immune-related signaling pathways such

as cellular immune response and cytokine signaling. In addition,

growth-related signaling pathways, neurotransmitter pathways,

and other nervous signaling pathways were identified (Figure 2E).

3.4. Construction of nomogram for the
early diagnosis of ASD

To limit the overfitting of machine learning models and

screen the DEGs, LASSO regression was performed. Specifically,

we selected 200 genes with large logFC absolute values from

1,027 DEGs for LASSO regression, and 21 DEGs were retained

(Figures 3A–C). These genes included ZNF716, SNRPB2,

AC145207.2, UBE4B, SPATA2, RBM3, PRKCSH, PRAM1,

PIP4K2A, PGK1, NSD3, MAP1LC3A, HYAL3, GNL3, and so on.

Logistic regression analysis and nomography were performed

to construct a diagnosis model of ASD based on the expression

data of the 21 DEGs (Figures 4A, B). In addition, the calibration

curve demonstrated the consistency between the predictions of the

nomograph and the cohort (Figure 4C).

To evaluate the generalization ability of the logistic regression

model and the benefits of the nomogram in clinical use, we assessed
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FIGURE 4

Construction and validation of ASD diagnosis nomogram. (A) A boxplot of the expression values of the 21 genes selected in di�erent samples. (B) The

nomogram for predicting the risk of ASD based on 21 genes. (C) The calibration curves of the ASD prediction nomogram. (D) The ROC curve of the

nomogram in the validation cohort. (E) The decision curve analysis for the nomogram.

the accuracy of prediction of the trained logistic regressionmodel in

the test dataset, as shown in Figure 4D, AUC = 0.86. Furthermore,

the decision curve of the nomogram indicated a higher net benefit

of using the complex model than using the single gene model

(Figure 4E).

3.5. Construction of the artificial neural
network model

To further improve the accuracy of ASD diagnosis, we used the

Python-based sklearn package to construct a neural network model

that could predict ASD. Specifically, the above 21 gene expression

matrix was used to train the neural network model, which had

five hidden layers, and the number of neurons included in each

hidden layer was 10, 10, 8, 10, and 10, as shown in Figure 5A.

The number of iterations was set to 200, ReLU was selected as

the activation function, the weight optimizer was the optimizer of

the quasi-Newton method, and the regularization parameter was

0.00001. The average AUC of the model in the training dataset was

0.88, as shown in Figure 5B. Next, we evaluated the generalization

ability of the trained neural network model in the test dataset

(n ASD = 21, n CON = 21), as shown in Figure 5C, AUC =

0.88. The precision-recall curve (Figure 5D, average precision =

0.91) indicated that the trained neural network had improved

generalization and accuracy.

In addition, to prevent the differences within the ASD dataset

from affecting the prediction results of the model, the data of ASD

good and ASD poor were used to construct the neural network

model. Firstly, 66 ASD good and 126 CON samples were used to

construct the neural network model of the above structure, and

the accuracy of the model in predicting the ASD good and CON

samples was 0.87 through 5-fold cross-validation (Supplementary

Figure S2A). Similarly, we also built the neural network model of

ASD poor and CON samples and found that the accuracy of the

model was 0.85 (Supplementary Figure S2B). To explore the 21

genes’ ability to distinguish between ASD good and poor samples,

66 ASD good and 62 ASD poor samples were used to construct the

neural network, and we found that the accuracy of this model was

0.68 (Supplementary Figure S2C). Finally, to explore the specificity

of the neural network model in predicting ASDs, 38 toddlers with

developmental delays were considered in the analysis, and the

accuracy of the model in predicting 38 developmental delays was

0.52 (Supplementary Figure S2D).

4. Discussion

Early diagnosis and targeted interventions for ASD in toddlers

are imperative to optimize neurodevelopmental outcomes and

quality of life (5); yet, current diagnostic methods are subjective,

cost-prohibitive, and constrained by developmental maturation.

The current diagnosis of ASD includes multiple dimensions,
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FIGURE 5

Construction and validation of the ASD diagnosis neural network. (A) Results of neural network visualization. (B) The ROC curve of the neural

network in the training cohort. (C) The ROC curve of the neural network in the validation cohort. (D) The precision-recall curve for the neural

network classifier.

such as vision and hearing examination to exclude sensory

impairment, genetic and neurological testing, interviews with

parents, neurological or psychiatrist observation of children, and

development and behavioral tests of children (24–26). These

special evaluation or inspection methods are either subjective or

expensive. In addition, the cognitive assessment for toddlers may

vary depending on their age. Thus, there is an urgent need to

develop a safe, convenient, and accurate method for ASD diagnosis.

Biomarker-based machine learning models could enable

scalable, accurate, and objective early detection of ASD, which

is critical to transforming prognosis. Compared with other

methods, biomarkers are more objective and convenient (27,

28). With the development of machine learning algorithms, the

accuracy of diagnosis can be improved by combining machine

learning methods with biomarker data. However, two issues

remain and must be resolved. First, machine learning usually

requires a large amount of data (29, 30). To expand the dataset,

datasets GSE111175 and GSE42133 from the GEO database,

which included 128 ASD participants and 126 CON participants

in the datasets, were obtained. Second, limiting the features

of the data to avoid overfitting the model and improving

the generalization ability of the model are necessary. In this

study, several methods were employed to reduce the dataset’s

dimensions, such as selecting the top 200 genes from 1,027 DEGs

(Figures 2A, B) and LASSO regression (Figure 3). In addition, 21

key DEGs were identified as the biomarkers to diagnose ASD

(Figures 3, 4A). To evaluate the generalization ability of the model,

we compared the predicted results of the trained dataset with

the predicted results of the test dataset (GSE26415, 21 CON,

21 ASD) and found that the difference in accuracy between

the two was negligible, indicating that there was no serious

overfitting in the trained model (Figure 4D). We also found that

the net benefit of using the complex model was higher than

the benefit of using a single gene model, indicating the strong

robustness of the trained model (Figure 4E). To obtain a more

accurate model, the neural network model was also trained in

this study (Figure 5A). Similarly, we found that the accuracy

of the neural network in the test data was higher than that

of the nomograph (AUC = 0.88, Figures 5B, C). Although the

improvement in the accuracy of the model was not as obvious
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as in other studies (13, 23), we established the robustness of the

model across different datasets. To prevent the interference of

intra-group differences in ASDs with the prediction results, we

redefined neural network models as ASD good and ASD poor,

respectively. Compared with the original neural network model,

the accuracy of the ASD good and ASD poor models decreased,

which may have been caused by the reduction of the dataset size

(Supplementary Figures S2A, B). In addition, we found that the

neural network model used to distinguish ASD good from ASD

poor did not show high accuracy, which may have been due to

the insignificant difference in biomarkers between the two groups

(Supplementary Figure S2C).

Many previous studies have identified biomarkers related

to the immune system in blood samples from individuals

with ASD (13, 31–33), which is consistent with our results

that the DEG pathways are mainly distributed in the immune

system (Figures 2C–E). Furthermore, the growth factor, organismal

growth and development, neurotransmitters, and other nervous

system signaling were established through IPA analysis, which may

indicate the novel and specific pathways related to ASD biomarkers

(Figure 2E). Among these 21 biomarkers, we identified that GDI1

expression in ASD was significantly increased (Figure 4A), which

can be explained by the recurrent duplications of GDI1 in ASD

(34). In a previous study, GDI1-related pathways were reported

to be a vesicle-mediated transport (35), which may be related to

the neurotransmitter pathway identified in the IPA (Figure 2E).

A genome-wide association study analysis showed that HYAL3

is one of the pathogenic genes of attention-deficit hyperactivity

disorder (36). In our study, the expression of HYAL3 in ASD was

significantly increased (Figure 4A), indicating that HYAL3 may

also cause ASD. Similarly, a decrease in ANAPC7 expression in

ASD was also identified (Figure 4A). Studies have shown that the

loss of ANAPC7 is associated with intellectual disability syndrome

(37), which may also explain the intellectual disability in toddlers

with ASD.

The final limitation of our study is the generalization ability

of the neural network model, which can be better assessed with

the help of multiple test datasets. We encountered difficulty in

finding the expression profile data of blood leukocyte samples

for ASD in open databases, which prevented us from verifying

the generalizability of the model in this study. Thus, in a future

study, we will explore whether specific data are available for

this purpose.

5. Conclusion

In this study, we obtained blood RNA-seq data of CON and

ASD toddlers from public GEO datasets in NCBI and identified

the potential biomarkers of ASD, including ANAPC7 and HYAL3,

through a series of analyses. Machine learning can be used on

the expression data of the biomarkers to obtain models with high

prediction accuracy. By predicting different datasets, we established

a certain level of generalizability of our model. We also predicted

the developmental delay dataset and established that our model has

a certain specificity. Further improvements to the model may shed

some light on its clinical application.
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