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Purpose: The main purpose of this study was to comprehensively investigate the
potential of fractal dimension (FD) measures in discriminating brain gliomas into
low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor
constituents and non-tumorous gray matter (GM) and white matter (WM) regions.

Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma
patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we
calculated different FD measures based on the general structure, boundary, and
skeleton aspects of the tumorous and non-tumorous brain GM and WM regions.
Texture features, namely, angular second moment, contrast, inverse difference
moment, correlation, and entropy, were also measured in the tumorous and non-
tumorous regions. The efficacy of FD features was assessed by comparing them
with texture features. Statistical inference and machine learning approaches were
used on the aforementioned measures to distinguish LGG and HGG patients.

Results: FD measures from tumorous and non-tumorous regions were able to
distinguish LGG and HGG patients. Among the 15 different FD measures, the
general structure FD values of enhanced tumor regions yielded high accuracy
(93%), sensitivity (97%), specificity (98%), and area under the receiver operating
characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also
yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score
(80%) in classifying the tumor grades. These measures were also found to be
significantly (p < 0.05) different between LGG and HGG patients. On the other
hand, among the 25 texture features, enhanced tumor region features, namely,
contrast, correlation, and entropy, revealed significant differences between LGG
and HGG. In machine learning, the enhanced tumor region texture features
yielded high accuracy, sensitivity, specificity, and AUC score.

Conclusion: A comparison between texture and FD features revealed that FD
analysis on different aspects of the tumorous and non-tumorous components not
only distinguished LGG and HGG patients with high statistical significance and
classification accuracy but also provided better insights into glioma grade
classification. Therefore, FD features can serve as potential neuroimaging
biomarkers for glioma.
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Highlights

⁃ A comprehensive fractal dimension (FD) feature set was extracted
from tumorous and non-tumorous brain regions.

⁃ Texture features were also measured in the tumorous and non-
tumorous brain regions.

⁃ FD features showed superior performance in distinguishing low-
grade glioma (LGG) from high-grade glioma (HGG).

⁃ Interestingly, non-tumorous FD features also distinguished LGG
from HGG, suggesting that the pathophysiological process of the
tumor may not be local.

1 Introduction

Brain tumors are defined as the abnormal and uncontrolled growth
of brain cells (McFaline-Figueroa and Lee, 2018). As a consequence, it
affects the metabolic and functional activities of the brain. Brain tumors
are categorized into different types based on their origin from the brain
cells. Glioma is the most frequent type of primary brain tumor that
originates from the brain glial cells (Li et al., 2018; Ostrom et al., 2019).
Glioma is typically categorized into low-grade glioma (LGG) and high-
grade glioma (HGG). HGG accounts for 75%–80%of the primary brain
tumors (Louis et al., 2016). They are usually cancerous tumors whose
structure appears in an amorphous/irregular form in radiological
images compared to well-circumscribed LGG tumors. At least three-
fifths of the adults are diagnosed with HGG, which has an aggressive
growth rate, leading to mortality within 2 years after diagnosis (Chinot
et al., 2014; Gilbert et al., 2014). Moreover, brain tumors are prevalent
and catastrophic in children (Smith and Reaman, 2015). Furthermore,
pediatric brain tumor survivors experience long-term adverse effects
due to treatment procedures in their later adulthood, which is an
alarming concern (Brinkman et al., 2016; Chemaitilly et al., 2016).

Identifying the tumor grade is important for choosing
appropriate treatment strategies, procedures, and prognostic
evaluation. Clinically, tumor grading is performed by collecting
histopathological (Pollack et al., 2019; Figarella-Branger et al.,
2022) samples using biopsy. However, there are certain
circumstances where a collection of tissue samples from the
wrong brain region or inadequate sample collection leads to
misinterpretation of the tumor grade (Sugahara et al., 1999).
These drawbacks can be overcome if neuroimaging could aid in
accurate tumor diagnosis and grading. Among neuroimaging
modalities, magnetic resonance imaging (MRI) is radiation-free
and can provide high contrast to visualize brain soft tissues
(Arslan et al., 2016). Conventional MRI sequences such as T1-
weighted, fluid-attenuated inversion recovery (FLAIR), and T2-
weighted and T1-weighted contrast-enhanced images are
routinely used to qualitatively demarcate tumor regions (edema,
enhanced tumor region, and whole tumor regions) and their shape
(Donahue et al., 2008; Zacharaki et al., 2009; Li et al., 2018). Note, in
this manuscript, we refer to the region of enhancement, a common
feature of malignancy observed in the MRI of HGG tumor patients,
as an enhanced tumor region. Nevertheless, such qualitative

evaluation of MRI is prone to errors in distinguishing tumors
from non-tumoral lesions, such as ischemia, and in tumor
grading. Even with the use of advanced MRI techniques, such as
diffusion tensor imaging, it is often difficult to differentiate the
tumor grade (Sinha et al., 2002). In vivo tumor studies show that
malignant tumor cells invade and develop branching, which makes
the tumor structure amorphous/irregular. In addition, this cell
invasion and branching affect the morphometry of the non-
tumorous brain regions (Deisboeck et al., 2001; Iftekharuddin
et al., 2003). These microscopic changes in due course will affect
the tissue morphometry, which can be detected using conventional
T1-weighted MRI sequences. Detecting these shape morphometric
changes non-invasively using quantitative MRI measures may help
in identifying neuroimaging-based biomarkers which can overcome
the challenges of biopsy and qualitative tumor diagnosis. The
quantitative measures of shape morphometry, therefore, may aid
in the differentiation, diagnosis, and treatment of tumors.

Previous studies (Zacharaki et al., 2009; Skogen et al., 2016;
Zhang et al., 2017; Suárez-García et al., 2020) used texture-based
shape morphometric features such as angular second moment,
contrast, inverse difference moment, correlation, and entropy
from the gray-level co-occurrence matrix. Some other studies
(Durmo et al., 2018), instead of shape features, focused on
volumetric features of the tumor and its constituents derived
from conventional MRI sequences like T1-weighted, T2-
weighted, T1-weighted contrast-enhanced, and FLAIR images.
All the aforementioned studies primarily focused on the tumor
and its constituent regions (whole tumor, enhanced tumor, and
edema regions) to differentiate LGG and HGG. We know that the
aforementioned texture and volumetric features do not capture the
shape morphometry characteristics such as the change in the
boundary caused by the irregular growth pattern and branching
of the tumor into the surrounding tissues. Fractal dimension (FD)
is a quantitative shape morphometry approach that is widely used
in detecting abnormal changes in the tissue boundary caused by
neurological disorders. FD was used to analyze shape complexity
changes in neurological disorders such as multiple sclerosis,
Alzheimer’s disease, and traumatic brain injury (Zhang et al.,
2008; Smitha et al., 2015). FD analysis was also employed in
brain tumor studies (Zhang et al., 2007; Smitha et al., 2015).
FD was found to be effective in examining the complexities in
the tissue structure brought out by brain tumors (Zhang et al.,
2016; Maipas et al., 2018). In general, the FD values tend to
increase as the shape of the object becomes more irregular
(Smitha et al., 2015). Since the tumor growth pattern varies
between LGG (well-circumscribed) and HGG (irregular)
tumors, FD analysis can play a vital role in differentiating LGG
from HGG. Previous FD studies in brain tumors used small
sample-sized datasets (Tang and Nan Wang, 2005; Rose et al.,
2009; Zhang et al., 2016; Maipas et al., 2018). In addition, to the
best of our knowledge, FD analysis was performed only for the
whole tumor boundary structure to distinguish tumor grades.
Therefore, an exploratory/comprehensive FD analysis of not
only the whole tumor but also its constituents is needed.
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Therefore, in this study, we aimed to comprehensively
investigate a) the potential of FD as a neuroimaging biomarker
obtained from the tumor constituents and also from non-tumorous
gray matter (GM) and white matter (WM) brain regions. It is
noteworthy that even though brain tumor is a local
phenomenon, modeling studies have shown that cell invasion
and branching affect non-tumorous brain regions; b) different
aspects of FD, namely, fractal of the tumor’s general structure,
tumor boundary fractal, and fractal of the tumor skeleton, and
similarly, the fractal of the general structure, boundary, and skeleton
of non-tumorous GM and WM brain regions; and c) efficacy of FD
features compared to commonly used texture features. To the best of
our knowledge, no other study has assessed the efficacy of the
aforementioned three different aspects (i.e., general structure,
boundary, and skeleton) of FD measures in distinguishing LGG
from HGG. Therefore, FD analysis can be used as a promising
radiological biomarker for the diagnosis/classification of LGG and
HGG tumors. Furthermore, FD analysis of non-tumorous GM and
WM regions in LGG and HGG patients may shed light on the non-
local phenomenon of brain tumors.

We hypothesize that a) FD analysis of different aspects
(general structure, boundary, and skeleton) of the tumor
constituents can provide better insights into the shape
morphometry changes brought out by the pathophysiological
processes between LGG and HGG. These different FD measures
can also achieve better accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC) score. To
verify this hypothesis, a comparison was performed between the
texture features (angular second moment, contrast, inverse
difference moment, correlation, and entropy) measured in the
tumorous and non-tumorous brain regions of LGG and HGG
patients.

2 Materials and methods

2.1 Data acquisition

For this study, the data of 42 glioma patients LGG, n = 27 and
HGG, n = 15 were acquired from Sree Chitra Tirunal Institute of
Medical Science and Technology, Thiruvananthapuram. The
Internal Ethics Committee at the hospital approved this study,
and the study was conducted in accordance with the Declaration
of Helsinki. The Institutional Ethics committee (IEC Regn No. ECR/
189/Inst/KL/2013/RR-16) at Sree Chitra Tirunal Institute of Medical
Science and Technology, Thiruvananthapuram, India, approved this
study, waiving patient informed consent as this is a retrospective
study. The approval number is IEC/1177. All procedures were
performed under relevant guidelines.

2.2 Imaging protocol

All the patients underwent scanning using a 1.5T Siemens MRI
scanner (MAGNETOM Avanto, Erlangen, Germany). The MRI
sequences include 1) 2D T2-weighted images with slice
thickness = 5 mm, in-plane resolution = 512 × 448, repetition
time (TR) = 5,860 ms, and time of echo (TE) = 110 ms; 2)

FLAIR images were acquired with in-plane resolution = 512 ×
448, slice thickness = 5 mm, TR = 9,000 ms, inversion time
(TI) = 2,500 ms, and TE = 89 ms; 3) 2D T1-weighted images
were acquired with slice thickness = 5 mm, in-plane resolution =
320 × 270, TR = 468 ms, and TE = 11 ms; and 4) 3D gradient echo
was used to acquire T1-weighted contrast-enhanced images whose
imaging parameters include slice thickness = 0.9 mm, in-plane
resolution = 512 × 464, TR = 9 ms, and TE = 3.34 ms.

2.3Mathematical details of fractal dimension
analysis

Mathematically, an object is said to be a fractal if it possesses self-
similarity, fine details and lacks Euclidean dimension (Mandelbrot
and Wheeler, 1983; Lopes and Betrouni, 2009). Fractal objects obey
the power law relationship, given in Eq. 1 (Mandelbrot andWheeler,
1983):

N � S−D. (1)
In the aforementioned equation, D is the dimension to be estimated
for an object/structure based on the given scale S by evaluating the
self-similar units called N. The aforementioned power law
relationship is non-linear. It is converted into a linear expression
by taking logarithms on both sides, as shown in Eq. 2:

D � log10N/log10 1/S( ), (2)
where D is the fractal dimension. In a realistic practical scenario,
the exact scale value S and the fractal dimension D value in Eq. 2
are unknown. Usually, the scale value S is varied over a range of
values, and the corresponding number of self-similar units N for
each scale is measured. Using the measured number of units N and
the chosen scale value S for the considered range of S values, a
linear regression fit is performed to estimate the fractal dimension
D value from Eq. 2. The number of units covering the object for a
given scale is obtained by using a popular method called the box-
counting (BC) method (Ashraf et al., 2021). Briefly, in the BC
method, the pattern/image is covered by a grid of boxes whose size
depends on the corresponding scale S. The N in Eq. 2 represents
the number of boxes that covers the object/pattern/image for a
given scale S.

Briefly, the FD estimation steps include the box-counting
method applied to our tumorous and non-tumorous binary
images. We incrementally placed boxes of different sizes (S) on
the binary tumor region of general structure, boundary, and skeleton
images to count the number of boxes (N) it takes to fully cover the
structure to calculate the FD values. Then, a regression line with the
best fit was plotted between the log-transformed N and S to estimate
the FD values using Eq. 2.

2.4 Data processing

Image pre-processing steps include: a) brain extraction was
performed using the FSL BET tool (version 6.0.4, https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation) with a fractional
intensity threshold = 0.5 and a vertical gradient in the fractional
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intensity threshold = 0; b) brain extracted images were then
corrected for intensity inhomogeneity using the default settings
of the FSL FAST tool. The tumor regions from the MRI image
sequences were segmented using the ITK-SNAP tool (http://www.
itksnap.org/pmwiki/pmwiki.php). Tumor segmentation was
performed under the supervision of an experienced board-
certified radiologist (one of the authors); c) Statistical Parametric
Mapping (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
software was used with default settings to segment the GM and
WM regions based on a unified segmentation algorithm which uses
prior tissue probability maps to further process and obtain the non-
tumorous regions for FD analysis; d) these pre-processed images
were subjected to texture analysis and FD analysis. The workflow is
shown in Figure 1.

2.4.1 Texture analysis
Gray-level co-occurrence matrix-based texture analysis was

performed on the tumorous and non-tumorous brain regions
using ImageJ software (Java 8 version, https://imagej.nih.gov/ij/
download.html) using the Texture Analyzer plugin (https://
imagej.nih.gov/ij/plugins/texture.html). Initially, the images
were converted to 8-bit grayscale images, and then the default
settings with square regions of interest were used. These images
were then processed in batches using a custom-written macros
program and an Excel Writer plugin for transferring the
numerical features to Excel format (https://imagej.nih.gov/ij/
plugins/excel-writer.html). Features including angular second
moment, contrast, inverse difference moment, correlation, and
entropy were calculated for whole tumor, enhanced tumor,
edema, non-tumorous GM, and WM. A total of 25 features

(five aforementioned texture features are calculated for each of
the tumorous and non-tumorous regions) were extracted for each
LGG and HGG patient.

2.4.2 Fractal dimension analysis of tumor and its
constituents in LGG and HGG patients

A custom MATLAB code was written in situ for fractal analysis
using the box-counting function (https://in.mathworks.com/
matlabcentral/fileexchange/13063-boxcount). FD analysis was
performed on the tumor regions (i.e., whole tumor, enhanced
tumor, and edema region) which were segmented from the MRI of
LGG and HGG patients using the ITK SNAP tool (version 3.8, http://
www.itksnap.org/pmwiki/pmwiki.php). The aforementioned
segmented tumor regions were then binarized and subjected to FD
calculation of their general structure, boundary, and skeleton.

In the whole tumor general structure FD analysis, the boxes
which covered the entire tumor region were considered while
estimating the FD values. For the boundary FD structure analysis,
the voxels within the tumor regions were removed by leaving out
only the boundary voxels. This was performed by using the
MATLAB morphological operation function “bwmorph.”
Then, FD values for the boundary structure were estimated by
counting the number of boxes that cover the boundary voxels.
Similarly, in the case of skeleton FD analysis, the boundary voxels
of the tumor region were removed without changing their general
structure. This involves shrinking the input image until the
region of interest is 1 pixel wide and equidistant from the
image boundaries. The morphological operation was
accomplished using “bwmorph,” a built-in MATLAB function.
Finally, the FD value was calculated for the skeleton by counting

FIGURE 1
Entire workflow. GM, gray matter; WM, white matter; T1W ce, T1-weighted contrast-enhanced image; FD, fractal dimension.
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the number of boxes required to cover the skeleton of the tumor
region. Figures 2, 3 show the general structure, boundary, and
skeleton of a typical LGG and HGG patient. In total, we have nine
FD features (three for the whole tumor, three for enhanced
tumor, and three for edema, where the three features are
general structure, boundary, and skeleton) of the
aforementioned tumorous regions.

2.4.3 Fractal dimension analysis of non-tumorous
regions in LGG and HGG patients

To analyze the non-tumorous regions, first, we segmented
the GM and WM from the T1-weighted MRI using
SPM12 software. Furthermore, the corresponding tumor
region was subtracted from the GM and WM regions to
ensure that only the non-tumorous brain regions remain, as
shown in Figure 1. Then, on the non-tumorous whole brain,
GM, and WM images, FD values for the general structure,
boundary structure, and skeleton were obtained using the
box-counting method by adopting similar steps as given in
the previous section. Figures 4, 5 show the general structure,
boundary, and skeleton of a typical LGG and HGG patient. In
total, we have six FD features for the aforementioned non-
tumorous regions (three for GM and three for WM, where
the three features are general structure, boundary, and
skeleton).

2.5 Statistical inference and machine
learning

The machine learning codes were written in Python version
3.9.7 using NumPy, Matplotlib, and sklearn libraries in the Jupyter
Notebook. All machine learning algorithms were implemented for
texture and FD features separately to classify LGG and HGG
tumors. The following steps were performed for both the
texture and FD features. For each patient, we measured
25 texture features and 15 FD features. Since the dataset is
unbalanced (27 LGG and 15 HGG patients) and to avoid
underfitting/overfitting, we used five-fold cross-validation. We
performed five-fold cross-validation with 70% of the data for
training and 30% for testing. Support vector machine (SVM)
algorithms with linear, polynomial, and radial basis function
(RBF) kernels were considered. The kernel that yielded the best
evaluation metric results was selected and reported in this study.
We then performed receiver operating characteristic (ROC)
analysis to obtain an AUC score for the general structure,
boundary, and skeleton region FD values for the tumor
constituents and non-tumorous regions. We then compared the
AUC score of all the measurements to assess the discriminative
power of FD analysis in classifying LGG from HGG tumors.

Statistical inference tests were performed separately for the
texture and FD features to distinguish LGG and HGG patients.

FIGURE 2
(A) FLAIR image of a typical LGG patient, (B–D) general structure,
boundary, and skeleton of the whole tumor region, (E–G) general
structure, boundary, and skeleton of the edema region, and (H–J)
general structure, boundary, and skeleton of the enhanced
tumor region, respectively.

FIGURE 3
(A) FLAIR image of a typical HGG patient, (B–D) general structure,
boundary, and skeleton of the whole tumor region, (E–G) general
structure, boundary, and skeleton of the edema region, (H–J) general
structure, boundary, and skeleton of the enhanced tumor region,
respectively.
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Student’s t-test or the Mann–Whitney U test was used based on the
data meeting the assumptions of normality. A two-sided significance
level of p < 0.05 was used after correcting for multiple comparisons
using a false discovery rate. Statistical comparisons were performed
using MedCalc open ware software (Windows version 20.022,
https://www.medcalc.org/download/) and IBM SPSS Statistics
software (version 25, https://www.ibm.com/products/spss-
statistics).

3 Results

3.1 Texture analysis statistical inference and
machine learning results

For enhanced tumor regions, the contrast, correlation, and
entropy features were found to be statistically different between
LGG and HGG patients (p = 0.00001). Contrast and entropy values
were found to be higher in HGG patients (contrast = 162.75 ± 103.14
(mean ± standard deviation), entropy = 0.08 ± 0.04) than LGG

patients (contrast = 13.53 ± 7.51 (mean ± standard deviation);
entropy = 0.006 ± 0.004). Furthermore, the correlation measure was
found to be reduced in HGG (0.006 ± 0.005) patients compared to
LGG patients (0.03 ± 0.02).

In edema regions, inverse difference moment (IDM) and
contrast values (p = 0.0001) and angular second moment (ASM)
and entropy values (p = 0.01) were found to be significantly different
between LGG and HGG patients. IDM was found to be greater in
HGG patients (0.99 ± 0.0007) than in LGG patients (0.98 ± 0.0006),
whereas the contrast measure was found to be reduced in HGG
patients (95.59 ± 42.04) compared to LGG patients (172.68 ± 48.61).
Similarly, ASM values were found to be lower in LGG patients
(0.95 ± 0.01) than in HGG patients (0.97 ± 0.01), and entropy values
were found to be higher in LGG patients (0.106 ± 0.023) than in
HGG patients (0.069 ± 0.029).

Considering the whole tumor region, contrast and IDM features
(p = 0.03) revealed significant differences between LGG and HGG
patients. Contrast measure was found to be lower in LGG patients
(55.18 ± 40.28) than inHGG patients (60.942 ± 54.03), whereas IDM
was found to be greater in LGG patients (0.998 ± 0.001) than in
HGG patients (0.998 ± 0.001). No significant difference was

FIGURE 4
(A) FLAIR image of a typical LGG patient, (B–D) general structure,
boundary, and skeleton of the non-tumorous GM region, and (E–G)
general structure, boundary, and skeleton of the non-tumorous WM
region.

FIGURE 5
(A) FLAIR image of a typical HGG patient, (B–D) general structure,
boundary, and skeleton of the non-tumorous GM region, and (E–G)
general structure, boundary, and skeleton of the non-tumorous WM
region.
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observed when considering the texture features from non-tumorous
regions. These results are given in Table 1.

Among the three different kernels used for SVM, the linear
kernel had superior performance (89% accuracy, 95% sensitivity,
90% specificity, and 90% AUC score) when trained with texture
features of the enhanced tumor region. For all other texture features
from tumorous and non-tumorous regions, the model accuracy,
sensitivity, specificity, and AUC score were below 70%. These results
are given in Table 2.

3.2 Fractal dimension analysis of the tumor
and its constituents

FD general structure, boundary, and skeleton values measured
from the whole tumor, enhanced tumor, and edema regions (i.e., in
total, nine FD measures) were compared between LGG and HGG
patients. Figures 2, 3 show the different structures of the tumor and
its constituents on which FD estimates were performed in a typical
LGG and HGG patient. Statistical analysis revealed that the FD
skeleton of edema (p = 0.0009), FD skeleton of the enhanced tumor
region (p < 0.0001), FD boundary of the whole tumor (p = 0.0105),

and FD general structure of the enhanced tumor region (p < 0.0001)
were significantly different between LGG and HGG patients. The
remaining FD measures did not show any statistical significance in
distinguishing the tumor grades. These results, along with mean and
standard deviation values of the FD measures, are given in Table 3.
In general, FD values were higher in HGG patients than in LGG
patients. This is probably due to the irregular tumor structure
observed in the MRI of HGG patients.

3.3 Fractal dimension analysis of
non-tumorous brain regions

A similar kind of FD analysis was performed on the non-
tumorous GM and WM structures. Table 4 shows the mean,
standard deviation, and p-values for the general structure,
boundary, and skeleton FD measures of non-tumorous GM and
WM regions in LGG and HGG patients. Among the six different FD
measures, the skeleton of GM (LGG = 0.942 ± 0.032 and HGG =
0.998 ± 0.024, p = 0.0001) and WM (LGG = 0.931 ± 0.035 and
HGG = 0.955 ± 0.024, p = 0.0140) revealed a significant difference in
their structural complexity between LGG and HGG patients.

The WM boundary FD values failed to differentiate between
LGG (0.991 ± 0.056 (mean ± standard deviation)) and HGG
(1.012 ± 0.033), but the GM boundary (p = 0.0025) FD values
revealed a significant difference between them (LGG = 1.025 ±
0.045 and HGG = 1.075 ± 0.051). In addition, the general structure
of the WM region (p = 0.0013) FD values revealed a statistically
significant difference between LGG (1.699 ± 0.029) and HGG
(1.744 ± 0.072), while the general structure of the GM region
remained statistically insignificant (LGG = 1.693 ± 0.063 and
HGG = 1.662 ± 0.053). Future studies using diffusion tensor
imaging and GM cortical thickness analysis may confirm our
findings on significant differences in FD values between non-
tumorous WM and GM regions. Figures 4, 5 show the general
structure, boundary, and skeleton for non-tumorous GM and WM
structures in a typical LGG and HGG patient.

3.4 Machine learning-based classification of
LGG and HGG patients using FD measures

The SVM classifier results for tumorous regions using FD
features are given in Table 5. Among the nine different FD
features, the FD general structure of the enhanced region yielded
93% accuracy, 97% sensitivity, 98% specificity, and 98% AUC score.

TABLE 1 Statistical inference results (only significant results are shown, i.e., for
p-value < 0.05) of the texture features from the tumorous regions. ASM,
angular second moment; IDM, inverse difference moment.

Region LGG (M ± SD) HGG (M ± SD) p-value

Whole tumor

Contrast 55.18 ± 40.28 60.942 ± 54.032 0.01

IDM 0.99 ± 0.0074 0.998 ± 0.001 0.03

Enhanced tumor

Contrast 13.53 ± 7.51 162.75 ± 103.14 0.00001

Correlation 0.03 ± 0.02 0.006 ± 0.005 0.00001

Entropy 0.006 ± 0.004 0.08 ± 0.04 0.00001

Edema

IDM 0.98 ± 0.0006 0.99 ± 0.0007 0.0001

Contrast 172.68 ± 48.61 95.59 ± 42.04 0.0001

ASM 0.95 ± 0.01 0.97 ± 0.01 0.001

Entropy 0.106 ± 0.023 0.069 ± 0.029 0.001

M, mean; SD, standard deviation; *p < 0.05 (false discovery rate).

TABLE 2 SVM results for tumorous and non-tumorous brain regions when considering all the five texture features for each of the regions.

Region Accuracy Sensitivity Specificity AUC score

Whole tumor 60 57 60 56

Enhanced tumor 89 95 90 90

Edema 70 72 70 70

Non-tumorous GM 50 33 50 40

Non-tumorous WM 60 36 61 50
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It was followed by the FD skeleton of the enhanced tumor region
with 87.5% accuracy, 100% sensitivity, 66% specificity, and 66%
AUC score; then, the FD boundary of the whole tumor region
yielded the next best results, with 83.3% accuracy, 100% sensitivity,
60% specificity, and 80% AUC values; and finally, the FD skeleton of
edema region values revealed 62.5% accuracy, 60% sensitivity, 66.6%
specificity, and 63% AUC score.

In contrast, the other FD features resulted in low accuracy,
sensitivity, specificity values, and AUC score and failed to
distinguish LGG from HGG.

Similarly, the SVM algorithm was used to train, test, and classify
the LGG and HGG patients based on non-tumorous FD features.
Table 6 gives the accuracy, sensitivity, specificity, and AUC score
from SVM. Among the FD features of the non-tumorous regions,
only the FD GM skeleton yielded a high accuracy of 83.3%,
sensitivity of 100%, specificity of 60%, and AUC score of 80%.

4 Discussion

The main findings of this study are as follows: 1) the general
structure FD value of the enhanced tumor region yielded 93%
accuracy, 97% sensitivity, 98% specificity, and 98% AUC score in
distinguishing LGG patients from HGG patients (also with a
statistical significance of p-value < 0.0001); 2) non-tumorous GM
skeleton FD values also play a significant role in differentiating LGG
patients from HGG patients; 3) texture features, namely, ASM,
contrast, correlation, IDM, and entropy, were found to be
significantly different between LGG and HGG patients only in
the tumorous regions; 4) the SVM classifier yielded good
accuracy, sensitivity, specificity, and AUC score for the texture
features extracted only from the enhanced region; 5) results from
the machine learning approach on texture and FD features
demonstrate high accuracy, sensitivity, specificity, and AUC score
for FD features compared to texture features; 6) in FD analysis, the

features from non-tumorous regions were also included while
distinguishing LGG patients from HGG patients, suggesting that
the pathophysiological process of the tumor may not be a local
phenomenon; and 7) multi-faceted FD analysis on individual
components/constituents of the tumor can provide better
classification of LGG and HGG tumors than when studying FD
on the whole tumor structure.

Brain tumor treatment procedures, such as radiotherapy,
chemotherapy, and surgical planning, are primarily decided based
on the diagnosis of the tumor grade. Biopsy is a standard clinical
procedure for diagnosis, but it has complications that may lead to
hematoma and even release microscopic quantities of cancer-
causing cells into the bloodstream (Shyamala et al., 2014). On
the other hand, non-invasive radiological diagnosis of brain
tumors is primarily based on qualitative analysis of neuroimaging
data, which is prone to poor reproducibility and operator bias
(Kjems et al., 2002). Hence, a quantitative neuroimaging-based
biomarker is necessary to minimize the need for biopsy. From in
vivo tumor studies, it is evident that cell invasion from malignant
brain tumors causes branching and leads to structural changes
which eventually affect the shape morphometry of the brain
(Deisboeck et al., 2001; Iftekharuddin et al., 2003). Therefore, a
technique that assesses the shape morphometry of the brain tumor
can overcome the above limitations. Our texture analysis results
concur with the aforementioned studies. The results of our texture
analysis demonstrate that LGG and HGG patients can only be
distinguished by using the tumor and the texture features of its
constituents. On the other hand, FD features from both tumorous
and non-tumorous regions were involved in classifying LGG and
HGG patients. The reasons for this include: a) since all texture
features are based on image intensity values, we speculate that in the
non-tumorous regions, the pathophysiological process of the tumor
may not have caused intensity variations which can be detected
using texture features; b) previous studies reported that the tumor
spreads to other brain regions by diffusing through axons, thereby
affecting the shape morphometry such as the boundary of the tumor
and its surrounding tissue. The texture features cannot capture these
shape changes. FD was proven to be an effective technique to
characterize the morphological changes in other neurological

TABLE 4 Fractal dimension values of the non-tumorous regions.

Region LGG (M ± SD) HGG (M ± SD) p-value

Skeleton

GM region 0.942 ± 0.032 0.998 ± 0.024 0.0001*

WM region 0.931 ± 0.035 0.955 ± 0.024 0.0140*

Boundary

GM region 1.025 ± 0.045 1.075 ± 0.051 0.0025*

WM region 0.991 ± 0.056 1.012 ± 0.033 0.1610

General

GM region 1.693 ± 0.063 1.662 ± 0.053 0.1296

WM region 1.699 ± 0.029 1.744 ± 0.072 0.0013*

M, mean; SD, standard deviation; *p < 0.05 (false discovery rate).

TABLE 3 Fractal dimension values of the tumorous region.

Region LGG (M ± SD) HGG (M ± SD) p-value

Skeleton

Whole tumor 0.901 ± 0.029 0.911 ± 0.022 0.2993

Edema 0.895 ± 0.020 0.929 ± 0.035 0.0009*

Enhanced tumor 0.802 ± 0.066 0.898 ± 0.062 <0.0001*

Boundary

Whole tumor 0.923 ± 0.023 0.940 ± 0.021 0.0105*

Edema 0.941 ± 0.029 0.931 ± 0.022 0.3700

Enhanced tumor 0.932 ± 0.045 0.952 ± 0.048 0.2105

General

Whole tumor 1.755 ± 0.087 1.767 ± 0.057 1.000

Edema 1.720 ± 0.100 1.744 ± 0.083 0.6043

Enhanced tumor 1.221 ± 0.132 1.628 ± 0.091 <0.0001*

M, mean; SD, standard deviation; *p < 0.05 (false discovery rate).

Frontiers in Physiology frontiersin.org08

Battalapalli et al. 10.3389/fphys.2023.1201617

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1201617


disorders of the brain (Esteban et al., 2007; Zhang et al., 2008;
Rajagopalan et al., 2013).

The main focus of this study was to determine the efficacy of the
FD-based complexity analysis of tumor constituents and non-
tumorous GM and WM tissue to distinguish LGG from HGG. A
previous FD analysis study (Smitha et al., 2015) evaluated the
efficacy of FD metrics in glioma grade classification by
considering the tumor as a whole component as opposed to
considering tumor components such as edema and enhanced
tumor region individually. Their results yielded 70.3% sensitivity,
66.7% specificity, and AUC score = 70.4%. On the other hand, our
results show that the FD value of the enhanced tumor region of the
tumor general structure (LGG = 1.221 ± 0.132 (mean ± standard
deviation) and HGG = 1.628 ± 0.091), in fact, yielded 93% accuracy,
97% sensitivity, 98% specificity, and 98% AUC values and also
statistically classified HGG from LGG with a p-value <0.0001. This
demonstrates that FD analysis of different aspects (skeleton, general
structure, and boundary) of the tumor constituents can provide
higher accuracy in classifying LGG and HGG patients. In the
hierarchy (in terms of accuracy, sensitivity, specificity, and AUC
values), the next FD measure that yielded superior classification
between LGG and HGG is the skeletal structure (LGG = 0.802 ±
0.066 and HGG = 0.898 ± 0.062) FD value of the tumor enhanced
region. As shown in Table 3, this metric yielded a high accuracy of
87.5%, sensitivity of 100%, specificity of 66%, and AUC score of 66%.
This indicates that FD measures on the enhanced tumor region,
when compared to edema and the whole tumor region, and may be a

better neuroimaging quantitative biomarkers for classifying LGG
from HGG patients from MRI. However, the enhanced tumor
region may not be present in all the LGG tumor grades. Forst
et al. (2014) reported that the contrast enhancement region can only
be observed in 60% of the LGG cases. Therefore, if the enhanced
tumor region is not present in LGG, then our results suggest that the
FD value of the boundary of the whole tumor region (LGG = 0.923 ±
0.023 and HGG = 0.940 ± 0.021) can be used to classify LGG and
HGG. Our results show that next to the FD values of the general
structure and skeleton of the enhanced tumor region, the FD value of
the skeleton of the whole tumor region yielded high accuracy and
AUC values in classifying LGG from HGG.

Other FD measures that showed significant differences between
LGG and HGG with good accuracy are the FD values of the skeleton
of edema (LGG = 0.895 ± 0.020 and HGG = 0.929 ± 0.035) and the
whole tumor (Table 1; Table 3). From our results, we infer that
boundary and skeleton features of the tumor and its constituents,
compared to measuring FD on the whole tumor, may play a major
role in differentiating LGG from HGG. Another interesting finding
in this study is that non-tumorous GM FD values also play a vital
role in differentiating LGG from HGG patients. The results given in
Tables 2 and 4 show that FD values of the GM region skeletal
structure (LGG = 0.942 ± 0.032 and HGG = 0.998 ± 0.024) were able
to classify LGG from HGG tumors. This suggests that these FD
measures on non-tumorous brain tissue can serve as a quantitative
neuroimaging biomarker for tumor classification. This indicates
that, even though the tumor is located heterogeneously in
different brain regions in both LGG and HGG patients, they all
affect the non-tumorous GM tissue differently. It was reported that
the GM shape and volume were affected significantly by the presence
of glioma tumors (Gupta et al., 2017). In addition, modeling studies
(Deisboeck et al., 2001; Iftekharuddin et al., 2003) have shown that
cell proliferation and branching affect non-tumorous GM and WM
structures. Furthermore, since the tumors tend to propagate through
WM microscopically (Wang et al., 2009) to the non-tumorous
regions, we believe that this pathophysiological phenomenon may
have been reflected in terms of our observation of significant
difference in the non-tumorous WM skeleton FD values between
HGG and LGG patients. Hence, we believe that fractal analysis of the
GM region may play an important role in glioma tumor grade

TABLE 6 SVM classifier results for non-tumorous regions using FD measures.

Glioma Accuracy Sensitivity Specificity AUC score

GM general 41.6 71.4 0 35

WM general 58.3 100 0 50

GM boundary 66 100 20 60

WM boundary 33 57.1 0 28

GM skeleton 83.3 100 60 80

WM skeleton 58.3 85.7 20 52

TABLE 5 SVM classifier results for tumorous regions using FD measures.

Glioma Accuracy Sensitivity Specificity AUC score

WT general 58.3 100 0 50

WT boundary 83.3 100 60 80

WT skeleton 58.3 57.1 60 58

Edema general 50 20 100 60

Edema boundary 37.5 0 100 50

Edema skeleton 62.5 60 66.6 63

Enhanced general structure 93 97 98 98

Enhanced boundary region 37.5 0 100 50

Enhanced skeleton region 87.5 100 66 66
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classification, and multi-faceted FD analysis on non-tumorous GM
and WM regions can classify LGG and HGG tumors compared to
studying FD on the whole tumor structure alone. Furthermore,
Tables 2, 5, and 6 show that classification accuracy is reduced by
more than 10% in the non-tumorous region compared to the
tumorous region. A reason for this could be that the tumorous
regions (core, enhanced, and edema regions) vary extremely in size
and shape between LGG and HGG patients compared to non-
tumorous regions. Non-tumorous regions appear homogenous in
terms of intensity variations, shape, size, and geometry in LGG and
HGG patients. We also believe that the non-tumorous regions are
larger in volume than the tumorous regions; therefore, an averaging
effect could have occurred since we measured the mean value of the
texture and FD features. The reason behind the considerable
difference observed in FD values between HGG and LGG in
non-tumorous WM and GM structures can be confirmed in
future studies using diffusion tensor image analysis and GM
cortical thickness analysis with histopathological correlations.

Related studies (Sánchez and Martín-Landrove, 2022) used
fractal and other scaling measures to assess the dynamics of the
tumor interface in glioblastoma, meningioma, and schwannomas
using T1-weighted contrast-enhanced images. Similar to our results,
they have also concluded that fractal dimension was able to
discriminate gliomas and meningiomas. Di Ieva et al. (2016) used
FD analysis to quantify the vasculature changes in susceptibility-
weighted images (SWI) of LGG and HGG patients. They also
observed that FD was significantly different (p < 0.05) between
the LGG and HGG patients. Furthermore, they found that the FD
measure was able to classify LGG and HGG patients with 81%
sensitivity and 89% specificity and concluded that FD can be a novel
imaging biomarker for glioma. Functional 11C-methionine PET
imaging was performed in Maeda et al. (2021, 11) that employed a
fractal dimension approach in newly diagnosed glioma patients.
They also observed a significant difference (p < 0.001) in FD values
between LGG and HGG patients. FD measure changes observed in
LGG and HGG patients using functional PET imaging demonstrate
the potential of FD measure as a neuroimaging biomarker to classify
glioma patients. Even though the aforementioned studies used
different neuroimaging modalities compared to our study, the FD
measure was able to distinguish LGG and HGG groups with
statistical significance, high sensitivity, and specificity thereby
demonstrating the FD measure can be a novel neuroimaging
biomarker to classify glioma patients. Liu et al. (2003) suggest
that different aspects of the tissue structure such as the general
structure, boundary, and skeleton can provide different
morphological information about the tumor. They also showed
that significant structural changes occur within the affected
tumor tissue regions. For instance, the boundary analysis shows
the pattern of tumor growth limited to the boundary region only,
whereas the skeleton can provide information about the internal
shape and morphometric changes in the tumor structure. The
skeleton analysis is a pattern recognition technique used to
understand the patterns of shape, tissue orientation, and
connectivity in glioma tumors (Zhang et al., 2006). FD analysis
has been applied previously to study glioma tumors by conventional
MRI (Smitha et al., 2015). The triangular prism surface area (TPSA)
method was used to calculate the FD of astrocytoma patients from
MRI (Tang and NanWang, 2005b). They found that in the patient’s

brain, the FD values were lower than those in the healthy
participants. However, they considered only five glioma patients,
which may have low statistical power. Zhang et al. (2007) reported
FD analysis values from the segmented GM and WM regions of
glioma tumors and the control subjects using MRI. Their results
revealed that FD values can discriminate the structural differences
between GM and WM regions of glioma and the control group.

Here, for the first time, we performed FD analysis using
conventional MR images by considering three different
morphological aspects, namely, general structure, boundary, and
skeleton of the tumorous and non-tumorous regions, to evaluate
tumor grade in glioma patients.

In addition to statistical comparison of the FD measures, we
also performed machine learning-based classification of LGG and
HGG tumors using the FD features. From the literature, we found
that for FD measures, SVM is a commonly used classifier (Al-
Kadi, 2015; Benson et al., 2017; Lahmiri, 2017; Srinivasan et al.,
2018). Therefore, we used the SVM algorithm to evaluate the
potential of the measured FD metrics, as well as to identify the
features of importance. First, we evaluated each feature (as given
in Tables 3, 4) using linear and non-linear SVM algorithms for
the classification. The results showed that nonlinear SVM
performed well by efficiently classifying the input features.
These results can be further confirmed using studies with
large sample-size datasets.

5 Conclusion

Our results demonstrate that texture features based on the
gray-level intensity values failed to classify LGG and HGG
patients based on non-tumorous gray and white matter tissue.
However, shape morphometry-based fractal features were able to
classify LGG and HGG patients with high accuracy, sensitivity,
and specificity using non-tumorous brain regions. This suggests
that the shape complexity measure (fractal) can detect changes in
the brain beyond the tumor region and may be better suited to
distinguish different glioma tumor grades, i.e., LGG and HGG.
Our results also demonstrate that different aspects of FD analysis,
i.e., general structure, surface, and skeleton, can provide better
insights into the tumor morphological changes brought out by
the glioma disease process. For example, the boundary FD
analysis, which focuses only on the tumor growth pattern
along the gray and white matter boundary, provides
information about how the tumor growth pattern affects the
boundary in LGG and HGG patients. Similarly, skeleton FD
analysis that provides information about the internal shape
morphometric changes of the tumor can be used to
understand the differences in internal shape morphometric
changes between LGG and HGG patients. Therefore, these
different aspects of FD analysis may aid clinicians in a better
understanding of the tumor growth patterns between LGG and
HGG patients. Another important conclusion from our study is
that the FD analysis on different components of the tumor
regions, i.e., whole tumor, enhanced tumor, and edema
regions, led to highly accurate classification of glioma tumors
compared to using FD features of the whole tumor region alone
for classifying LGG and HGG patients. This demonstrates the
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importance of analyzing the tumor and its constituents
individually as the glioma disease process may affect them
differently.
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