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Abstract: This paper is devoted to investigating regularity criteria for the 3D micropolar fluid
equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution
is regular on (0,T ] provided that either the norm ‖π‖Lα,∞(0,T ;Lβ,∞(R3)) with 2

α
+ 3

β
= 2 and 3

2 < β < ∞ or
‖∇π‖Lα,∞(0,T ;Lβ,∞(R3)) with 2

α
+ 3

β
= 3 and 1 < β < ∞ is sufficiently small.
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1. Introduction

In this paper, we are concerned with the 3D incompressible micropolar fluid equations in the whole
space: 

∂tu + (u · ∇) u − ∆u + ∇π − ∇ × ω = 0,
∂tω − ∆ω − ∇(∇ · ω) + 2ω + (u · ∇)ω − ∇ × u = 0,
∇ · u = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x),

(1.1)

where u = u(x, t) ∈ R3, ω = ω(x, t) ∈ R3 and π = π (x, t) denote the unknown velocity vector field, the
micro-rotational velocity and the unknown scalar pressure of the fluid at the point (x, t) ∈ R3 × (0,T ),
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respectively, while u0, ω0 are given initial data with ∇ · u0 = 0 in the sense of distributions.
The system (1.1) was first studied by Eringen in [12]. It is a special model of microfluids which

exhibits the microrotational effects and microrotational inertia and can be viewed as a non-Newtonian
fluid. In a physical sense, micropolar fluid may represent fluids that consists of rigid, randomly oriented
(or spherical) particles suspended in a viscous medium where the deformation of fluid particles is
ignored. It describes many phenomena such as animal blood and certain anisotropic fluids, e.g., liquid
crystals which cannot be characterized appropriately by the Navier-Stokes equations. For more detailed
background we refer the readers to see [23, 28] and the references therein. Besides their physical
applications, micropolar fluid equations are also mathematically significant. The existence of weak
solutions was established by Galdi and Rionero in [17]. Yamaguchi [33] obtained the existence of
global strong solutions. Yuan [34] established classical Serrin-type regularity criterion which only
need the velocity u or its gradient ∇u. Later, many works about regularity criterion of micropolar
equations have been proven (see e.g., [7, 9, 13, 32] and the references therein).

When the micro-rotational term (ω = 0) is neglected, the micropolar flows system reduces to the
well known Navier-Stokes equations. There has been a lot of progress about the question of wether a
solution of the 3D Navier-Stokes equations or the micropolar fluid equations can develop a finite time
singularity from smooth initial data with finite energy. For example, Beirão da Veiga [1], Berselli and
Galdi [4] and Zhou [35–38] proved the following following regularity criteria

π ∈ Lp(0,T ; Lq(R3)) with
2
p

+
3
q

= 2,
5
2
≤ q ≤ ∞

or
∇π ∈ Lp(0,T ; Lq(R3)) with

2
p

+
3
q

= 3,
5
3
≤ q < 3.

In [29, 30], Suzuki proved the regularity criteria in the Lorentz space under the assumption for the
pressure via the truncation method introduced by Beirão da Veiga [2]; namely, if

‖π‖Lα,∞(0,T ;Lβ,∞(R3)) ≤ δ, with
2
α

+
3
β

= 2 and
5
2
< β < ∞

or
‖∇π‖Lα,∞(0,T ;Lβ,∞(R3)) ≤ δ, with

2
α

+
3
β

= 3 and
5
3
≤ β < 3,

is regular. A natural question proposed by Suzuki in [30] is what may happen about the case 3
2 < β <

5
2

guarantees the regularity of the leray-Hopf weak solutions. The goal of this paper is to give an answer
to the question mentioned above and we recover the result in [29, 30].

Regarding 3D micropolar fluid equations, many interesting results have been obtained (see [24] and
the references therein). Dong et al. [11] (see also Yuan [34]) showed that the weak solution becomes
regular if the pressure satisfies

π ∈ Lq(0,T ; Lp,∞(R3)), for
2
q

+
3
p
≤ 2,

3
2
< p ≤ ∞,

or
π ∈ L1(0,T ; Ḃ0

∞,∞(R3)),
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where Lp,∞ and Ḃ0
∞,∞ denote weak Lebesgue space and homogeneous Besov space. For more regularity

criteria results for the 3D micropolar fluid equations we refer the readers to [6–10, 13–16, 20, 21] and
the references therein.

Inspired by the regularity results of the Navier-Stokes equations cited above (see e.g., [26, 27,
29, 30]), this paper is devoted to study the regularity criterion for weak solutions to 3D micropolar
equations in weak Lebesgue space. More precisely, it is shown that if the pressure belongs to some
weak Lebesgue spaces in both time and spatial directions, then the weak solutions are regular on [0,T ].
The method presented here may be applicable to similar situations involving other partial differential
equations.

Before stating the main result, let us first recall the definitions of the Lorentz spaces and the weak
solutions to the (1.1). For the functional space, Lp(R3) denotes the usual Lebesgue space of real-valued
functions with norm ‖·‖Lp :

‖ f ‖Lp =


(∫
R3 | f (x)|p dx

) 1
p
, for 1 ≤ p < ∞,

ess sup
x∈R3

| f (x)| , for p = ∞.

To prove Theorem 1.2 we use the theory of weak Lebesgue spaces and introduce the following
notations. Lr

w(R3) denotes the weak Lr−space which is defined as

Lr
w(R3) =

{
f ∈ L1

loc(R
3) : ‖ f ‖Lr

w
= sup

λ>0
λ
∣∣∣∣{x ∈ R3 : | f (x)| > λ

}∣∣∣∣ 1
r
< ∞

}
Lp,q(R3) (1 ≤ p, q ≤ ∞) denotes the Lorentz space, the norm of which is defined as follows :

‖ f ‖Lp,q =

(∫ ∞

0
(t

1
p f ∗(t))q dt

t

) 1
q

, for 1 ≤ q < ∞,

‖ f ‖Lp,∞ = sup
t

(t
1
p f ∗(t)), for q = ∞,

where
f ∗(t) = inf {λ > 0 : m(λ, f ) ≤ t} , m(λ, f ) =

∣∣∣∣{x ∈ R3 : | f (x)| > λ
}∣∣∣∣ .

For 1 < p < ∞, it is well known that

Lp,p(R3) = Lp(R3), Lp,∞(R3) = Lr
w(R3), Lp,q1(R3) ⊂ Lp,q2(R3), for q1 ≤ q2.

For details, refer to [3] and [31].

Definition 1.1 (weak solutions [17,23]). Let (u0, ω0) ∈ L2(R3) with ∇·u0 = 0 in the sense of distribution
and T > 0. A measurable function (u(x, t), ω(x, t)) on R3 × (0,T ) is called a weak solution of (1.1) on
[0,T ) if (u, ω) satisfies the following properties :

(i) (u, ω) ∈ L∞
(
(0,T ) ; L2(R3)

)
∩ L2

(
(0,T ) ; H1(R3)

)
;

(ii) ∇ · u = 0 in the sense of distribution;

(iii) (u, ω) verifies (1.1) in the sense of distribution.
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Now, our main result reads as follows:

Theorem 1.2. Let (u0, ω0) ∈ L2(R3) ∩ L4(R3) with ∇ · u0 = 0 in R3. Suppose that (u, ω) is a weak
solution of (1.1) in (0,T ). Then, there exists a constant δ > 0 such that (u, ω) is a regular solution on
(0,T ] provided that the pressure satisfies one the following conditions :

‖π‖Lα,∞(0,T ;Lβ,∞(R3)) ≤ δ, with
2
α

+
3
β

= 2 and
3
2
< β < ∞ (1.2)

or
‖∇π‖Lα,∞(0,T ;Lβ,∞(R3)) ≤ δ, with

2
α

+
3
β

= 3 and 1 < β < ∞. (1.3)

This allows us to obtain the regularity criterion of weak solutions via only the pressure.

Remark 1.1. If we ignore the influence of the micro-rotational velocity, system (1.1) reduces to the
3D Navier-Stokes equations. Then, the conclusion of Theorem 1.2 holds true for 3D Navier-Stokes
equations and we notice that our criterion (1.2) becomes the result of Ji et al. [19] for the Navier-Stokes
equations. Therefore, our result can be viewed as as an affirmative answer to a question proposed by
Suzuki in [30], Remark 2.4, p.3850.

We recall the following result according to Dong et al. [11] that will be used in the proof of
Theorem 1.2.

Lemma 1.3. Suppose (u0, ω0) ∈ Ls(R3), s > 3 with ∇ · u0 = 0 in R3. Then, there exists T > 0 and a
unique strong solution (u, ω) of the 3D micropolar fluid equations (1.1) such that

(u, ω) ∈ (L∞ ∩C)
(
[0,T ); Ls(R3)

)
.

Moreover, let (0,T0) be the maximal interval such that (u, ω) solves (1.1) in C
(
(0,T0); Ls(R3)

)
, s > 3.

Then, for any t ∈ (0,T0),

‖(u, ω)(·, t)‖Ls ≥
C

(T0 − t)
s−3
2s

with the constant C independent of T0 and s.

By a strong solution we mean a weak solution (u, ω) such that

(u, ω) ∈ L∞
(
(0,T ) ; H1(R3)

)
∩ L2

(
(0,T ) ; H2(R3)

)
.

It is well-known that strong solution are regular (say, classical) and unique in the class of weak
solutions.

Additionally, let us recall the following lemma which can be viewed as the generalization of the
Gronwall lemma.

Lemma 1.4 ( [5]). Let ϕ be a measurable positive function defined on the interval [0,T ]. Suppose that
there exists ε0 > 0 and a constant κ > 0 such that for all 0 < ε < ε0 and a.e. t ∈ [0,T ], ϕ satisfies the
inequality

dϕ
dt
≤ κλ1−εϕ1+2ε ,

where 0 < λ ∈ L1,∞(0,T ) with

κ ‖λ‖L1,∞(0,T ) <
1
2
.

Then ϕ is bounded on [0,T ].
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The following lemma will be frequently used when we apply Lemma 1.4.

Lemma 1.5 ( [19]). Assume that the pair (α, β) satisfies 2
β

+ 3
α

= a with a, α ≥ 1 and β > 0. Then, for
every κ ∈ [0, 1] and given b, c0 ≥ 1, there exist βκ > 0 and min(α, b) ≤ ακ ≤ max(α, b) such that 2

βκ
+ 3

ακ
= a

βκ
ακ

=
β(1−κ)
α

+ κc0
b

. (1.4)

2. Proof of Theorem 1.2

We are now in a position to prove Theorem 1.2.
Proof. First, we multiply both sides of the Eq (1.1)1 by u |u|2, and integrate over R3. After suitable
integration by parts, we obtain

1
4

d
dt
‖u(·, t)‖4L4 +

∫
R3
|∇u|2 |u|2 dx +

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx

≤

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ +

∫
R3
|ω| |u|2 |∇u| dx, (2.1)

where we used the following identities due to divergence free condition:∫
R3

(u · ∇u) · |u|2 udx =
1
4

∫
R3

u · ∇ |u|4 dx = 0,∫
R3

(∆u) · |u|2 udx = −

∫
R3
|∇u|2 |u|2 dx − 2

∫
R3
|∇ |u||2 |u|2 dx

= −

∫
R3
|∇u|2 |u|2 dx −

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx,

∫
R3
∇ × ω · |u|2 udx = −

∫
R3
|u|2 ω · ∇ × udx −

∫
R3
ω · ∇ |u|2 × udx.

Note that
|∇ × u| ≤ |∇u| , |∇ |u|| ≤ |∇u| .

Multiplying the second equation of (1.1) by ω |ω|2, then integrating the resulting equation with respect
to x over R3 and using integrating by parts, we obtain

1
4

d
dt
‖ω(·, t)‖4L4 +

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

+
1
2

∫
R3
|∇ × ω|2 |ω|2 dx + 2

∫
R3
|ω|4 dx

=

∫
R3
∇ × u · |ω|2 ωdx, (2.2)

where we have used the fact that ∇divω = ∇ × (∇ × ω) + ∆ω yields

−

∫
R3
∇divω · |ω|2 ωdx

AIMS Mathematics Volume 8, Issue 9, 21208–21220.
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= −

∫
R3

(∇ × (∇ × ω) + ∆ω) · |ω|2 ωdx

=

∫
R3
|∇ × ω|2 |ω|2 dx +

∫
R3
∇ × ω · ∇ |ω|2 × ωdx +

∫
R3
|∇ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

≥

∫
R3
|∇ × ω|2 |ω|2 dx −

1
2

∫
R3

(|∇ × ω|2 |ω|2 +
∣∣∣∇ |ω|2∣∣∣2)dx +

∫
R3
|∇ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx

= −
1
2

∫
R3
|∇ × ω|2 |ω|2 dx +

1
2

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx.

Combining (2.1) and (2.2) together, it follows that

1
4

d
dt

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
+

∫
R3
|∇u|2 |u|2 dx +

1
2

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx

+

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx + 2
∫
R3
|ω|4 dx

≤

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ +

∫
R3
|ω| |u|2 |∇u| dx +

∫
R3
|u| |ω|2 |∇ω| dx

= A1 + A2 + A3. (2.3)

By the Hölder’s and Young’s inequalities, the first two terms on the right-hand side of (2.3) are bounded
by ∫

R3
|ω| |u|2 |∇u| dx +

∫
R3
|u| |ω|2 |∇ω| dx

≤ ‖|ω||u|‖L2 ‖|u||∇u|‖L2 + ‖|ω||u|‖L2 ‖|ω||∇ω|‖L2

≤
1
2
‖|u||∇u|‖2L2 +

1
2
‖|ω||u|‖2L2 +

1
2
‖|ω||∇ω|‖2L2 +

1
2
‖|ω||u|‖2L2

≤
1
2
‖|u||∇u|‖2L2 +

1
2
‖|ω||∇ω|‖2L2 + ‖u‖2L4 ‖ω‖

2
L4

≤
1
2
‖|u||∇u|‖2L2 +

1
2
‖|ω||∇ω|‖2L2 +

1
2

(
‖u‖4L4 + ‖ω‖4L4

)
. (2.4)

Now, we estimate the terms A1 under the assumption (1.2) and (1.3).
Case 1. If (1.2) holds, estimating A1 under the assumption (1.2), using the divergence free condition
(1.1)3 after integration by parts and Cauchy-Schwarz inequality results in

A1 =

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ =

∣∣∣∣∣∫
R3
π · div(|u|2u)dx

∣∣∣∣∣
≤ 2

∫
R3
|π| |u|2 |∇u| dx ≤ 2 ‖πu‖L2 ‖|u||∇u|‖L2

≤ C
∫
R3
|π|2 |u|2 dx +

1
2
‖|u||∇u|‖2L2 . (2.5)

Let us estimate the integral

I =

∫
R3
|π|2 |u|2 dx

AIMS Mathematics Volume 8, Issue 9, 21208–21220.
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on the right-hand side of (2.5). Before turning to estimate I, it is well-known that for the micropolar
fluid equations in R3, we have the following relationship between π and u and Calderòn-Zygmund
inequality

−∆π = div (u · ∇u) =

3∑
i, j=1

∂i∂ j(uiu j),

‖π‖Lq ≤ C ‖u‖2L2q , 1 < q < ∞. (2.6)

By a simple interpolation argument, we get from (2.6) that

‖π‖Lq,σ ≤ C ‖u‖2L2q,2σ , for 1 < q < ∞ and 1 < σ < ∞. (2.7)

Then, we can estimate I as follows

I ≤ ‖π‖Lβ,∞ ‖π‖
L

2β
β−1 ,2

∥∥∥|u|2∥∥∥
L

2β
β−1 ,2
≤ C ‖π‖Lβ,∞

∥∥∥|u|2∥∥∥2

L
2β
β−1 ,2

≤ C ‖π‖Lβ,∞
∥∥∥|u|2∥∥∥2− 3

β

L2,2

∥∥∥|u|2∥∥∥ 3
β

L6,2

≤ C ‖π‖Lβ,∞
∥∥∥|u|2∥∥∥2− 3

β

L2

∥∥∥∇ |u|2∥∥∥ 3
β

L2

≤ C ‖π‖
2β

2β−3

Lβ,∞ ‖u‖
4
L4 +

1
2

∥∥∥∇ |u|2∥∥∥2

L2 ,

where we have used the following interpolation inequality in the Lorentz spaces (see [3]):

‖ f ‖
L

2β
β−1 ,2
≤ C ‖ f ‖

1− 3
2β

L2,2 ‖ f ‖
3

2β

L6,2 .

Combining all the estimates from above and considering the facts that ‖|u||∇u|‖L2 ≤
∥∥∥∇ |u|2∥∥∥

L2 and
‖|ω| |∇ω|‖L2 ≤

∥∥∥∇ |ω|2∥∥∥
L2 , it follows that

d
dt

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
+

∫
R3
|∇u|2 |u|2 dx +

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3
|ω|4 dx

≤ C ‖π‖
2β

2β−3

Lβ,∞

(
‖u‖4L4 + ‖ω‖4L4

)
. (2.8)

Defining
H(t) = ‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4 ,

inequality (2.8) implies that
d
dt

H(t) ≤ C ‖π‖
2β

2β−3

Lβ,∞ H(t). (2.9)

Applying Lemma 1.5 (with a = b = 2, c0 = 4), we have

‖π‖ακLβκ,∞ ≤ ‖π‖α(1−κ)
Lβ,∞ ‖π‖4κL2,∞ ≤ C ‖π‖α(1−κ)

Lβ,∞ ‖π‖4κL2,2

≤ C ‖π‖α(1−κ)
Lβ,∞ ‖u‖8κL4

≤ C ‖π‖α(1−κ)
Lβ,∞ (‖u‖4L4 + ‖ω‖4L4)2κ

≤ C ‖π‖α(1−κ)
Lβ,∞ (H(t))2κ, (2.10)
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where we have used the following estimate (see [18, 25])

‖ f ‖Lp,q2 ≤

(
q1

p

) 1
q1
− 1

q2

‖ f ‖Lp,q1 , 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞. (2.11)

Since the pair (ακ, βκ) also meets 2
ακ

+ 3
βκ

= 2, using estimate (2.9) and (2.10) yields

d
dt

H(t) ≤ C ‖π‖
2βκ

2βκ−3

Lβκ,∞ H(t) = C ‖π‖ακLβκ,∞ H(t)

≤ C ‖π‖α(1−κ)
Lβ,∞ (H(t))1+2κ.

Integrating with respect to time, we obtain

H(t) ≤ H(0) + C
∫ t

0
‖π(·, τ)‖α(1−κ)

Lβ,∞ (H(τ)))1+2κdτ,

equivalently

‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

≤ ‖u0‖
4
L4 + ‖ω0‖

4
L4

+C
∫ t

0
‖π(·, τ)‖α(1−κ)

Lβ,∞ (‖u(·, τ)‖4L4 + ‖ω(·, τ)‖4L4)1+2κdτ. (2.12)

Case 2. If (1.3) holds. Let us return to estimate A1 under the assumption (1.3). From the pressure
equations −∆π = divdiv(u ⊗ u) and the Calderòn-Zygmund Theorem, we know that

‖∇π‖L2(R3) ≤ C ‖|u| |∇u|‖L2(R3) .

Thus, we can use the Hölder’s inequality to estimate A1 as follows:

A1 =

∣∣∣∣∣∫
R3
∇π · (|u|2u)dx

∣∣∣∣∣ ≤ ∫
R3
|∇π|

1
2 |∇π|

1
2 |u|3 dx

≤

∥∥∥∥|∇π| 12 ∥∥∥∥
L4(R3)

∥∥∥∥|∇π| 12 ∥∥∥∥
L2β,∞(R3)

∥∥∥|u|3∥∥∥
L

4β
3β−2 ,

4
3 (R3)

≤ ‖∇π‖
1
2
L2(R3) ‖∇π‖

1
2
Lβ,∞(R3) ‖u‖

3

L
12β

3β−2 ,4(R3)

≤ C ‖|u| |∇u|‖
1
2 + 3

2β

L2(R3) ‖u‖
3− 3

β

L4(R3) ‖∇π‖
1
2
Lβ,∞(R3) .

Here, we used the following interpolation inequality (see e.g., [3]):

‖u‖
L

12q
3β−2 ,4(R3)

≤ C ‖u‖
1− 1

β

L4(R3) ‖u‖
1
β

L12,4(R3) . (2.13)

and the Sobolev inequality in Lorentz spaces (see e.g., [22]):

‖u‖2L12,4(R3) =
∥∥∥|u|2∥∥∥

L6,2(R3)
≤ C ‖|u| |∇u|‖L2(R3) . (2.14)
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Hence, by the Young inequality, we have the following inequality

A1 ≤
1
8
‖|u| |∇u|‖2L2(R3) + C ‖∇π‖

2β
3(β−1)

Lβ,∞(R3) ‖u‖
4
L4(R3) .

Summing up the above estimates, we easily deduce

d
dt

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
+

∫
R3
|∇u|2 |u|2 dx +

∫
R3

∣∣∣∇ |u|2∣∣∣2 dx

+

∫
R3
|∇ω|2 |ω|2 dx +

∫
R3

∣∣∣∇ |ω|2∣∣∣2 dx + 2
∫
R3
|ω|4 dx

≤ C ‖∇π‖
2β

3(β−1)

Lβ,∞(R3) ‖u‖
4
L4(R3) +

1
2

(
‖u‖4L4 + ‖ω‖4L4

)
. (2.15)

Defining
H(t) = ‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4 ,

which implies that
d
dt

H(t) ≤ C ‖∇π‖
2β

3(β−1)

Lβ,∞(R3) H(t). (2.16)

In view of Lemma 1.5, we infer that

‖∇π‖ακLβκ,∞ ≤ ‖∇π‖
α(1−κ)
Lβ,∞ ‖∇π‖4κL2,∞ ≤ C ‖∇π‖α(1−κ)

Lβ,∞ ‖∇π‖c1κ

L2 , (2.17)

where c1 is determined later.
Notice that 2

ακ
+ 3

βκ
= 3. Hence, it follows from (2.16), (2.17) and the Young inequality that

d
dt

H(t) ≤ C ‖∇π‖ακLβκ,∞ H(t) ≤ C ‖∇π‖α(1−κ)
Lβ,∞ ‖∇π‖c1κ

L2 H(t)

≤ C ‖∇π‖α(1−κ)
Lβ,∞ ‖|u| |∇u|‖c1κ

L2 H(t)

≤ C ‖∇π‖
2α(1−κ)
2−c1κ

Lβ,∞ H
2

2−c1κ (t) +
1
8
‖|u| |∇u|‖2L2 .

Before going further, we take

c1 =
4
3
, δ =

(2 − c1)κ
2 − c1κ

,

i.e.,

1 + 2δ =
2

2 − c1κ
, 1 − δ =

2(1 − κ)
2 − c1κ

,

in the last relation. Therefore, we obtain that

d
dt

H(t) ≤ C ‖∇π‖α(1−δ)
Lβ,∞

(H(t))1+2δ .

Integrating with respect to time, we obtain

H(t) ≤ H(0) + C
∫ t

0
‖∇π(·, τ)‖α(1−δ)

Lβ,∞ (H(τ)))1+2δdτ,
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equivalently

‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

≤ ‖u0‖
4
L4 + ‖ω0‖

4
L4

+C
∫ t

0
‖∇π(·, τ)‖α(1−δ)

Lβ,∞ (‖u(·, τ)‖4L4 + ‖ω(·, τ)‖4L4)1+2δdτ. (2.18)

Since κ ∈ [0, 1], we know that δ ∈ [0, 1].
Now, we are in a position to complete the proof of Theorem 1.2. From Lemma 1.3, it follows that

there exists T0 > 0 and the smooth solution (̃u, ω̃) of (1.1) satisfying

(̃u, ω̃)(t) ∈ (L∞ ∩C)([0,T0); L4(R3)), (̃u, ω̃)(0) = (u0, ω0).

Since the weak solution (u, ω) satisfies the energy inequality, we may apply Serrin’s uniqueness
criterion to conclude that

(u, ω) ≡ (̃u, ω̃) on [0,T0).

Thus, it is sufficient to show that T0 = T . Suppose that T0 < T . Without loss of generality, we may
assume that T0 is the maximal existence time for (̃u, ω̃)(t). By Lemma 1.3 again, we find that

‖u(·, t)‖L4 + ‖ω(·, t)‖L4 ≥
C

(T0 − t)
1
8

for any t ∈ (0,T0). (2.19)

On the other hand, from (2.12) and (2.18), we know that

sup
0≤t≤T0

(
‖u(·, t)‖4L4 + ‖ω(·, t)‖4L4

)
≤ C(T, u0, ω0) (2.20)

which contradicts with (2.19). Thus, T0 = T . This completes the proof of Theorem 1.2. �
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Villars, Éd. Sci. Méd. Elsevier, 1998, 127–138.
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