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1. Introduction

McIntyre [12] developed a sampling strategy to ascertain the mean pasture yield in Australia, which
was later known as ranked set sampling (RSS). This sampling technique is useful when it is more
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convenient and affordable to rank the sample units without utilizing their precise values. In order
to generate RSS with set size n, we first draw n simple random samples (SRSs) of size n from the
population of interest. Then, we arrange each sample of size n in ascending order of magnitude.
When ranking is done at this step, it is not required to actually measure the sample units because it
can be done using a subjective method like eye inspection or personal judgement. The sample unit
from the ith sample with judgement rank i, i = 1, 2, ..., n, has been chosen for actual quantification.
It is important to note that a limited set size is suggested to facilitate informal rankings. RSS-based
methods are frequently more effective than their SRS equivalents; this issue has been investigated for
a number of common issues in the RSS literature, including, Dell and Clutter [2], Huang [5], Kvam
and Samaniego [8], MacEachern et al. [11], Mohie El-Din et al. [14, 15], Stokes [18], Stokes and
Sager [19], Takahasi and Wakimoto [22], Wang et al. [23] and Zamanzade and Mahdizadeh [24].

The Nadarajah-Haghighi distribution (NHD) was developed by Nadarajah and Haghighi [16] as an
alternative to the gamma, Weibull, and generalized-exponential distributions. Numerous NHD features
are discussed by Nadarajah and Haghighi [16]. Let’s assume that the lifetime of a testing unit X follows
a two-parameter NHD(θ, µ); θ is the shape parameter and µ is the scale parameter. The probability
density function (PDF), cumulative distribution function (CDF), survival function (SF) and hazard rate
function (HRF) are all presented in accordance with the mission time t by

g(x; θ, µ) = θµ(1 + µx)θ−1 exp
(
1 − (1 + µx)θ

)
, x ≥ 0, θ, µ > 0, (1.1)

G(x; θ, µ) = 1 − exp
(
1 − (1 + µx)θ

)
, x ≥ 0, θ, µ > 0, (1.2)

κ(t; θ, µ) ≡ S (t) = exp
(
1 − (1 + µt)θ

)
, t ≥ 0, θ, µ > 0, (1.3)

ξ(t; θ, µ) ≡ H(t) = θµ(1 + µt)θ−1, t ≥ 0, θ, µ > 0. (1.4)

Statistical inferences for the NHD have been studied in considerable detail. Singh et al. [20,21] have
addressed maximum likelihood (MLEs) and Bayes estimations (BEs) based on progressively type II
censoring samples. Ashour et al. [1] calculated MLEs using the Newton-Raphson technique and BEs
using the Markov chain Monte Carlo method (MCMC) based on progressive first-failure censoring
samples. They employed highest posterior density intervals (HPD) and asymptotic confidence intervals
(ACIs) to estimate intervals. Other sources, such as [6, 7] have also called attention to the problems
with an NHD’s order statistics. They both worked on moment recurrence equations in order statistics.

Statistical inference for NHD unknown lifetime parameters have not yet been studied using RSS.
This study’s main objective was to obtain MLEs and BEs based on lifetime data collected under RSS
to produce point and interval estimates of the unknown NHD parameters as well as some lifetime-
parameters, such as the SF and HRF. Independent conjugate gamma priors of the unknown parameters
are taken into account under the squared error loss function (SEL). Additionally, we construct ACIs
and HPD for θ and µ, as well as any function of them. In order to compute the BEs and produce
the associated HPD, we recommend using Lindley-approximation and Metropolis-Hastings (MH)
algorithm. A Monte-Carlo simulation (MC-simulation) analysis was carried out to assess the outcomes
of various estimations through their mean-square error (MSE) and absolute-relative bias (RA). The
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following portions of the study are organized as follows: We derive the MLEs and associated two-
sided ACIs in Section 2. In Section 3, we develop the SEL-based Bayesian inference. The results
of MC-simulation are presented in Section 4. Section 5 describes inferences based on life-time data
analysis as an illustration. Section 6 presents a final conclusion.

2. MLE based on RSS

Consider x j, j = 1, 2, ..., n, as an RSS from NHD(θ, µ). Then, the likelihood-function (LF) based on
x j is

L
(
θ, µ|x j

)
∝

n∏
j=1

[
G(x j)

] j−1 [
1 −G(x j))

]n− j
g(x j). (2.1)

When Eqs (1.1)–(1.3) are substituted into Eq (2.1), we obtain

L
(
θ, µ|x j

)
∝ (θµ)n exp

 n∑
j=1

(n − j + 1)ψ(x j, θ, µ)


×

 n∏
i=1

(ζ(x j, µ))θ−1(1 − exp
(
ψ(x j, θ, µ)

)
) j−1

 , (2.2)

where ζ(x j, µ) = (1 +µx j) and ψ(x j, θ, µ) = 1− (1 +µx j)θ; the related log-LF, `(.) ∝ log L(.), of Eq (2.2)
may be expressed as

`
(
θ, µ|x j

)
∝ n log(θµ) +

n∑
j=1

(n − j + 1)ψ(x j, θ, µ) +

n∑
j=1

(θ − 1) log ζ(xi, µ)

+

n∑
j=1

( j − 1) log(1 − exp
(
ψ(x j, θ, µ)

)
). (2.3)

Differentiating Eq (2.3) partially with regard to θ and µ, we find MLEs θ̃, µ̃, correspondingly, as

L1 =
∂`

∂θ
=

n
θ
−

n∑
j=1

(n − j + 1)(ζ(x j, µ))θ log ζ(x j, µ) +

n∑
j=1

log ζ(x j, µ) +

n∑
j=1

( j − 1)

× (1 − exp(ψ(x j, θ, µ)))−1(ζ(x j, µ))θ log ζ(x j, µ) exp(ψ(x j, θ, µ)), (2.4)

L2 =
∂`

∂µ
=

n
µ
−

n∑
j=1

(n − j + 1)θx j(ζ(x j, µ))θ−1 +

n∑
j=1

(θ − 1)x j(ζ(x j, µ))−1 +

n∑
j=1

( j − 1)

× θx j(ζ(x j, µ))θ−1exp(ψ(x j, θ, µ))(1 − exp(ψ(x j, θ, µ))−1. (2.5)

We have a system of two nonlinear formulae with unknown parameters, and it is clear from Eqs (2.4)
and (2.5) that it is difficult to obtain a closed-form solution. Therefore, in order to acquire the
required MLEs of the two undetermined parameters, we must use an appropriate iterative method,
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such as the Newton-Raphson approach. MLEs κ̃(t) and ξ̃(t) of κ(t) and ξ(t), as in Eqs (1.3) and (1.4),
respectively, for a given time t, are further obtained via the invariance-property of MLEs θ̃ and µ̃.
The asymptotic variance-covariance (VC) matrix of the MLEs ϑ̃ = (θ̃, µ̃)T can be got by inverting the
Fisher-information matrix, Ii j(ϑ) = E[−∂2`(ϑ|data)/∂ϑ2], i, j = 1, 2, which is difficult to obtain by
dropping the expectation operator E and replacing ϑ by ϑ̃. Consequently, we determine the MLEs’
approximately VC-matrix via

I−1
0 (ϑ̃) =

[
Var ˜(θ) Cov(θ̃, µ̃)
Cov(θ̃, µ̃) Var ˜(µ)

]
≈

 −
∂2`(θ,µ|data)

∂2θ
−
∂2`(θ,µ|data)

∂θ∂µ

−
∂2`(θ,µ|data)

∂µ∂θ
−
∂2`(θ,µ|data)

∂µ2


−1

; (2.6)

as a result, the Fisher components will be

L11 =
∂2`

∂θ2 = −
n
θ2 −

n∑
j=1

(n − j + 1)(ζ(x j, µ))θ(log ζ(x j, µ))2 +

n∑
j=1

( j − 1)D(x j, θ, µ), (2.7)

where

D(x j, θ, µ) = −(exp(−ψ(x j, θ, µ)) − 1)−2 exp(−ψ(x j, θ, µ))(ζ(x j, θ, µ))2θ

× (log(ζ(x j, θ, µ))2 + (exp(−ψ(x j, θ, µ)) − 1)−1(ζ(x j, µ))θ

× (log(ζ(x j, θ, µ)))2,

L12 = L21 =
∂2`

∂µ∂θ
= −

n∑
j=1

(n − j + 1)E1(xi, θ, µ) +

n∑
j=1

x j(ζ(x j, µ))−1 +

n∑
j=1

( j − 1)E2(x j, θ, µ), (2.8)

where

E1(x j, θ, µ) = x j(ζ(x j, µ))θ−1 + θx j(ζ(x j, µ))θ−1log(ζ(x j, µ)),

E2(x j, θ, µ) = −θx j(exp(−ψ(x j, θ, µ)) − 1)−2 exp(−ψ(x j, θ, µ))
× (ζ(x j, θ, µ))2θ−1log(ζ(x j, µ)) + (exp(−ψ(x j, θ, µ)) − 1)−1

× E1(x j, θ, µ),

L22 =
∂2`

∂µ2 = −
n
µ

2
−

n∑
j=1

(n − j + 1)θ(θ − 1)x j
2(ζ(x j, µ))θ−2

−

n∑
j=1

(θ − 1)x j
2(ζ(x j, µ))−2 +

n∑
j=1

( j − 1)E3(x j, θ, µ), (2.9)

where

E3(x j, θ, µ) = −θ2x j
2(exp(−ψ(x j, θ, µ) − 1))−2exp(−ψ(x j, θ, µ))

× (ζ(x j, µ))2θ−2 + θ(θ − 1)x j
2(exp(−ψ(x j, θ, µ) − 1))−1 × (ζ(x j, µ))θ−2.
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It is feasible to employ the asymptotic normality of MLEs ϑ̃ ∼ N(ϑ̃, I−1
0 (ϑ̃)) to establish 100(1 −

a)% two-sided ACIs for the unknown parameters θ and µ, consequently, as θ̃ ± Za/2

√
Var(θ̃) and µ̃ ±

Za/2
√

Var(µ̃), where Za/2 represents the percentile of the standard normal distribution. According to
Greene [3], we employ the delta approach to get approximations of the variances of κ̃(t) and ξ̃(t).
As a result, the variance of κ̃(t) and ξ̃(t) may be roughly calculated by using Var(κ̃(t)) = AtI−1

0 (ϑ̃)A
and Var(ξ̃(t)) = BtI−1

0 (ϑ̃)B, where A =
[
∂κ(t)
∂θ
, ∂κ(t)
∂µ

]
(θ=θ̃, µ=µ̃)

and B =
[
∂ξ(t)
∂θ
, ∂ξ(t)
∂µ

]
(θ=θ̃, µ=µ̃)

. Thus, the

100(1 − a)% two-sided ACIs of κ(t) and ξ(t), respectively, provided by κ̃(t) ± Za/2
√

Var(κ̃(t)) and
ξ̃(t) ± Za/2

√
Var(ξ̃(t)).

3. Bayesian inference

We use the assumption that the unknown parameters θ and µ are both independent random
variables, and have conjugate gamma priors, i.e., θ ∼ Gamma(c1, d1) and µ ∼ Gamma(c2, d2),
respectively, in order to derive the BEs. In order to reflect prior information regarding the two
unknown parameters θ and µ, the hyper parameters c j, d j, j = 1, 2 were chosen. As a result,
π(θ, µ) ∝ θc1−1µc2−1e−(d1θ+d2µ), θ, µ > 0 and c j, d j > 0, j = 1, 2 can be applied to express the joint
prior density of θ and µ. The joint posterior PDF of θ and µ in the continuous Bayes’ theorem can be
defined by π(θ, µ|x) ∝ L(θ, µ|x)π(θ, µ). The joint posterior distribution is

π(θ, µ|x) = K−1θn+c1−1µn+c2−1 exp

−
d1θ + d2µ −

n∑
j=1

(n − j + 1)ψ(x j, θ, µ)




×

 n∏
i=1

(ζ(x j, µ))θ−1(1 − expψ(x j, θ, µ)) j−1

 ; (3.1)

K =

∫ ∞

0

∫ ∞

0
θn+c1−1µn+c2−1 exp

−
d1θ + d2µ −

n∑
j=1

(n − j + 1)ψ(x j, θ, µ)




×

 n∏
i=1

(ζ(x j, µ))θ−1(1 − expψ(x j, θ, µ)) j−1

 dθdµ. (3.2)

As a consequence, the BEs of δ(ϑ), ϑ = (θ, µ) under SEL, is the posterior expectation of δ(ϑ) and is
provided by

δ̃(ϑ) = E(δ(ϑ|x)) =

∫ ∞

0

∫ ∞

0
δ(ϑ)π(ϑ|x)dϑ. (3.3)

Nevertheless, the BEs are computed as two-dimensional integrals based on Eq (3.3), for which there
is no closed-form solution. As a result, we advise adopting Lindley’s approximation and MCMC
methodology as two techniques for approximating Eq (3.3).

3.1. Lindley-approximation based on RSS

Considering that the ratio form of posterior distribution contains an integration-denominator and
couldn’t be simplified to closed-form, so Lindley [10] introduced a way to assess the posterior
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expectation. Consequently, we approximate BEs using Lindley’s technique. The posterior-expectation
of φ(α) is shown by

E(φ(α)|x) =

∫
α
φ(α)eφ(α)dα∫
α

eφ(α)dα
,

where φ(α) = `(α) + g(α), `(α) represents log-LF and g(α) = log(π(α)) represents log prior-function.
Approximate BE, φ̃(α1, α2), for the two-parameter case φ(α1, α2) can be defined as

φ̃L(α1, α2) = φ(α̃1, α̃2) + 0.5
2∑

i, j=1

(ui j + 2u jgi)σi j + 0.5
2∑

i, j,k,s=1

`i jkusσi jσsk, (3.4)

where

ui =
∂φ(α1, α2)

∂αi
, ui j =

∂2φ(α1, α2)
∂αi∂α j

,

Li j =
∂2`(α1, α2)
∂αi∂α j

, Li jk =
∂3`(α1, α2)
∂αi∂α j∂αk

,

g = logπ(α1, α2), gi =
∂g
∂αi

and σi j represents the (i, j)th element of VC-matrix I−1
0 (α̃1, α̃2).

We can write Eq (3.4) as

φ̃(θ, µ) = φ(θ̃, µ̃) + u12σ12 + 0.5(u11σ11 + u22σ22) + u1(g1σ11 + g2σ21)
+ u2(g1σ12 + g2σ22) + 0.5[(ϕ1(u1σ11 + u2σ21) + ϕ2(u1σ12 + u2σ22)], (3.5)

where ϕ1 =
∑2

i, j=1 Li j1σi j and ϕ2 =
∑2

i, j=1 Li j2σi j. Approximate BEs θ̃L and µ̃L of θ and µ based on SEL
are supplied as

θ̃L = θ̃ + g̃1σ11 + g̃2σ21 + 0.5(σ11(L̃111σ11 + 2L̃121σ12 + L̃221σ22)
+ σ12(L̃112σ11 + 2L̃112σ12 + L̃222σ22)), (3.6)

and

µ̃L = µ̃ + g̃1σ12 + g̃2σ22 + 0.5(σ21(L̃111σ11 + 2L̃211σ21 + L̃221σ22)
+ σ22(L̃112σ11 + 2L̃122σ12 + L̃222σ22)), (3.7)

where g1 =
∂g
∂θ

= c1−1
θ
− d1, g2 =

∂g
∂µ

= c2−1
µ
− d2. So, to calculate the BEs using Lindley’s approach, we

need to have

L111 =
∂3`

∂θ3 =
2n
θ3 −

n∑
j=1

(n − j + 1)(ζ(x j, µ))θ(log ζ(x j, µ))3

+

n∑
j=1

( j − 1)D(θ)(x j, θ, µ), (3.8)
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where D(θ)(x j, θ, µ) =
∂D(x j,θ,µ)

∂θ
.

L112 =
∂3`

∂θ2∂µ
= −

n∑
j=1

(n − j + 1)[θx j(ζ(x j, µ))θ−1(log ζ(x j, µ))2

+ 2x j(ζ(x j, µ))θ−1(log ζ(x j, µ))] +

n∑
j=1

( j − 1)D(µ)(x j, θ, µ), (3.9)

L222 =
∂3`

∂µ3 =
2n
µ3 −

n∑
j=1

(n − j + 1)θ(θ − 1)(θ − 2)x j
3(ζ(x j, µ))θ−3

+ 2
n∑

j=1

(θ − 1)x3
j(ζ(x j, µ))−3 +

n∑
j=1

( j − 1)E(µ)(x j, θ, µ), (3.10)

L221 =
∂3`

∂µ2∂θ
= A(x j, θ, µ) −

n∑
j=1

x j
2(ζ(x j, µ))−2 +

n∑
j=1

( j − 1)E(θ)(x j, θ, µ), (3.11)

where

A(x j, θ, µ) = −

n∑
j=1

(n − j + 1)2(θ − 1)x j
2(ζ(x j, µ))θ−2

+ θ(θ − 1)(ζ(x j, µ))θ−2 log(ζ(x j, µ)). (3.12)

The following equation provides an estimate of the BE κ̃(t, θ, µ) of κ(t, θ, µ):

κ̃L(t, θ, µ) = κL(t, θ̃, µ̃) + ũ12σ̃12 + 0.5(ũ11σ̃11 + ũ22σ̃22) + ũ1(g̃1σ̃11 + g̃2σ̃21)
+ ũ2(g̃1σ̃12 + g̃2σ̃22) + 0.5[ϕ̃1(ũ1σ̃11 + ũ2σ̃21) + ϕ̃2(ũ1σ̃12 + ũ2σ̃22)], (3.13)

where

κL(t, θ, µ) = e1−(1+µ t)θ , (3.14)

u1 =
∂κ(t, θ, µ)

∂θ
= −(1 + µt)θ log(1 + µt)e1−(1+µt)θ , (3.15)

u2 =
∂κ(t, θ, µ)

∂µ
= −θt(1 + µt)θ−1e1−(1+µt)θ , (3.16)

u11 =
∂2S (t, θ, µ)

∂θ2 = (1 + µt)θ(log(1 + µt))2((1 + µt)θ − 1) ×e1−(1+µt)θ , (3.17)

u22 =
∂2κ(t, θ, µ)

∂µ2 = θt2(1 + µt)θ−1e1−(1+µt)θ × (θ(1 + µt)θ−1 − (θ − 1)(1 + µt)−1), (3.18)
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u12 = u21 =
∂2κ(t, θ, µ)
∂θ∂µ

= t(1 + µt)θ−1[θ((1 + µt)θ − 1) × log(1 + µt) − 1]e1−(1+µt)θ . (3.19)

Similarly, approximate BE of ξ̃L(t, θ, µ) of ξ(t, θ, µ) is

ξ̃L(t, θ, µ) = ξL(t, θ̃, µ̃) + ũ12σ̃12 + 0.5(ũ11σ̃11 + ũ22σ̃22) + ũ1(g̃1σ̃11 + g̃2σ̃21)
+ ũ2(g̃1σ̃12 + g̃2σ̃22) + 0.5[ϕ̃1(ũ1σ̃11 + ũ2σ̃21) + ϕ̃2(ũ1σ̃12 + ũ2σ̃22)], (3.20)

where

ξL(t, θ, µ) = θµ(1 + µt)θ−1, (3.21)

u1 =
∂ξ(t, θ, µ)

∂θ
= µ(1 + µt)θ−1[1 + θ log(1 + µt)], (3.22)

u2 =
∂ξ(t, θ, µ)

∂µ
= θ(1 + µt)θ−1[1 + tµ(θ − 1)(1 + µt)−1], (3.23)

u11 =
∂2ξ(t, θ, µ)

∂θ2 = µ(1 + µt)θ−1 log(1 + µt)[θ log(1 + µt) + 2], (3.24)

u22 =
∂2ξ(t, θ, µ)

∂µ2 = tθ(θ − 1)(1 + µt)θ−2[2 + µt(θ − 2)(1 + µt)−1], (3.25)

u12 = u21 =
∂2ξ(t, θ, µ)
∂θ∂µ

= (1 + µt)θ−1[1 + θ log(1 + µt)

+ µt(θ − 1)(1 + µt)−1(1 + θ log(1 + µt)) + µθt(1 + µt)−1]. (3.26)

However, we are unable to create the HPD credible intervals using Lindley’s approximation. The
Metropolis-Hastings (MH) method may be used to accomplish this goal by generating samples from
the posterior distribution using MCMC, then computing BEs and their related HPD.

3.2. MH-algorithm based on RSS

To implement MCMC approach and produce samples from the joint posterior distribution, we utilize
MH sampler algorithm (Metropolis et al. [13] and Hastings [4]). According to Eq (3.1), the conditional
posterior distributions of θ and µ are provided by

π∗1(θ|µ, x) ∝ θn+a1−1e−(b1θ−
∑n

j=1(n− j+1)ψ(x j;θ,µ))

 n∏
j=1

(ζ(x j; µ))θ−1(1 − eψ(x j;θ,µ)) j−1

 , (3.27)

and

π∗2(µ|θ, x) ∝ µn+b1−1e−(b2µ−
∑n

j=1(n− j+1)ψ(x j;θ,µ))

 n∏
j=1

(ζ(x j; µ))θ−1(1 − eψ(x j;θ,µ)) j−1

 . (3.28)
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Analytical reduction to well-known distributions of the conditional posterior distributions of
Eqs (3.27) and (3.28) of unknown parameters θ and µ is not possible. Hence, in order to get the
BEs as well as accompanying HPD credible interval, MH algorithm with normal proposed distribution
has been utilized to get random samples from such conditional posterior distributions. MH algorithm’s
stages are carried out as follows:

Step 1: Select initial values θ(0) and µ(0).

Step 2: Start with J = 1.

Step 3: Obtain θ(J) and µ(J) from Eqs (3.27) and (3.28) with normal proposal distributions N(θ(J−1), σ2
θ)

and N(µ(J−1), σ2
µ) as

(a) Generate θ(∗) from N(θ(J−1), σ2
θ), and µ(∗) from N(µ(J−1), σ2

µ).
(b) Calculate the acceptance probability using

φθ = min
(
1,

π∗1(θ(∗)|µ(J−1), x)
π∗1(θ(J−1)|µ(J−1), x)

)
, (3.29)

and

φµ = min
(
1,

π∗2(µ(∗)|θ(J), x)
π∗2(µ(J−1)|θ(J), x)

)
. (3.30)

(c) Generate u1 and u2 from uniform distribution.
(d) If u1 ≤ φθ, don’t reject proposal, then put θ(J) = θ∗, otherwise put θ(J) = θ(J−1).
(e) If u2 ≤ φµ, don’t reject proposal, then put µ(J) = µ∗, otherwise put µ(J) = µ(J−1).

Step 4: At a specific time t, BEs of the SF and HRF are provided by

κ(J)(t) = e1−(1+µ(J)t)θ
(J)

, (3.31)

and

ξ(J)(t) = θ(J)µ(J)(1 + µ(J)t)(θ(J)−1). (3.32)

Step 5: Put J = J + 1.

Step 6: Steps 3–5 should be repeated M-times to obtain

ρ( j) = (θ( j), µ( j), κ( j)(t), ξ( j)(t)), j = 1, 2, ...,M. (3.33)

Step 7: To determine the HPD of ρ = (θ, µ, κ(t), ξ(t)), arrange the MCMC sample of ρ( j), j = 1, 2, ...,M
into (ρ(1), ρ(2), ..., ρ(M)).

The 100(1 − γ)% HPD of ρ is given by (ρ(J∗), ρ(J∗+(1−γ)M)), where J∗ is selected such that

ρ(J∗+(1−γ)M) − ρ(J∗) = min
1≤ j≤γM

(ρ( j+(1−γ)M) − ρ( j)), J∗ = 1, 2, ...,M. (3.34)

So, we can obtain the shortest length of HPD interval for ρ. The initial simulated iterations of the
algorithm, M0, are frequently discarded at the start of the analytical implementation (burn-in period),
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to guarantee convergence. The drawn samples, ρ( j), j = M0+1, ...,M, are then large enough to construct
the BEs. As a result, any function of θ and µ under SEL has MCMC BEs of ρ(θ, µ) that are provided
by

ρ̃MH =

M∑
j=M0+1

ρ( j)

M − M0
.

4. MC-simulation analysis

This section compares the estimated values for θ, µ, κ(t) and ξ(t) using MC-simulation analysis.
We calculated MLEs as well as BEs for the reliability characteristics and unknown-parameters. For
Bayesian computing, Lindley’s approximation as well as MCMC techniques using SEL were utilized.
With regard to their MSE and RA values, various estimators have been compared. A 95% ACI/HPD
intervals’ performances have also been compared using average lengths (ALs). We determined our
mean estimates, or MSEs in addition RAs, which are provided, respectively, by ¯̃ϑ = 1

ς

∑ς
i=1 ϑ̃i,

MSE(ϑ̃) = 1
ς

∑ς
i=1(ϑ̃i − ϑ)2 and RA(ϑ̃) = 1

ς

∑ς
i=1
|ϑ̃i−ϑ|
ϑ

, where ς = 1000 and ϑ̃ denotes the estimates
of the parametric function. We have used the informative priors of θ and µ with c1 = c2 = 1 and
d1 = 0.2, d2 = 0.3 when (θ, µ) = (0.2, 0.3), such that the hyper-parameter values selected to satisfy
the prior-mean are transformed into the predicted value of the associated parameter. For specified time
t = 5, the true values of κ(t) and ξ(t) were further approximated to be κ(5) = 0.8178 and ξ(5) = 0.0288.

Based on true values of θ and µ, we generated n sets of random samples, each one of size n from
NHD(θ, µ) distribution, by using the transformation Xi = 1

µ

(
(1 − ln (1 − Ui))

1
θ − 1

)
, i = 1, · · · , n, Ui

was taken from U(0, 1). Then, by using an RSS scheme (SCH-I) and SRS scheme (SCH-II), samples
of size n = 4, 7, 10 were obtained.

The various BEs were produced by using MH sampler technique suggested in the theoretical
section, with 12, 000 MCMC samples; we dropped the first 2000 samples as burn-in. We calculated
ALs of the 95% ACI/HPD of θ, µ, κ(t) and ξ(t). Statistical computer language Mathematica was used
to carry out extensive computations. Table 1 displays mean of MLEs and BEs for θ, µ, κ(t) and ξ(t).
Additionally, Table 2 includes the ALs of θ, µ, κ(t) and ξ(t).

Table 1 displays that the reliability features of the NHD in terms of the MSEs and RAs based
on MLEs and BEs are extremely superb. MSEs and RAs of all estimates decline as n increases, as
predicted. Additionally, BEs utilizing gamma informative priors are superior to MLEs in terms of the
MSEs and RAs because they involve prior knowledge. Based on the MSEs and RAs, MCMC technique
employing the MH algorithm is superior to Lindley’s approximation method. HPD outperform ACIs
in regard to ALs for interval estimation. Additionally, by increasing n, the ALs of ACIs and HPD
credible intervals decrease. We recommend applying point and interval BEs using the MH method.
Furthermore, MSEs and RAs of MLEs and BEs for parameters were higher for SCH-II than SCH-I in
most cases when comparing SCH-I and SCH-II. Given that the experiment’s observations for SCH-I
were more random than for SCH-II, therefore, it would be expected that the data collected by SCH-I
would reveal more details regarding reliability-parameters than the sample collected by SCH-II.
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Table 1. The mean, MSEs and RAs of θ, µ, κ(t) and ξ(t), respectively.

(·)MLE (·)Lindley (·)MCMC

SCH n Par. Mean MSE RA Mean MSE RA Mean MSE RA

I 4 θ 0.3658 0.1347 0.9580 0.3643 0.3737 1.1611 0.2567 0.0136 0.3619
µ 0.4795 0.5949 1.2728 1.4235 4.0567 4.0127 0.5512 0.1347 0.9607
κ(t) 0.7996 0.0082 0.0856 0.7038 0.0219 0.1536 0.7717 0.0058 0.0708
ξ(t) 0.0319 0.03157 0.3074 0.0392 0.03229 0.3953 0.0358 0.03233 0.3228

7 θ 0.2339 0.0121 0.2915 0.2057 0.0175 0.2891 0.2417 0.0047 0.2351
µ 0.3884 0.1467 0.7367 0.8810 1.7588 2.0783 0.3545 0.0261 0.4200
κ(t) 0.8095 0.0036 0.0581 0.7552 0.0079 0.0870 0.8149 0.0021 0.0435
ξ(t) 0.0296 0.04477 0.1859 0.0329 0.04481 0.1834 0.0292 0.04465 0.1776

10 θ 0.2140 0.0029 0.1791 0.1973 0.0024 0.1730 0.2635 0.0065 0.3202
µ 0.3697 0.0987 0.5949 0.6182 0.3712 1.1906 0.2354 0.0155 0.3429
κ(t) 0.8118 0.0022 0.0457 0.7815 0.0035 0.0573 0.8425 0.0022 0.0451
ξ(t) 0.0292 0.04241 0.1349 0.0310 0.04213 0.1258 0.0262 0.04422 0.1718

II 4 θ 0.5301 0.4068 1.7752 0.5964 2.2008 2.3410 0.3167 0.0511 0.6616
µ 0.5558 0.8976 1.6348 2.0835 9.6308 6.2730 0.5733 0.1508 1.0316
κ(t) 0.7700 0.0189 0.1240 0.6290 0.0531 0.2435 0.7329 0.0155 0.1124
ξ(t) 0.0402 0.0013 0.6041 0.0520 0.0012 0.8317 0.0466 0.0012 0.6816

7 θ 0.3191 0.0894 0.7236 0.2865 0.1953 0.7674 0.2683 0.0168 0.3893
µ 0.5289 0.6080 1.3210 1.6811 5.7211 4.7972 0.4138 0.0389 0.5226
κ(t) 0.7823 0.0115 0.0981 0.6652 0.0347 0.1954 0.7829 0.00570 0.0657
ξ(t) 0.0344 0.03312 0.3732 0.0434 0.03407 0.5278 0.0355 0.03273 0.3454

10 θ 0.2610 0.0346 0.4371 0.2307 0.1100 0.4457 0.2565 0.0079 0.3078
µ 0.5314 0.5420 1.2350 1.4521 4.5489 3.9685 0.3284 0.0161 0.3233
κ(t) 0.7881 0.0081 0.0826 0.6964 0.0214 0.1544 0.8100 0.0029 0.0495
ξ(t) 0.0324 0.03120 0.2748 0.0394 0.03188 0.3831 0.0309 0.04962 0.2393

Note: 0.0mu = u × 10−m−1.

Table 2. ALs of 95% ACIs and HPDs for the parameters and reliability characteristics.
SCH-I SCH-II

n Par. ACI HPD ACI HPD
4 θ 1.0308 0.3962 2.2330 0.5546

µ 2.8715 1.3729 4.0960 1.4736
κ(t) 0.4159 0.3149 0.5823 0.4001
ξ(t) 0.0534 0.0482 0.0928 0.0780

7 θ 0.4888 0.3049 0.7550 0.3767
µ 1.4885 0.8068 3.1130 1.0059
κ(t) 0.2736 0.2247 0.4775 0.3147
ξ(t) 0.0307 0.0301 0.0619 0.0505

10 θ 0.3754 0.2778 0.4245 0.3295
µ 1.0357 0.4916 2.6980 0.7653
κ(t) 0.2018 0.1784 0.4090 0.2709
ξ(t) 0.0218 0.0205 0.0496 0.0410
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5. Real-life data analysis

In order to show how the suggested technique may be used to study real-life events, a real data set
was examined. The analyzed data-set, which depicts failure times for 33 small electronic applications
with known failure causes in an autonomous life test, is shown in [9]. There were totals of 17
and 16 observed failures attributed to causes 1 and 2, respectively, from the entire failure times.
For computational ease, each failure time point in the original data set was split by a thousand.
Salem et al. [17] analyzed and addressed transformed failure times of electronic applications. Before
sampling, we fitted the NHD to the whole set of data and compared it with the fitting of three-lifetime
distributions, specifically, the gamma distribution (G-D), Weibull distribution (W-D) and generalized-
exponential distribution (GE-D).

The data’s compatibility with the G-D, W-D, GE-D and NHD is one issue that has to be addressed.
The reliability of the proposed model has been evaluated using the goodness of fit test (GFT)
statistics with related pvalues from the Kolmogorov Smirnov (KS) and Anderson Darling (AD) tests.
Additionally, we evaluated the following:

• negative-log-LF= (−̃l) at MLEs,
• Akaike-criteria, AC = −2̃l + 2w,
• Akaike-criteria-correction, ACc = AC + 2nw

n−w−1 ,
• Akaike-criteria-consistent, CAC = −2̃l + 2nw

n−w−1 ,
• Bayesian-criterion, BC = −2̃l + w log(n),
• Hannan-Quinn-criteria, HQC = −2̃l + 2w log(log(n)), n is sample size and w is the number of

model parameters are taken into account, see Ashour et al. [1].

The optimal distribution often has the greatest pvalues and lowest values for the −̃l, AC, ACc, CAC,
BC, HQC, KS, and AD statistics. Table 3 lists the values for MLEs of the distribution parameters and
the accompanying GFT metrics. Table 4 provides the statistical results of the KS and AD GFTs, and
their pvalues. Additionally, we assessed the distributions’ goodness of fit by using a graphing method.
For the G-D, W-D, GE-D and NHD, we created quantile-quantile (Q-Q) plots, which are shown in
Figure 1. The points

(
F−1

(
(i−0.5)

n ; θ̃
)
, x(i)

)
, i = 1, 2, ..., n are shown on a Q-Q plot; θ̃ is the MLE of

θ and x(i) is ordered data. We have also included two graphs that were produced using the estimated
parameters for a more precise explanation. The SFs of the G-D, W-D, GE-D and NHD have been
fitted by using the empirical CDF plot, which is the first plot. As shown in Figure 2, the subsequent
plot represents the histogram of the real-data together with PDFs for the G-D, W-D, GE-D and NHD.
The fact that it is frequently impossible to demonstrate the existence and uniqueness of the generated
estimators is one of the main problems with ML inference. The contour plot of the log-LF based on
NHD parameters is presented in Figure 3 to help address this issue using the observed failure data.
It shows the existence and uniqueness of the MLEs θ̃ and µ̃. Therefore, to begin the computational
iteration, we suggest using these estimates as initial hypotheses.

The NHD is the best option among the comparable G-D, W-D and GE-D that have been studied to
fit lifetime data as it had the lowest GFTs and greatest pvalues, as can be observed from Tables 3 and
4. The Q-Q plots also lend credence to the aforementioned conclusions.
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Figure 1. Q-Q plots of G-D, W-D, GE-D and NHD models.
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Figure 2. SF and PDF results for G-D, W-D, GE-D and NHD based on electronic data.
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Figure 3. Log-LFs of MLEs and contour-plots of log-LFs of θ and µ for electronic data.

We can obtain at random six sets with n = 6 items in each set to develop RSS to demonstrate the
inferential techniques used in the previous sections (see Table 5). The reliable features κ(t) and ξ(t)
at the specified time t = 2, in addition to MLEs and BEs of θ and µ, were calculated and are listed
in Table 6. Under a non-informative prior, Lindley-approximation and MCMC method were used to
develop BEs. The first 10,000 iterations were removed from the sequence after we generated 50,000
MCMC samples. The MLEs for θ, µ, κ(t) and ξ(t) were used as initial-values for the MCMC sampler
procedure. Additionally, Table 6 lists a 95% ACIs and HPD intervals. Forty-thousand outcome of θ,
µ, κ(t) and ξ(t) are shown in Figure 4 together with their sample means (solid line (—)) and 95% two
sided intervals (dashed lines (- - -)). Additionally, this plot demonstrates that MCMC algorithm has
achieved good convergence and burn-in-period sample size is appropriate to eliminate initial proposals
effects.
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Table 3. Fitting summary based on lifetime data.

Distribution MLEs −̃l AC ACc CAC BC HQC

NHD θ̃ = 3.6208 59.2076 122.4150 126.8150 122.8150 125.4080 123.4220

µ̃ = 0.0811

G-D θ̃ = 1.0379 60.9078 125.8160 130.2160 126.2160 128.8090 126.8230

µ̃ = 0.4453

W-D θ̃ = 1.1322 60.5831 125.1660 129.5660 125.5660 128.1590 126.1730

µ̃ = 0.3683

GE-D θ̃ = 1.0139 60.9203 125.8410 130.2410 126.2410 128.8340 126.8480

µ̃ = 0.4327

Note: The best model is represented by values in bold font.

Table 4. GFT statistics.

Distribution KS AD

Stat. pvalue Stat. pvalue

NHD 1.2904 0.2345 0.1667 0.2855
G-D 1.8090 0.1175 0.2250 0.0598

W-D 1.6590 0.1429 0.2051 0.1075

GE-D 1.8301 0.1144 0.2274 0.0554

Note: The best model is represented by values in bold font.

Table 5. An RSS with sample size n = 6.

Samples
0.7080 2.4000 2.4510 2.5510 2.7020 3.0590
0.0490 0.1700 2.4510 2.5510 2.6940 2.7610
0.0110 0.0490 1.0620 2.3270 3.0340 7.8460
0.1700 0.3290 0.9580 2.4510 2.5680 3.0340
1.1677 1.5940 1.9257 1.9900 2.2230 3.0340
0.0117 1.0627 1.5940 2.5680 3.0340 4.3290
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Table 6. The MLEs, BEs and their two-sided ACIs/HPD intervals of θ, µ, κ(t) and ξ(t) based
on electronic data.

MLE BE
SCH Par. ACI Lindley’s MCMC HPD
I θ 2.9660 (0.0000,9.3904) 2.6223 1.4559 (0.4402,2.9512)

µ 0.1327 (0.0000,0.4670) 0.3654 0.4501 (0.0629,1.0250)
κ(2) 0.3639 (0.1980,0.5298) 0.3488 0.3608 (0.1968,0.5305)
ξ(2) 0.6256 (0.2944,0.9568) 0.5838 0.5589 (0.2820,0.8897)

II θ 4.2104 (0.0000,12.7149) 1.8597 1.2835 (0.3612,2.7085)
µ 0.0829 (0.0000,0.2676) 0.2345 0.4180 (0.0625,0.7787)
κ(2) 0.4033 (0.1382,0.6684) 0.4116 0.4249 (0.1711,0.6842)
ξ(2) 0.5714 (0.0811,1.0617) 0.5414 0.4772 (0.1160,0.8819)
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Figure 4. MCMC trace plots of θ, µ, κ(t) and ξ(t) based on RSS of electronic data.
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Figure 5. MCMC trace plots of θ, µ, κ(t) and ξ(t) based on SRS of electronic data.

6. Conclusions

The issue of determining the NHD’s life-time parameters when the observed data are drawn by RSS
is addressed in this article based on MLEs and BEs. These estimations can be computed numerically
but cannot be achieved in closed forms. The BEs were got by utilizing the Lindley-approximation
and MCMC techniques with gamma-priors under SEL. Asymptotic-normality MLEs as well as the
delta technique were used to construct 95%-ACIs of life-time parameters. We used MH technique to
get point estimations and related HPD credible intervals because Lindley approximation approach is
unable to develop the HPD credible intervals.
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