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Ontologies can provide a valuable role in the work of cancer registration,

particularly as a tool for managing and navigating the various classification

systems and coding rules. Further advantages accrue from the ability to

formalise the coding rule base using description logics and thereby benefit

from the associated automatic reasoning functionality. Drawing from earlier

work that showed the viability of applying ontologies in the data validation tasks

of cancer registries, an ontology was created using a modular approach to

handle the specific checks for childhood cancers. The ontology was able to

handle successfully the various inter-variable checks using the axiomatic

constructs of the web ontology language. Application of an ontological

approach for data validation can greatly simplify the maintenance of the

coding rules and facilitate the federation of any centralised validation process

to the local level. It also provides an improved means of visualising the rule

interdependencies from different perspectives. Performance of the automatic

reasoning process can be a limiting issue for very large datasets and will be a

focus for future work. Results are provided showing how the ontology is able to

validate cancer case records typical for childhood tumours.

KEYWORDS

ontology design, description logic, data validation, data harmonization, cancer
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Introduction

A centralised process currently exists for collecting and validating data from the

European cancer registries prior to the derivation of indicators that frame the information

available on the European Cancer Information System (ECIS) website (1). Dedicated

software is used for the validation task, the development of which is a labour-intensive

process requiring frequent interactions between the development team and the domain

experts. If the rules are updated, there is significant maintenance effort to refactor the code

and release the new version. The centralised data collection process is itself facing increased

challenges with stricter data-privacy rules and measures, especially for data related to

minors. Both these issues impinge directly on the timely availability of cancer-burden

indicators which in turn compromises their value in influencing policy-related actions.

Computer ontologies provide a key for the provision of more efficient and verifiable data
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validation processes as well as for the eventual federation of the

processes to the local cancer registry level.

Ontologies are also a valuable tool in general for supporting the

work of cancer registries. They provide a knowledge base able to

describe entities and their relationships and consequently afford the

means of capturing the semantics associated with any given

domain. Moreover, the entities defined in one ontology can be

linked to entities defined in another ontology. One immediate

advantage is that the categorisation and linkage of entities can be

made available in one application without the need of having to

consult a wide set of different coding and classification standards; all

the information is readily accessible. A further interesting feature is

that the representation of knowledge in an ontology can be

described formally using description logics (DLs). DLs constitute

a branch of logics, with most DLs being decidable fragments offirst-

order logic (2). DLs also provide the possibility for some level of

deductive reasoning and this is a useful feature for data validation,

which is an essential task of cancer registries.

In order to ensure the necessary harmonisation of data-

validation practices in Europe, the European Network of Cancer

Registries (ENCR) agrees the rules that constrain the values and

ranges cancer data variables can take. Many of these rules have

multivariable dependencies and it is difficult to express them in

unambiguous terms. Encoding the rules in an ontology allows them

to be expressed in a formal sense via DL and can highlight

inconsistencies in the rules that might otherwise have gone

undetected (3).

The ease with which classes and their relationships can be created

in an ontology editor such as Protégé (4) belies the difficulties of

achieving a good ontology design. There are many ways in which the

axioms can be constructed and the way in which they are formulated

can have far-reaching implications on computational performance

(especially where automatic reasoning is required) and on the ease of

extracting information from the knowledge base. Guidelines, tools,

and patterns are not widely available and ontology engineering is an

emerging field. A key design principle is to achieve wide applicability

of an ontology within the domain to avoid a multiplication of

ontologies that cannot easily be integrated. This principle has been

a driving factor in the design of the ontology for validating childhood

cancer registry data.

An additional design aspect that has also to be kept in mind

relates to the division of an ontology between pre and post

coordination concepts. In pre coordination, knowledge about

entities and their relations is asserted a priori in the ontology,

whereas in post coordination (5), other relationships are inferred

following an automatic reasoning process. Both mechanisms are

useful and the degree to which one or other is used depends largely

on the requirements of the application. Using a predominantly pre-
Abbreviations: Computational complexity classes, PTIME, EXPTIME,

N2EXPTIME; DL, description logics; DL Expressivities, ALC, EL, SHIQ,

SROIQ; ECIS, European Cancer Information System; ENCR, European

Network of Cancer Registries; ICD-O-3, International Classification of Diseases

for Oncology; IRI, international resource identifier; LOD, linked open data;

SNOMED CT, SNOMED Clinical Terminology; TNM, TNM classification of

malignant tumours.
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coordinated ontology design would require an unmanageable set of

axioms for the validation of cancer registry data. However, post

coordination requires automated reasoning to make inferences

based on the asserted axioms and can be computationally

intensive depending on the expressivity of the DL in which the

axioms are formulated.

The design of an ontology is here presented that can model

the rules for validating childhood cancers. The ontology serves as

the basis for developing a simple programme interface for the

systematic validation of cancer registry records. The concept is

notably different from the traditional approach of developing

dedicated validation software. The validation conditions and

machine intelligence are maintained within the ontology itself

and the task of any programme interface is reduced solely to

managing the data input process, invoking the standard machine

reasoning tools and managing the output process. The ontology

thereby provides a standalone resource that can be used for many

different purposes resulting from its underlying knowledge base and

can serve to reduce considerably software development and

maintenance costs.
Method

An earlier tentative approach (6) showed the viability of using

an ontology for validating cancer registry data and the associated

advantages of expressing the rules in DL. The ontology had to be

redesigned to allow a more scalable and comprehensive approach to

the rules and to build on a number of shared core ontologies. Two

validation modules dealing with cancer stage (7) and multiple

primary tumours (8) have been developed according to this

principle. Both these ontologies were developed as stand-alone

applications since they are computationally quite demanding

tasks and generally apply only to a subset of cancer registry case

records, but they draw on the same shared core ontologies. The

third application suite addressed in this article concerns the

remainder of the ENCR validation checks, namely those relating

to age constraints, tumour signatures, basis of diagnosis, grade, and

sex. Figure 1 illustrates the ontology structure, in which the

international classification of diseases for oncology, third edition,

first revision (ICD-O-3.1) and the international classification of

diseases for oncology, third edition, second revision (ICD-O-3.2)

modules contain all the ICD-O third edition codes (ICD-O-3) and

updates. The MorphologicalGroupChildhood ontology can be

swapped out relatively seamlessly dependent on the requirements

of the application. It has been designed for validating childhood

cancer data which forms the focus of this article and draws from the

grouping and subgrouping of the ICD-O-3 codes defined by the

international classification of childhood cancer, third edition

(ICCC-3) update 2017 (9). This module however can be replaced

by any other grouping of ICD-O-3 codes and the resulting

application used also for validating adult cancer records.

The ENCRTumourSignature ontology provides the permissible

code couplets for topography and morphology values according to

the ENCR rules (10) and can itself be used also as a standalone

ontology if required. The modular approach to creating ontologies
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via the mechanism to import ontologies into other ontologies is of

great benefit to the scalability, reuse and maintenance of ontologies.

Computational performance accounts for one of the main

current drawbacks to automatic reasoning in DL and requires

further care in how the ontology is designed. DLs are classified by

their expressivities, where expressivity describes the types of

operators permitted. Higher expressivities are computationally

more demanding but allow more complex reasoning. For

example, the DL expressivity ELH (existential language with role

hierarchy, allowing concept intersection, existential restrictions,

and sub-properties) on which SNOMED CT (11) is modelled, can

classify an ontology subsumption hierarchy in polynomial time

(PTIME) (12). The higher expressivity of SHIQ has a worst-case

complexity of EXPTIME (13) and SROIQ of N2EXPTIME (14).

Whereas the introduction of optimised implementations of

Tableau-based algorithms has enabled use of higher expressivities

in practical applications even for complexities higher than PTIME

(13), care has to be exercised to limit the expressivity as far as

possible, especially with applications involving many thousands

of axioms.

The ENCRValidityChecks ontology includes axioms relating to

the constraints on morphology/topography combinations (or

tumour signatures), basis of diagnosis, sex, grade, and age at

diagnosis or incidence date. The tumour signature axioms

(defined in the ENCRTumourSignature ontology) verify that the

topography and morphology codes for each cancer case accord with

the combinations considered permissible by the ENCR rules. The

structure of the tumour signature ontology module passed through

a number of design attempts to find an acceptable compromise

between usefulness and efficiency. A major issue related to the very

large number of morphology codes specified by ICD-O-3 (just

under two thousand) and the combination of these codes with a

substantial number of topography codes (330 codes).
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In an initial design we subclassed the topography codes from the

morphology codes, but this forced a coupling in the classification

trees between morphologies and topographies. In other ontology

modules we needed to specify existential relationships with

morphology without automatically pulling in the associated

topographies. Nor would it have helped to subclass the morphology

codes from the topography codes since this would have resulted in

the same problem when specifying existential relationships with

topography. Moreover, the open world assumption of DLs meant

that we were unable to specify the necessary class subsumption

axioms required for automatic validation of the permitted

morphology and topography combinations for a given tumour

signature. Whereas this caused no difficulty in visualising the

asserted topography-morphology relationships in the ontology’s

graphical user interface, it did mean that such information could

not be inferred by the reasoner and therefore not optimal from the

point of view of automating the validation checks themselves.

To overcome these issues, we had little option other than to

duplicate the entire topography classification hierarchy (under a

dummy name) and subclass the morphology codes under the

dummy topography classification tree. This allowed a decoupling

of the “real” topography codes from the morphology codes (since

the morphology codes were then only associated with the dummy

topography codes). Given that the real topography codes can be

determined from the similarly named dummy topography codes, it

is still possible from the graphical user interface to see which

morphology codes are associated with a given topography code

(and vice versa). This may be appreciated from the partial

classification tree of the dummy topography code called

“C323Morph” in Figure 2, where it is clear from the name that

the associated real topography code is C323. All the morphologies

associated with this code are visible in the classification tree under

the dummy topography class.
FIGURE 1

The ontology structure of the ENCR validation checks for childhood cancers, not including the cancer stage or multiple-primary checks.
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Apart from the association of the morphology codes, there is

one slight difference between the classification trees of the dummy

topography codes and the real topography codes shown for the

topography code C323 in Figure 3. The four-digit C323 code is

subclassed from its three-digit code parent C32, in contrast to the

dummy C323 code (C323Morph) that is the superclass of the three-

digit dummy topography code C32Morph. The reasons for

inverting the classification tree for the dummy code are firstly to

avoid unnecessary duplication of the morphology codes under the

dummy topography codes, and secondly to ensure that the

existential relationships acting on the morphology codes are

correctly specified. The four-digit dummy topography codes have

more morphologies associated with them than the three-digit codes

and specifying the three-digit codes should not pull in the

morphology codes that are only associated with the more

granular four-digit codes.

Ascertaining the dummy topography codes (and therefore the

real topography codes) with which a given morphology is associated

is also straightforward. Figure 4 shows the topography codes

associated with the morphology code 8590/1 (namely C56

and C62).
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The class subsumption axioms for a valid tumour signature can

then be defined along the lines:

∃hasMorphology(C000Morph)⊓

∃hasTopography(C000)⊏VALID _ TumourSignature

which states that the conjunction (⊓) of an existential

relationship (∃) of the topography code C000 and an existential

relationship of the dummy topography code C000Morph (under

which all the permitted morphologies for the topography code C000

are defined) is a valid tumour signature. This axiom clearly has to be

duplicated for all topography codes and results in any valid

combination of morphology and topography being subsumed

under the class VALID_TumourSignature, allowing a simple test

in a batch programme for validating compliant cancer case records.

The checks for basis of diagnosis and grade also raised an

interesting challenge for handling them in description logic. DLs

incorporate monotonic logic, meaning that a conclusion cannot

vary with the addition of a new set of premises. In practical terms,

this means that default values or exceptions cannot be attributed

and cannot therefore be used to model the scenario in which a rule
FIGURE 3

The classification tree of the real topography code class C323, showing its position in relation to the associated three-digit topography code C32.
FIGURE 2

Part of the classification tree of the dummy topography code class C323Morph showing the associated morphologies.
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takes a default value that may then be overridden for a given

condition. The rule tables for both basis of diagnosis and grade are

in fact expressed in terms of exceptions to default values.

In order to circumvent this limitation we needed to introduce a

default test value (for a given rule) and a violation flag. The default

test value is defined either as default-valid or default-invalid. In the

case of a default-valid test, if a given set of values violate the rule,

then an invalid condition is flagged and vice versa. Thus, the user/

application analysing the test results would need to look for any

associated violation flag. In the absence of a violation flag, it can be

concluded that the test result is valid or invalid depending on the

default test value. An example of an axiom providing a default-

invalid test value for the basis of diagnosis corresponding to clinical

investigation is:

∃prevalidatedBasisOfDiagnosis(BoDcode2 _ Investigation)⊏ InvalidBoDDefaultCase

which states that any specified basis of diagnosis code 2 (clinical

investigation) is an invalid basis of diagnosis default case. A rule for

overriding this default value is:

∃prevalidatedBasisOfDiagnosis(BoDcode2 _ Investigation)⊓

∃hasMorphology(M _ 8960 _ 3)⊓

∃hasTopography(C64)⊏VALID _ BoD

Which, for a specified basis of diagnosis code 2, a morphology

code 8960/3 and a topography code C64 (and all its four-digit

subclasses), renders the check valid.

The axioms for validating age at diagnosis are less convoluted

since they only require verification against minimum and maximum

values. For combinations of topography and morphology that have

an age restriction, the axioms for a minimum age limit take the form:

∃hasMorphology(M801−M804)⊓

∃hasTopography(C15)  ⊏

∃expectedAge( > 14)
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which states that the conjunction of morphology codes 801-804

(and all the associated subclasses) with topography code C15 (and

associated subclasses) have an expected age greater than 14 years.

The axioms for deriving the validation at post-coordination take the

form:

∃expectedAge( >   14)⊓

∃patientAgeAtDiagnosis( < 15)⊏WARNING _ age

for which a specified patient age at diagnosis less than 15 years

when the expected age is greater than 14 years generates a

warning condition.

The axioms for validating sex are simple, since they involve only

a test on topography Thus:

∃hasTopography(C60 − C63)⊏

∃IsSexOf (Male)

ensures that topography codes C60-C63 are associated with the

male sex, with the validation rule:

∃IsSexOf (Male)⊓

∃prevalidatedSex(Female)⊏ InvalidSexCombination

that states if the specified parameters require a male sex and a

female sex is specified, then the cancer case will be subsumed under

the class InvalidSexCombination.
Results

Examples are provided in Figures 5–12 of how the ontology

handles the ENCR data-validation requirements via the post-

coordination mechanism for a number of imaginary cancer-case

scenarios. The yellow highlighted lines in the figures refer to the

inferences made by the reasoner on the basis of the information

passed to it (represented by the non-highlighted lines).
FIGURE 4

The classification tree of the morphology code class 8590/1, showing the dummy topography codes with which it is associated.
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In Figure 5, the pre-specified parameters are: morphology 9651

and behaviour (code 3 signifying malignancy in the primary site) –

the composite code 9651/3 signifying Hodgkin lymphoma; patient

age at diagnosis (one-year old); basis of diagnosis (code 5 signifying

cytology); sex (male); and an ICD-O sixth digit code of 9. The ICD-O

sixth digit code (grade of the tumour) can take the code values 0-9

and is used for histologic grading or differentiation. Codes 1–4 are

only used for non-haematological or solid tumours (with the

exception of morphology 9801), and codes 5–8 only for

haematological tumours. Code 0 (not applicable) or code 9

(unknown) can be used for both classes of tumour. The highlighted

yellow lines in the figure represent the inferences made by the

reasoner on the basis of the pre-specified parameters. It can be

seen from these inferences that the given parameters constitute

invalid default cases for both tumour signature and grade, but that

these default cases have been overridden by the respective “VALID”

flags. Conversely, a default valid basis of diagnosis has been inferred

and since this has not been overridden by an “INVALID” flag, it can

be assumed that the basis of diagnosis is also valid. In addition, the

reasoner has inferred an unlikely age for the input age parameter. The

rationale for the inference of any given statement can be ascertained

by clicking on the question mark next to the inferred statement. The

explanation for the age warning (Figure 6) is that the expected age at

diagnosis is greater than 2 for Hodgkin lymphomas (classified under
Frontiers in Oncology 06
the ICCC-3 group IIa, which the reasoner has deduced from the

morphology code).

In Figure 7, the reasoner has inferred an ICCC-3 group V

morphology (retinoblastoma) and an invalid grade code. The error

results from the attempt to ascribe an immunophenotype grade

code (codes 5–8) to a non-haematological tumour (Figure 8). Since

this is an absolute rule that is triggered for all non-haematological

morphologies (c.f. line 9 of Figure 8), there is no valid grade default

case in this instance.

Figure 9 distinguishes between an invalid grade code inference

and a grade code warning. Certain morphologies have an implied

grade and these codes should be used instead of leaving the value

unspecified (grade code 9). In order to determine the implied value

(s) of a grade code, the reasoner is less informative and it is

necessary to access the class description of the relevant

morphology code (in this case 9511, c.f. Figure 10). The only

grade code that is not invalid for this morphology (which is a

non-haematological morphology) is 1 and thus it can be inferred

that the implied grade is 1. Extra classes and rules could be added to

the ontology to provide the implied grades directly but this is one of

the compromises taken to avoid affecting performance further. An

application programme interfacing with the ontology could

determine the implied grade as easily as the user on the basis of

the asserted axioms.
FIGURE 5

Inferences (highlighted lines) drawn by the reasoner on the basis of the specified parameters (non-highlighted lines). The values of grade, basis of
diagnosis, and tumour signature are all valid but the reasoner has flagged a warning for the specified age.
FIGURE 6

Explanation of why the reasoner generated a warning on the age specified in Figure 5.
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Figure 11 is an example of a cancer case with an erroneous basis

of diagnosis code (non-microscopic clinical investigation) which is

not admissible for this morphology type (juvenile myelomonocytic

leukaemia). The rules for a basis of diagnosis code 2 are by default

invalid, and valid cases are flagged as exceptions. The grade and

tumour signature combinations also derive from invalid default

conditions but these have been overridden by the valid flags

(ultimate 2 lines of Figure 11).

Figure 12 is an example of a cancer case with an error in the

encoding of the patient’s sex. Topography code C569 (ovary)

pertains solely to the female sex and the reasoner has inferred the

error correctly,

Reasoning times are dependent on the specific reasoner used as

may be appreciated from Table 1 which shows the time to classify

the ENCR validation check ontology with and without the ENCR

tumour signature checks for three reasoners (FaCT++, Hermit, and

Pellet) on a 3GHz Intel Core i7 processor with 16 GB RAM. It is

interesting to compare the performance of the Hermit reasoner with

the other two reasoners in relation to the ENCR tumour signature

ontology. It is not immediately clear why Hermit should take

significantly longer to classify this particular ontology than the

other reasoners (especially since they all use optimised Tableau-

based techniques).
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In terms of the domain knowledge encapsulated in the

ontology, Table 2 shows a breakdown of the knowledge that can

be ascertained via the pre-coordination or post-coordination

processes. Pre-coordinated knowledge remains accessible also

after post coordination.

A further useful functionality of ontologies comes from the ease

of annotating a class with other information. Figure 13 shows the

annotations associated with the ICD-O-3 morphology code 9651/3,

from which it can be seen that all the descriptive text of ICD-O-3

can be captured for a given entity, as well as links to other resources

(such as on-line data dictionaries, thesauri, and other ontologies).

This allows access to a comprehensive set of knowledge describing

the resource directly from a single application.
Discussion

The ontology described here for validating childhood cancer

registry cases is a novel alternative approach for data cleaning

processes that have traditionally been performed via dedicated

application software. Using ontologies for these tasks brings a

number of advantages. One key strength concerns the use of DL

to describe the data validation rules in a formal sense. Formalising
FIGURE 8

Explanation of why the reasoner inferred an invalid value of the grade specified in Figure 7.
FIGURE 7

Inferences (highlighted lines) drawn by the reasoner on the basis of the specified parameters (non-highlighted lines). The reasoner has inferred an
invalid grade on the basis of the specified morphology.
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the rules not only removes the inherent ambiguity of specifying

them in natural language but can also detect inconsistencies within

them. A further benefit of DL relates to its amenability to automatic

machine reasoning tools that can pre-empt the need to handle

complex validation conditions in dedicated software. Keeping the

intelligence within the ontology allows a simpler programme

interface and reduces software development and maintenance costs.

Ontologies also permit the integration of the data rules with the

code classification systems. Cancer registries have to deal with many

hundreds of codes from a variety of classification standards and

from this standpoint alone, ontologies can structure the

information to make it much more readily accessible. By

expressing entities and relations in a comprehensive knowledge

base, the task of ascertaining and verifying codes and their

dependencies becomes a relatively straightforward task. This way

of structuring information makes it considerably easier to verify

data validation rules that otherwise require multiple table look-ups

and also greatly facilitates maintenance issues by keeping the codes,

rules, and variable values in a single application. An important
Frontiers in Oncology 08
corollary to this is the default functionality of OWL ontologies to

maintain persistent metadata links via the international resource

identifiers (IRIs) they assign to each entity as well as their ability to

link to other metadata contexts. Access to a relevant set of

comprehensive metadata is of fundamental importance to

secondary data usage where data users need to understand the

meaning of the data. For example, the cancer sites displayed on the

ECIS data browser consist of groups of individual topography

codes. Ontologies encode this information directly and moreover

allow linkage via linked open data (LOD) principles to other

metadata resources, such as thesauri and data dictionaries. Data

users therefore have access via a single entry point to a wide source

of information and reference material that extends far beyond the

immediate classification needs of the ontology itself.

Furthermore, unifying the validation checks with the code

classification systems ensures synchronisation of code

classification editions with the data-validation rule base and a

more thorough versioning control than can be assured via

distributed software. These aspects are critical to expediting the
FIGURE 10

Class definition of the morphology code 9511 from which the implied value of grade can be determined.
FIGURE 9

Inferences (highlighted lines) drawn by the reasoner on the basis of the specified parameters (non-highlighted lines). The reasoner has inferred an
implied grade on the basis of the specified morphology.
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devolution of centralised data cleaning process to the local registry

level and also to facilitating any eventual audit process for formally

ensuring consistency of local data-cleaning processes.

An additional motivation that may perhaps be the most far-

reaching is the potential stimulation of wider collaboration and

development within the pan European cancer registry domain. It

can justifiably be argued that code classification systems have been

structured without the wider contexts in mind and lead to hierarchies

that are not optimal to implementation in software. The way in which

we had to group the morphology codes in the ontology design under

many different class hierarchies dependent upon the particular rules

points to the need for a more optimal code classification. This

incidentally provides a useful example to show how the logic of

ontologies can feed back into improving the representation and

structuring of domain knowledge. Disease registry staff with

knowledge of how ontologies work would provide a key input into

future formulations of such classification systems.
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It has to be emphasised however that the design of an ontology

is a critical factor in its usefulness and performance. A modular

structure such as the one described here helps limit complexity and

aids maintenance and further development. It also allows the

creation of specific dedicated ontologies using a “pick and mix”

approach. For example, the childhood cancer ontology can be made

equally applicable to adult cancers simply by swapping out the

childhood cancer morphology grouping by an adult cancer

morphology grouping. Likewise the most appropriate cancer stage

ontology can be used, for example TNM for adult cancers or one

that models a stage system more appropriate to childhood cancers,

such as described by the Toronto childhood cancer stage guidelines

(15). As long as the umbrella class names remain the same, no other

changes need to be made in the other ontology applications that

import the morphology grouping module. A modular structure is

also useful for optimising performance for a particular set of checks

and for deciding which reasoner may be best to use (c.f. Table 2).
FIGURE 12

Example of a cancer case with an error in the encoding of the patient’s sex.
FIGURE 11

Example of a cancer case with an incorrect basis of diagnosis code (code 2, describing a non-microscopic clinical investigation) which is not
admissible for this morphology type.
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Performance of automatic reasoning can provide limitations in

the validation of large data sets although there are a number

workarounds that do not negate the usefulness of ontologies for

this task. Limiting DL expressivity to EL reasoning allows algorithms

to complete in polynomial time and most cancer-registry validation

rules can be handled within these constraints. Where higher

expressivities are required, data sets can be ingested as a series of

smaller sets and improve efficiency (since reasoning time is not

linearly proportional to data-set size). There is also the possibility of

exploiting the strengths of the various DL reasoners and future work

will seek to understand the reason behind the performance differences

observed in Table 2 in order to improve performance on the basis of

the types of axioms. Whereas others have addressed comparisons of

reasoners (16–22), work has generally focused on their accuracy, the

types of operations and platforms they support, and overall
Frontiers in Oncology 10
performance rather than the strengths of the reasoners given a

particular ontology structure. The OWL2Bench however provides a

promising approach (23). Optimisation of reasoning processes and

algorithms continues to be an active field of research.

A further consideration is that data validation is a highly

parallelisable process and other semantic web tools are available

for interfacing with an ontology apart from DL reasoning, such as

SPARQL queries and direct access via a computer programme

using the OWL-API application programme interface. The latter

provides a solution superior to coding all the information in a

dedicated computer programme. The OWL-API provides access

to both pre- and post-coordinated information and where

reasoning performance is a limiting factor, the computer

application can swap out the reasoning functionality with its

own dedicated logic on the basis of the ontology axioms without
FIGURE 13

Annotations associated with the morphology class M_9651_3 representing the ICD-O-3 morphology code 9651/3.
TABLE 1 Summary of the expressivities and size of the various ontologies comprising the ENCR validation application, with comparison of reasoning
performance between various reasoners.

Ontology DL Expressivity No. logical axioms GCI count Reasoner Execution time
(seconds)

ENCR validation (including ENCR tumour signature) ALC(D) 14,138 7,769 FaCT++ 7

Hermit 10

Pellet 5

ENCR validation (excluding ENCR tumour signature) ALC(D) 10, 418 7,439 FaCT++ 5

Hermit 1

Pellet 2.5

ENCR tumour signature (including the ICD-O-3 ontologies) ALC 7,699 1,534 FaCT++ 2

Hermit 9

Pellet 2
The GCI count refers to the number of general concept inclusion axioms, which Protégé defines as axioms whose subclass is a complex class expression (and more demanding in terms of
reasoning). The DL expressivity ALC denotes attributive language (AL) with complex concept negation (C). The superscript (D) relates to the use of datatype properties..
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having to redefine all the rules and entity relationships. Thus,

encoding domain knowledge in an ontology provides many

advantages and flexibility in the way of handling information

and deriving relationships beyond those explicitly expressed. For

data validation purposes at least, this functionality is of

considerable benefit.
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