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Abstract. We propose and provide a proof of concept of
a method to analyse, classify and compare dynamical sys-
tems of arbitrary dimensions by the two key features uncer-
tainty and complexity. It starts by subdividing the system’s
time trajectory into a number of time slices. For all values
in a time slice, the Shannon information entropy is calcu-
lated, measuring within-slice variability. System uncertainty
is then expressed by the mean entropy of all time slices. We
define system complexity as “uncertainty about uncertainty”
and express it by the entropy of the entropies of all time
slices. Calculating and plotting uncertainty “u” and complex-
ity “c” for many different numbers of time slices yields the
c-u-curve. Systems can be analysed, compared and classi-
fied by the c-u-curve in terms of (i) its overall shape, (ii)
mean and maximum uncertainty, (iii) mean and maximum
complexity and (iv) characteristic timescale expressed by the
width of the time slice for which maximum complexity oc-
curs. We demonstrate the method with the example of both
synthetic and real-world time series (constant, random noise,
Lorenz attractor, precipitation and streamflow) and show that
the shape and properties of the respective c-u-curve clearly
reflect the particular characteristics of each time series. For
the hydrological time series, we also show that the c-u-curve
characteristics are in accordance with hydrological system
understanding. We conclude that the c-u-curve method can
be used to analyse, classify and compare dynamical systems.
In particular, it can be used to classify hydrological systems
into similar groups, a pre-condition for regionalization, and
it can be used as a diagnostic measure and as an objective
function in hydrological model calibration. Distinctive fea-
tures of the method are (i) that it is based on unit-free prob-
abilities, thus permitting application to any kind of data, (ii)

that it is bounded, (iii) that it naturally expands from single-
variate to multivariate systems, and (iv) that it is applicable
to both deterministic and probabilistic value representations,
permitting e.g. application to ensemble model predictions.

1 Introduction

In the earth sciences, many systems of interest are dynami-
cal; i.e. their states are ordered by time and evolve as a func-
tion of time. The theory of dynamical systems (Forrester,
1968; Strogatz, 1994) therefore has proven useful across a
wide range of earth science systems and problems such as
weather prediction (Lorenz, 1969), ecology (Hastings et al.,
1993; Bossel, 1986), hydrology (Koutsoyiannis, 2006), geo-
morphology (Phillips, 2006) and coupled human–ecological
systems (Bossel, 2007).

Key characteristics of dynamical systems include their
mean states (e.g. climatic mean values in the atmospheric
sciences), their variability (e.g. annual minimum and max-
imum streamflow in hydrology) and their complexity (e.g.
population dynamics in ecological predator–prey cycles). In-
terestingly, despite its importance and widespread use, there
are to date no single agreed-upon definition and interpreta-
tion of complexity and no agreed-upon base set of features
characterizing a complex system. Gell-Mann (1995), Lloyd
(2001), Prokopenko et al. (2009) and Ladyman et al. (2013)
provide interesting overviews of the topic. Gell-Mann (1995)
points out that while measures of complexity for entities in
the real world are to some degree always context-dependent,
they have in common that “. . .complexity can be high only
in a region intermediate between total order and complete
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disorder.” Lloyd (2001) provides a short yet comprehensive
list of complexity measures categorized by difficulty of de-
scription, difficulty of creation and degree of organization.
Prokopenko et al. (2009) discuss the connection between
complexity, self-organization, emergence and adaptation and
suggest an information–theoretical framework to promote in-
terdisciplinary and transdisciplinary communication on these
topics. Ladyman et al. (2013) review various approaches to
define complex systems, distill a set of core features common
to all definitions (nonlinearity, feedback, emergence, hierar-
chy, numerosity) and provide a large collection and a taxon-
omy for measures of complexity.

Characterizing dynamical systems by few and meaning-
ful statistics representing the above-mentioned key features
is important for several reasons: system classification, inter-
comparison and similarity analysis are pre-conditions for the
transfer of knowledge from well-known to poorly known sys-
tems or situations (see e.g. Wagener et al., 2007, Sawicz et
al., 2011, and Seibert et al., 2017, for applications in hydrol-
ogy). Further, dynamical system analysis helps in detecting
and quantifying nonstationarity, a key aspect in the context of
global change (Ehret et al., 2014), and it is important for eval-
uating the realism of dynamical system models and for guid-
ing their targeted improvement (Moriasi et al., 2007; Yapo et
al., 1998).

In this paper, we address the task of parsimonious yet com-
prehensive characterization of dynamical systems by propos-
ing a method based on concepts of information theory. It
comprises both variability and complexity and adopts the
view that the overall variability (or uncertainty) of a time
series is the mean of its variabilities in subperiods and that
the complexity of a time series is the overall variability of
these variabilities. We use examples from hydrology, as due
to the multitude of subsystems and processes involved, most
hydrological systems are classified as variable and complex
systems (Dooge, 1986). Hydrological systems and models
thereof have been analysed in terms of predictive, model
structural and model parameter uncertainty by Vrugt et al.
(2003), Liu and Gupta (2007) and Vrugt et al. (2009). Hydro-
logical systems have been classified in terms of their com-
plexity by Jenerette et al. (2012), Jovanovic et al. (2017),
Ossola et al. (2015), Bras (2015), Engelhardt et al. (2009),
Pande and Moayeri (2018), Sivakumar and Singh (2012),
Sivakumar et al. (2007) and Ombadi et al. (2021). Follow-
ing early attempts by Jakeman and Hornberger (1993), Pande
and Moayeri (2018) investigated how the relation between
the information content and complexity of hydrological sys-
tems can guide the selection of adequate models thereof and
vice versa.

In particular, concepts from information theory have been
applied for hydrological system analysis and classification by
Pachepsky et al. (2006), Hauhs and Lange (2008), Zhou et al.
(2012), Castillo et al. (2015) and recently by Dey and Mu-
jumdar (2022). Information-based approaches rely on log-
transformed probability distributions of the quantities of in-

terest and are thus independent of the units of the data. Com-
pared to methods relying directly on the data values, this
poses an advantage in terms of generality and comparability
across disciplines. Being rooted in information theory, the
method we propose in this paper makes use of this advan-
tage. The same applies to the methods of multiscale entropy
(MSE) proposed by Costa et al. (2002) in the context of phys-
iological time series and the method suggested by LopezRuiz
et al. (1995) for physical systems. Both share similarities
with the complexity–uncertainty curve (c-u-curve) method
but also differ in some important aspects, which will be dis-
cussed in Sect. 2.3 after the c-u-curve method has been in-
troduced in Sect. 2.1. The MSE method has been applied to
a wide range of complex systems, such as biological sig-
nals (Costa et al., 2005), ball-bearing fault measurements
(Wu et al., 2013) and seismic (Guzmán-Vargas et al., 2008)
and hydro-meteorological time series. For the latter, Li and
Zhang (2008) analysed long time series of Mississippi River
flow data, and Chou (2011) used MSE in combination with
wavelet transformation to analyse properties of station-based
rainfall time series. Brunsell (2010) also applied entropy
measures on various temporal scales to assess the spatial–
temporal variability of daily precipitation, similar to the MSE
method, but refers to this as “a multiscale information theory
approach”.

The remainder of the text is organized as follows. In
Sect. 2, we present all the steps of the method, describe its
properties, and compare it to existing methods. In Sect. 3, we
apply the method to both synthetic time series and observed
hydrological data to demonstrate uses and interpretations of
the c-u-curve method. We summarize the method, discuss its
limitations, and draw conclusions in the final Sect. 4.

2 Method

Please note that in what follows, for clarity we introduce the
method with the example of univariate time series with deter-
ministic values, and we calculate discrete entropy based on a
uniform binning approach.

2.1 Method description

The mathematical variable names used in this section and
throughout the paper were chosen with the goal of straight-
forward interpretation. The names were constructed by a
combination of the following base “alphabet”: n is for “num-
ber”, v is for “value”, b is for “bin”, s is for “(time) slice”,
e is for “entropy”, t is for “time”, and w is for “width”. For
example, variable nvb is formed by a combination of three
symbols and represents the “number of value bins”. To avoid
confusion of combined variable names with multiplication
(e.g. nvb could be falsely interpreted as the product of vari-
ables n, v and b), we explicitly indicate each multiplication
with the “·” symbol.
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Applying the method to a given time series with overall nt
time steps consists of a number of steps and related choices.
At first, for each variate involved, a suitable discretization
(binning) scheme is chosen. The bins must cover the entire
value range, and their total number (nvb) can be chosen ac-
cording to a user’s demands regarding data resolution. Next,
the time series is divided into a number of ns time slices. The
slices must be mutually exclusive and together must cover
the time series. The slices are preferably, but not necessar-
ily, of uniform width. Next, separately for each slice, a dis-
crete probability distribution (histogram) is calculated using
the data in the slice and the chosen binning scheme. From
the histogram obtained in this way, the Shannon information
entropy H (Shannon, 1948) is calculated following Eq. (1):

H(X)=−

nvb∑
vb=1

p(xvb) · log2(p(xvb)), (1)

where X is all sample data within the slice, p(xvb) refers
to the probability of variate value x falling into bin vb, and
nvb is the total number of value bins. Entropy measures data
variability or uncertainty in bit, with the intuitive interpreta-
tion as “the minimum number of binary (Yes/No) questions
needed to be asked to correctly guess values drawn from a
known distribution”. Cover and Thomas (2006) provide an
excellent introduction to information theory, and applications
to hydrology and hydro-meteorology are e.g. presented in
Singh (2013) and Neuper and Ehret (2019). Neuper and Ehret
(2019) also describe the relation of entropy and variance: “As
with the variance of a distribution, entropy is a measure of
spread, but there are some important differences: while vari-
ance takes the values of the data into account and is expressed
in (squared) units of the underlying data, entropy takes the
probabilities of the data into account and is measured in bit.
Variance is influenced by the relative position of the data on
the measure scale and is dominated by values far from the
mean: entropy is influenced by the distribution of probability
mass and is dominated by large probabilities. Some welcome
properties of entropy are that it is applicable to data that can-
not be placed on a measure scale (categorical data) and that
it allows comparison of distributions from different data due
to its generalized expression in bit”.

As entropy values may differ between slices, an overall un-
certainty estimate for all slices is calculated as the expected
value of all slice entropies. For equal-width slices, this is
mean entropy according to Eq. (2).

Uncertainty= E(H(X))=H(X)=
1
ns
·

ns∑
s=1

Hs(X), (2)

where s refers to a particular slice of all ns time slices. The
uncertainty defined in this way measures the average within-
slice variability of the data, i.e. uncertainty of the time series
as seen through the lens of the chosen time-slicing scheme.

Next, we consider the variability of entropy across all the
slices, and as before we measure variability by entropy. In

order to calculate this higher-order “entropy of entropies”, a
suitable binning scheme for entropy values must be chosen,
which can be based on the same criteria as outlined above. It
is then used to calculate a histogram of the ns entropy values.
We thus define complexity as the entropy of entropy values,
which is calculated following Eq. (3).

Complexity=H(H(X))

=−

neb∑
eb=1

p(Heb) · log2(p(Heb)), (3)

where neb denotes the total number of entropy bins, eb de-
notes a particular entropy bin, and p(Heb) denotes the prob-
ability of a time slice entropy Hs falling into bin eb. Com-
plexity measures how uncertain we are about the uncertainty
in a particular time slice when all we know is the distribu-
tion of uncertainties (entropies) across all time slices in the
time series. The question may arise why complexity is cal-
culated as the entropy rather than the variance (second mo-
ment) of entropies, which would seem a logical extension of
uncertainty being calculated as the mean (first moment) of
entropies. There are three reasons for this choice, i.e. consis-
tency, interpretability and robustness. “Consistency” refers
to the idea that, when expressing the variability of the dis-
tribution within a time slice by entropy, we think that it is
also a natural choice to express the variability of the variabil-
ities by entropy. Thus, variability is always expressed in the
same unit of bit, which increases comparability among the
values and upper bounds of uncertainty and complexity. “In-
terpretability” refers to the fact that entropy has the intuitive
interpretation of the “number of binary yes–no questions to
ask to move from a prior to posterior state of knowledge”,
while variance lacks this straightforward interpretation. “Ro-
bustness” refers to the previously discussed property of vari-
ance being more sensitive to outliers in the data than entropy.
While variance is a good choice for extreme-value statistics
with a focus on the tails of a distribution, we think that, for
a characterization of the overall variability of a data set, en-
tropy is more appropriate.

The entire procedure of calculating uncertainty and com-
plexity is repeated for many different choices of ns (time-
slicing schemes). For each choice of ns, for equal-width
slices the width of a time slice is sw= nt/ns. In principle,
ns can be chosen to take any value in the range [1,nt]. For
ns= 1, the entire time series is contained in a single slice of
width sw= nt. For ns= nt, each time slice contains only a
single time step. However, it is recommended to choose ns –
and with it sw – from a smaller range: if we require that, for
a robust estimation of a time slice histogram, each of its nvb
bins should on average be populated by a minimum number
of m values, then the width sw of a time slice (i.e. the num-
ber of values within) must be at least nvb ·m (see Eq. 4). This
means that, for robust estimates of uncertainty, the time se-
ries should be split into only a few but wide time slices. For
robust estimates of complexity, however, it is the opposite:
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the histogram of uncertainty values is populated by a total of
ns values (the entropies of all time slices). If for the sake of a
robust estimation we again require that each of the histogram
bins should be populated by at least m values, then at least
neb ·m time slice entropy values are needed. This means that
the time series should be split into many – and hence narrow
– time slices. These two antagonistic constraints lead to up-
per and lower limits for the choice of sw, which is formalized
in Eq. (4). For a (subjective) user’s choice ofm, Eq. (4) yields
the range of time slice widths sw satisfying the “m criterion”
for both the uncertainty and complexity histogram as a func-
tion of time series length nt and the number of bins for both
uncertainty (nvb) and complexity (neb).

nt
neb ·m

≥ sw≥ nvb ·m (4)

For example, for a time series with nt= 30000 time steps,
choices of m= 3 and nvb= neb= 10 (all histograms re-
solved by 10 bins), the range of suitable time slice widths
is [30,1000]. It should be noted that Eq. (4), through the
choice of sw, provides one possible guideline for robust his-
togram estimation, but a user can also resort to other bin-
ning guidelines, such as the methods suggested by Sturges
(1926), Scott (1979), Freedman and Diaconis (1981), Pech-
livanidis et al. (2016) or Knuth (2019). Throughout all the
time-slicing schemes, the number of value and entropy bins
must be kept constant to ensure comparability. Together, the
set of all time-slicing schemes produces a set of complexity–
uncertainty value pairs. Plotting them with uncertainty values
on the x axis and complexity values on the y axis is what we
call the c-u-curve. It summarizes several interesting proper-
ties of the time series under consideration, which will be dis-
cussed in Sect. 3.

2.2 Properties

In this section, we briefly summarize some general proper-
ties of the c-u-curve and discuss its limitations and possible
generalizations.

2.2.1 Axis units

For the c-u-curve, both the x axis (showing uncertainty) and
the y axis (showing complexity) are in units of bit (see Eqs. 2
and 3); i.e. they are independent of the units of the data. This
facilitates intercomparison of different systems and applica-
tion to multivariate systems where variates are in different
units.

2.2.2 Existence of lower and upper bounds for
uncertainty

The lower bound for uncertainty is always zero, which is
reached if, for all time slices, all values within a time slice fall
into the same value bin. The upper bound is dependent on the
choice of nvb (the number of bins resolving the value range).

Its value, log2(nvb), is the entropy of a uniform (maximum-
entropy) distribution. It is reached when the data within each
time slice are uniformly distributed across all value bins. In
a plot of the c-u-curve, the upper uncertainty bound appears
as a vertical line.

2.2.3 Existence of lower and upper bounds for
complexity

As with uncertainty, the lower bound of complexity is al-
ways zero. It is reached if the entropy values calculated for
all time slices all fall into the same entropy bin. The up-
per bound is dependent on the choice of neb (the number
of bins resolving the entropy range). Similar to uncertainty,
its value, log2(neb), is the entropy of a uniform distribution
and is reached when the entropies of all the time slices are
uniformly distributed across all the entropy bins. In a plot of
the c-u-curve, this global upper complexity bound appears as
a horizontal line. However, there exists another, stricter up-
per bound, where the maximum reachable complexity is a
function of uncertainty: consider the distribution of entropy
values of all time slices. Its mean value is represented by un-
certainty (see Eq. 2). It poses a constraint on how the entropy
values can be distributed over the entropy bins and hence the
maximum entropy this distribution can reach. For example,
if the mean entropy lies within the lowest entropy bin, all en-
tropy values necessarily also have to be placed in that bin,
which corresponds to a Dirac distribution, which has an en-
tropy of zero. Zero uncertainty therefore necessarily implies
zero complexity. The same applies if mean entropy lies in the
maximum entropy bin. In that case, all entropy values neces-
sarily have to lie in that bin, too, which again corresponds
to a Dirac distribution with zero complexity. More generally,
the reachable upper bound for complexity is determined by
solving the task to find, for a discrete (binned) probability
distribution with a finite number of distinguishable states and
a known mean (here: uncertainty) from all possible distribu-
tions, the one which maximizes entropy (here: complexity).
The solution to this task was provided by Conrad (2022) and
is summarized in Appendix B. In a plot of the c-u-curve, this
upper bound for complexity appears as an arch starting at the
origin and terminating at the upper uncertainty bound with
zero complexity.

2.2.4 Invariance under normalization

The shape and values of the c-u-curve remain invariant un-
der prior normalization of the data if the binning scheme is
also transformed. Normalization can therefore be applied for
convenience to use the same binning scheme for all time se-
ries. Likewise, for better comparability among time series of
different lengths, normalization of the time domain is also
possible. As a consequence, the time slice widths sw will be
expressed in units of “length relative to the length of the time
series” rather than in the original time units. However, this
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potentially comes at the cost of losing interpretability, e.g. in
detecting the effect of diurnal or seasonal cycles in the c-u-
curve.

2.2.5 Influence of the chosen binning scheme

The values of the bounds and all uncertainty and complex-
ity values of the curve depend on the chosen binning for the
values and the entropies. For direct comparison of the c-u-
curve, the binnings should therefore agree. If this is for some
reason not feasible, comparability can be established by nor-
malizing values to a [0,1] range. This can be achieved by
dividing values of the c-u-curve by the values of the global
upper bounds for uncertainty and complexity.

2.2.6 No guarantee of continuity

For better visibility, we connected the c-u-curve points calcu-
lated for different time slice widths sw in Figs. 2 and 3 with a
line. However, there is no theoretical argument guaranteeing
the continuity of the c-u-curve, and the lines should not be
interpreted in this manner. Nevertheless, test runs with many
different data sets and many time slice widths suggest that
the c-u-curve is generally smooth.

2.2.7 Influence of time slice positioning

For short time series with highly variable data, different splits
of the time series into time slices might return quite different
results. In other words, the default splitting scheme starting at
the first time step (e.g. “1-2-3”, “4-5-6”, etc., for time slices
of width sw= 3) might not be representative of all other pos-
sible splitting schemes (e.g. “2-3-4”, “5-6-7”, etc.). To inves-
tigate the sensitivity of the c-u-curve results to time slice po-
sitioning, we repeated all applications as discussed in Sect. 3
with a moving-window approach, applying all possible split-
ting schemes and analysing the variability of the results (not
shown). For all the applications, the results were almost in-
distinguishable from each other, and the overall sensitivity
to the splitting scheme therefore seems small. Nevertheless,
in the c-u-curve code (Ehret, 2022) published together with
this paper, the user can choose between the default splitting
scheme and a moving-window approach where all possible
splitting schemes are applied and the results are averaged.

2.2.8 Influence of errors and trends in the data

Without formal proofs, we briefly discuss here the effect of
errors or trends in the data on the values and shape of the c-u-
curve. In the case of random errors coming from a particular
distribution (e.g. measurement error), uncertainty about the
true entropy of a time slice will be equal to the entropy of
the error distribution and, as information from independent
sources is additive, the total entropy of a time slice will be
the sum of the within-slice entropy without the error plus the
entropy of the error distribution. As the additional entropy

by the error is the same for all the time slices, the mean en-
tropy of all the time slices (uncertainty) will also increase by
the entropy of the error, but the distribution of entropies will
remain its shape; as a consequence, the entropy of that dis-
tribution (complexity) will remain unchanged. Random error
will therefore shift the c-u-curve to the right. A bias in the
data will shift the distribution of the values in a time slice, but
its shape will remain unchanged and so will its entropy. As
this applies to all the time slices, the c-u-curve will remain
unchanged. Trends in the data will increase the variability
within all the time slices in the same manner, such that uncer-
tainty increases but complexity remains unchanged. Break-
points in the data, where one (or no) trend is replaced by an-
other, will increase the variability of the time slice entropies
and hence the complexity.

2.2.9 Generalizations and limitations

We introduced the c-u-curve method with a univariate and
deterministic example. However, the method is also appli-
cable to multivariate and/or probabilistic data. When moving
from univariate to multivariate data, the entropy within a time
slice simply changes from univariate to multivariate entropy.
When moving from deterministic to probabilistic variables,
for each time step in a time slice, a value distribution rather
than a crisp value will be used to populate the distribution of
all values in the time slice, but the result will still be a single
distribution with a single entropy value, which can be plot-
ted as before in the c-u-curve. In Ehret (2022), we provide
multivariate and probabilistic application examples and the
related generalized code. Also, in the method description in
Sect. 2.1, we calculated discrete entropy based on a uniform
binning approach. We did so as it has some useful properties
(ease of interpretation is one of them) compared to calculat-
ing continuous entropy. Nevertheless, the method can also
be used with non-uniform binning or continuous represen-
tations of data distributions as long as entropy can be cal-
culated from the data distribution. For a detailed discussion
of discrete vs. continuous entropy, see Azmi et al. (2021) and
references therein. Please also note that, strictly speaking, the
c-u-curve method does not measure the uncertainty and com-
plexity of an entire dynamical system, but only those of its
signals (time series) that are available for analysis. For cases
where the signals do not completely cover the system’s state
space, we should therefore refer to the results as “signal un-
certainty” and “signal complexity”. As throughout the litera-
ture on dynamical system analysis, this distinction is usually
not made, and we also stick to the term “system” rather than
“signal” throughout this paper.

2.3 Comparison to existing methods

Two methods similar to the c-u-curve have been proposed
in the literature, which in the following we will briefly ex-
plain and discuss. The first, CLMC, was proposed by López-
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Ruiz (1995), and the second, MSE, by Costa et al. (2002).
CLMC is a statistical measure of complexity for physical sys-
tems. It is calculated as the product of the system’s informa-
tion content, which is measured by the (normalized) Shan-
non entropy of the probability distribution of all of its ac-
cessible discrete states and disequilibrium, which is mea-
sured by the sum – taken over all accessible discrete states –
of squared differences between the system’s probability dis-
tribution and a corresponding uniform (maximum-entropy)
distribution. For example, a crystal has high disequilibrium
but low information content, and an ideal gas has low dis-
equilibrium but high information content, but for both the
product CLMC is small, indicating low complexity. Plotting
a system’s CLMC over its information content (see Fig. 2
in López-Ruiz, 1995) looks similar to the c-u-curve, includ-
ing the limit behaviour (complexity approaches zero for sys-
tems with very high and very low entropy) and the existence
of an upper bound for complexity as a function of entropy.
Feldman and Crutchfield (1998) later proposed replacing the
somewhat arbitrary measure of disequilibrium in López-Ruiz
(1995) by Kullback–Leibler divergence, but the essential dif-
ferences of CLMC and the c-u-curve methods remain. Firstly,
the former defines complexity as the product of two separate
system characteristics, of which one is the departure from a
benchmark system and the latter derives both characteristics
from the system alone. Secondly, the former does not take the
order of the data into account, while the latter explicitly does
when calculating entropy for data within temporally neigh-
bouring data within time slices.

The MSE method calculates the entropy of a time series
for various coarse-grained (time−averaged) versions thereof
and then plots the entropy over the size of the averaging win-
dow (referred to as a scale factor τ in Costa et al., 2002).
MSE shares with the c-u-curve the idea that from the joint
display and comparison of various entropy values of a time
series much can be learned about the underlying dynami-
cal system. It is also similar in that the temporal order of
the data is explicitly taken into account. The main differ-
ence is that, in MSE, data in a time window are averaged;
i.e. the within-window variability of the data is essentially
removed, while in the c-u-curve entropy calculations are al-
ways done on the original data. The second difference is that
MSE does not provide an objective measure of system com-
plexity; rather, this is visually inferred from the plot: com-
plex systems are those revealing high entropy values across
a wide range of scale factors. Obviously, the MSE and the
c-u-curve approach can be joined by repeating c-u-curve cal-
culations for various coarse-grained versions of a time series,
which seems like a very promising idea for future work.

3 Application to synthetic and real-world time series

3.1 Time series description

We discuss the properties of the c-u-curve with the example
of six time series as shown in Fig. 1a–f. Time series a–c are
synthetic time series: a straight line, random uniform noise
and the famous Lorenz attractor (Lorenz, 1963). We chose
them for their simple, exemplary and well-known behaviour.
The straight line (Fig. 1a) contains no variability whatsoever
and should therefore show very little uncertainty and com-
plexity. The random noise (Fig. 1b) contains very high but
constant variability and should therefore show high uncer-
tainty and low complexity. The Lorenz attractor (Fig. 1c) is a
prime example of complex behaviour arising from feedbacks
in dynamical systems. We used the code as provided by Moi-
seev (2022) with standard parameters to produce a time se-
ries of the Lorenz attractor. From its three variates, for clarity,
only the first one is shown and discussed, and the results from
jointly considering all three variates are similar. All synthetic
time series consist of nt= 30000 time steps, and for both
value binning and entropy binning, 10 bins were used. With a
choice ofm= 3, the range of recommended time slice widths
is sw= [30,1000] according to Eq. (4). In addition to the rec-
ommended range of time slice widths, we also included the
two extreme values sw= 1 and sw= 30000 for demonstra-
tion purposes.

Time series d–f are hydro-meteorological observations
taken from the CAMELS US data set (Newman et al., 2015).
The first (Fig. 1d) are daily precipitation observations for the
South Toe River, NC (short: STR), basin, and the second
(Fig. 1e) is the corresponding time series of daily stream-
flow observations. The basin size is 113.1 km2, and precip-
itation mainly falls as rain (the fraction of precipitation as
snow is 8.5 %). The third time series (Fig. 1f) also con-
tains daily streamflow observations but from the 111.5 km2

Green River, MA (short: GR), basin, which is more snow-
dominated (the fraction of precipitation as snow is 22.2 %).
We chose the time series for the following reasons. Compar-
ing precipitation and streamflow series from the same basin
(STR) allows the effect of the rainfall–runoff transforma-
tion process on uncertainty and complexity to be analysed.
Here we expect that a basin – by spatio-temporal convolu-
tion of precipitation – will mainly reduce precipitation vari-
ability and with it uncertainty and complexity. Comparing
streamflow from two basins with different levels of snow in-
fluence (STR and GR) allows the effect of snow processes
on uncertainty and complexity to be analysed. Here we ex-
pect that the carryover effect of snow accumulation and the
influence of an independent additional driver of hydrologi-
cal dynamics – radiation – should increase both uncertainty
and complexity. All hydro-meteorological time series con-
tain 12 418 daily observations from 1 October 1980 to 30
September 2014 (34 years). As for the synthetic time se-
ries, we also used 10 bins to resolve both the range of val-
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Figure 1. Synthetic and hydro-meteorological time series used for demonstration of the c-u-curve. Time series for subplots (a–c) comprise
30 000 time steps; for clarity, only 300 (subplots a–b) and 3000 (subplot c) time steps are shown. Time series for subplots (d–f) comprise
12 418 daily time steps (34 years); for clarity, only 4 years (1 October 1993–30 September 1997) are shown. All values are normalized to the
[0,1] value range. Further details on the time series are provided in the text.

ues and the range of entropies. However, we used a dif-
ferent time-slicing scheme to reflect standard ways of time
aggregation of real-world data. In particular, we used the
set of sw= {1,7,14,21,30,60,91,182,365,730,12418} d,
which corresponds to 1 d, 1–3 weeks, 1–6 months, 1–2 years
and the entire 34-year period. Please note that, for a choice
of m= 3, the range of recommended time slice widths is
sw= [30,414] d according to Eq. (4). Results for time slices
outside of this range should therefore be treated with caution.
We included them nevertheless for a more complete assess-
ment of the time series.

For convenience, we normalized all six time series to a
[0,1] value range and then calculated uncertainty and com-
plexity according to Eqs. (2) and (3).

3.2 Results and discussion

In this section, we present and discuss the c-u-curves of all
six time series. We start by discussing the three artificial time
series, followed by the three hydro-meteorological time se-
ries. All the c-u-curves are shown in Fig. 2, and their key
characteristics are summarized in Table 1. For clarity, Fig. 3
additionally shows only the hydro-meteorological time se-
ries in a subregion of Fig. 2. For further illustration, selected

histograms of time series streamflow in GR are shown in Ap-
pendix A.

The overall shape of each c-u-curve contains key charac-
teristics of the underlying time series. We start by discussing
the c-u-curve plot of the straight line in Fig. 2. It shows –
as expected – the simplest behaviour: for all the time-slicing
schemes, both within-slice variability and across-slice vari-
ability are zero; i.e. the series displays zero uncertainty and
complexity throughout (all dots are stacked at the origin). As
a consequence, mean uncertainty and complexity across all
the time-slicing schemes (indicated by the brown pentagram
in the plot and listed in Table 1) are also zero.

The random noise series in Fig. 2 by contrast displays very
high uncertainty and low complexity for most of the time-
slicing schemes (most dots are stacked in the lower-right cor-
ner of the plot), and only for many but narrow time slices of
50, 40 and 30 values per slice does complexity assume non-
zero values. This can be attributed to random effects in small
samples, where purely by chance both highly and hardly vari-
able samples can occur, thus creating a wide range of time
slice entropies and resulting in apparent non-zero complex-
ity. For wider slices, the larger sample size leads to more sim-
ilarly distributed samples, resulting in a narrow range of time
slice entropies and hence low complexity. Overall, mean un-
certainty is very high and mean complexity is very low (po-
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Figure 2. The c-u-curves for synthetic (dotted) and hydro-meteorological (no marker) time series as shown in Fig. 1. The time series length
is 30 000 for the synthetic data and 12 418 for the hydro-meteorological data. The number of value bins and entropy bins is 10, and the
maximum uncertainty limit and maximum complexity limit are at log2(10)= 3.32 bits. The black arch shows the maximum complexity limit
as a function of uncertainty. For the synthetic series, dot labels indicate the time slice width sw used to calculate uncertainty and complexity,
and the pentagram positions indicate the mean uncertainty and mean complexity across all the chosen time-slicing schemes. The hydro-
meteorological series are included to indicate their position within the full range of uncertainty and complexity; their details are shown in
Fig. 3. For interpretations of the axis unit “bit”, see Sect. 2.1. The lines connecting individual c-u-curve points were included for better
visibility and should not be interpreted as an indication of the guaranteed continuity of a c-u-curve.

Table 1. Key characteristics of the c-u-curve for both the synthetic and hydro-meteorological time series.

Time series Uncertainty (bit) Complexity (bit) Characteristic
timescale (d)∗

Max Mean Max Mean

Line 0 0 0 0 n/a
Random noise 3.32 3.04 0.67 0.06 30
Lorenz attractor 3.11 1.84 2.66 2.07 50, 200
Precipitation STR 0.38 0.30 1.49 0.88 14
Streamflow STR 0.09 0.06 0.53 0.17 14
Streamflow GR 0.80 0.57 2.33 1.45 60

∗Width of the time slice at which maximum complexity occurs.
n/a = not applicable

sition of the pink pentagram in Fig. 2 and values in Table 1),
which is what we expected from random noise.

The Lorenz attractor in Fig. 2 reveals a more diverse be-
haviour across the range of time-slicing schemes. We start
discussing it for the case of sw= 30000, i.e. when a sin-
gle time slice covers the entire time series. As described in
the general properties, for this case uncertainty is always at
its maximum and equals the entropy of the time series, and

complexity is zero, because only a single entropy value pop-
ulates the entropy distribution. The actual uncertainty value
(3.11 bits), or its distance from the upper limit of uncer-
tainty (3.11/3.32= 94%), is a key characteristic of the time
series and expresses its overall variability. Decreasing the
time slice width sw decreases within-slice variability (uncer-
tainty). Also, it provides the potential for non-zero complex-
ity as more and more entropy values populate the entropy
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Figure 3. The c-u-curve for all hydro-meteorological time series as shown in Fig. 1d–f. All the time series comprise 12 418 time steps, the
number of value bins and entropy bins is 10, and the maximum uncertainty limit and maximum complexity limit are at log2(10)= 3.32 bits.
The black arch shows the maximum complexity limit as a function of uncertainty. Note that for better display of details this is a horizontally
zoomed-in version of Fig. 2. Dot labels indicate the time slice width sw used to calculate uncertainty and complexity. The pentagram positions
indicate the mean uncertainty and mean complexity across all the chosen time-slicing schemes. For interpretations of the axis units “bit”, see
Sect. 2.1. The lines connecting individual c-u-curve points were included for better visibility and should not be interpreted as an indication
of the guaranteed continuity of a c-u-curve.

distribution. For the curve shown in Fig. 2, complexity con-
tinuously increases and reaches its first maximum value of
2.66 bits (or 2.66/3.32= 80%) for sw= 200 and at 2.22 bits
of uncertainty. This point is another key characteristic of a c-
u-curve, indicating at which temporal aggregation the across-
slice variability is highest. Further decreasing slice width
first leads to a decrease and then another increase in com-
plexity until a second maximum of 2.66 bits is reached at
sw= 50 (see the values in Table 1). Afterwards, complex-
ity and uncertainty decrease to zero for sw= 1, which is a
general property of any c-u-curve (see the discussion of gen-
eral properties above). Taking the uncertainty and complex-
ity mean across all the time slices summarizes the c-u-curve
in a single point (purple pentagram in Fig. 2, values in Ta-
ble 1). For the Lorenz attractor, this reveals medium average
uncertainty and high average complexity. In fact, the overall
shape of the c-u-curve is close to the upper complexity limit
reachable at a given uncertainty (shown in the plot as a black
arch). This is in accordance with expectations, as the Lorenz
attractor is known for exhibiting complex behaviour on many
timescales. Interestingly, apart from revealing its generally
complex behaviour, the c-u-curve also reveals at which par-
ticular time slice width the complexity of the Lorenz attractor

is at a maximum. This can be interpreted as a “characteristic
timescale” of the time series.

Next, we discuss the c-u-curves of the hydro-
meteorological time series. In Fig. 2, they are indicated
by the lines without markers. It is immediately obvious
that they all possess low uncertainty, much lower than the
theoretical maximum (indicated by the vertical “maximum
uncertainty” limit) and the random noise and also lower
than the Lorenz attractor. This is in accordance with our
expectations and a consequence of the typically high
temporal autocorrelation of hydro-meteorological time
series, which clearly separates them from purely random
time series. For a better view of the details, we re-plotted
the hydro-meteorological time series in a subregion of the
uncertainty limits in Fig. 3, which we will refer to in the
following.

Despite the generally low uncertainties, the precipitation
STR time series in Fig. 3 displays considerable complexity
(indicated overall by the c-u-curve being close to the up-
per complexity limit and for mean complexity by the rela-
tively high pentagram position), which can be explained by
the existence of meteorological regimes with different lev-
els of precipitation variability, such as dry periods (low vari-
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ability), periods with alternating dry and wet periods (high
variability) and wet times with diverse precipitation amounts
(high variability). The highest complexity occurs for a time
slice width of sw= 14 d, indicating that the greatest variabil-
ity of within-slice precipitation variability occurs for 2-week
periods.

Interestingly, the corresponding streamflow STR time se-
ries displays much lower mean and maximum values (see Ta-
ble 1) for both uncertainty (within-slice variability) and com-
plexity (across-slice variability). This is in accordance with
the general hydrological understanding that in the absence
of major carryover mechanisms, rainfall–runoff transforma-
tion in catchments is mainly by aggregation and convolution,
thus reducing the variability of the precipitation signal. It is
noteworthy that while this harmonizing effect changes uncer-
tainty and complexity means and maxima, it does not affect
the characteristic timescale. For both streamflow STR and
precipitation STR, this is 2 weeks. This suggests that precip-
itation remains the main control of streamflow complexity
despite the processes involved in rainfall–runoff transforma-
tion.

This is different for the second streamflow GR time se-
ries. Here, in addition to the above-mentioned rainfall–runoff
transformation, precipitation is partly stored as snow and
later released as streamflow by melting. The temporal pattern
of snowmelt is not only governed by snow availability, i.e. the
precipitation regime, but also by energy availability, i.e. the
long-term radiation and temperature regime. Such additional,
independent controls of hydrological function can add uncer-
tainty and complexity to streamflow production. Compared
to streamflow STR, both uncertainty and complexity are in-
deed much larger in terms of mean and maximum values, and
they are even larger than the corresponding values for precip-
itation STR (compare the pentagram positions in Fig. 3 and
the values in Table 1). The characteristic timescale of stream-
flow GR is 2–3 months (60–91 d). This is considerably longer
than for streamflow STR and can be explained by the carry-
over effect of snow accumulation and snowmelt acting on
timescales of the order of months rather than days or weeks.
For further illustration of the c-u-curve method, selected his-
tograms for streamflow GR are shown in Appendix A.

4 Summary and conclusions

In this paper we presented a method to analyse and classify
dynamical systems by the two key features uncertainty and
complexity. After dividing the time series into a set of time
slices, the Shannon information entropy is calculated for the
data in each time slice. Uncertainty is then calculated as the
mean entropy of all the time slices, complexity as the en-
tropy of all the entropy values. Complexity thus expresses
“uncertainty about uncertainty” in the time series. Calculat-
ing and plotting uncertainty and complexity for many time-
slicing schemes yields the c-u-curve, with key characteristics

mean and maximum uncertainty, mean and maximum com-
plexity, and the characteristic timescale of the time series.
The latter is defined as the time slice width at which maxi-
mum complexity occurs.

The c-u-curve method has several useful properties: inde-
pendence from the units of the data (both uncertainty and
complexity are expressed in bit), existence of upper and
lower bounds for both uncertainty and complexity as a func-
tion of the chosen data resolution, and bounded behaviour
when approaching the upper and lower limits of time slic-
ing. For a single time slice containing all data, uncertainty
equals the time series entropy and complexity is zero; for
time slices containing single values, both uncertainty and
complexity are zero. The c-u-curve method is applicable to
single-variate and multivariate data sets as well as to deter-
ministic and probabilistic value representations (ensemble
data sets), making it suitable for a wide range of tasks and
systems. The main limitation of the method arises from the
requirement of sufficiently populating distributions, which
sets bounds on both the minimum and maximum widths of
time slices.

We provided a proof of concept with the example of
six time series, three of them artificial, three of them from
hydro-meteorological observations. The artificial time se-
ries (straight line, random noise, Lorenz attractor) were cho-
sen for their very different, exemplary and well-known be-
haviour and with the goal of demonstrating that the c-u-
curve successfully reveals this behaviour, i.e. to demonstrate
the general applicability of the method across a wide range
of time series types. The observed time series (precipitation
and streamflow from a mainly rainfall-dominated basin and
streamflow from a basin where additionally snow processes
influence the hydrological function) were chosen with the
goal of demonstrating that the c-u-curve method reveals char-
acteristics of real-world time series that are in accordance
with the general knowledge of hydrological system function-
ing. For all the time series, we were able to show that the
c-u-curve properties were distinctly different among the time
series – which indicates that the method has discriminative
capabilities useful for system classification and that the prop-
erties are in accordance with expectations based on system
understanding. This indicates that the method captures rel-
evant time series properties and expresses them in terms of
uncertainty and complexity.

While the range of applications presented in this pa-
per is small and mainly intended as a proof of concept,
the results encourage further studies. Particularly for hydro-
meteorological applications, we suggest that the c-u-curve
method can be used for hydrological classification, as an ob-
jective function in hydrological model training, and for hy-
drological system analysis. For classification, we suggest us-
ing large hydro-meteorological data sets such as those from
Addor et al. (2017) or Kuentz et al. (2017) to analyse whether
the c-u-curve distinguishes between catchments with known
differences, such as groundwater- and interflow-dominated,
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pristine and regulated, snow-free and snow-influenced, and
arid and humid. In the same context, classifications by the c-
u-curve can be compared to existing hydrological classifiers
and signatures (such as the flow-duration curve and others as
discussed in Jehn et al., 2020, Addor et al., 2018, and Kuentz
et al., 2017) in terms of classification similarity and strength.
The clear differences in c-u-curve properties between the two
streamflow time series investigated in this paper encourage
further research in this direction. In terms of hydrological
model training, we suggest that the c-u-curve and its char-
acteristic values can be used as an additional objective func-
tion. While standard hydrological objective functions such
as Nash–Sutcliffe efficiency guide models towards point-by-
point agreement of model output and observations, c-u-curve
characteristics can guide models towards correct representa-
tions of short- and long-term variability patterns. Supported
by the (dis-)similarities of the c-u-curve properties of the pre-
cipitation and streamflow time series presented in this paper,
we also suggest that by analysing and comparing c-u-curve
properties of input, internal states and output of hydrological
systems, valuable insights into the functioning of these sys-
tems can be gained, e.g. whether they increase or decrease
the uncertainty and complexity of the signals propagating
through them. Further work on these topics is in progress. Fi-
nally, we propose the combination of the multiscale entropy
(MSE) and c-u-curve approaches as discussed in Sect. 2.3 as
a very promising avenue for future work.

Appendix A: Histograms for time series streamflow GR

As an illustration of how time series values within a time
slice translate into histograms and entropy values, we show,
for streamflow GR, in Fig. A1 the streamflow hydrographs
and the corresponding histograms for three time slices. All
the time slices have a width of 60 d, which is the slice width
for which the series shows the highest complexity (compare
Table 1 and Fig. 3). Overall, the time series (12 418 time
steps) splits into 12418/60= 206 time slices. For each slice,
we calculated entropy and selected three interesting ones:
one with the smallest of all entropy values (0 bits), one with
the highest of all entropy values (2.27 bits), and one with an
entropy of 0.61 bits, which is close to the overall mean en-
tropy of 0.60 bits of all 206 time slices (“uncertainty”). The
normalized time series of the three 60 d slices are shown in
Fig. A1a–c, and the corresponding histograms are shown in
Fig. A1d–f. As can be seen from Fig. A1a–c, for streamflow
GR the possible range of variability within 60 d time slices
is quite high, ranging from almost uniform flow (Fig. A1a)
to time slices including very variable flow with both high-
flow and low-flow conditions (Fig. A1c). This is summarized
in Fig. A2, which shows the histogram of all 206 entropy
values. Its entropy (“complexity”) is 2.33 bits (compare Ta-
ble 1).

https://doi.org/10.5194/hess-27-2591-2023 Hydrol. Earth Syst. Sci., 27, 2591–2605, 2023



2602 U. Ehret and P. Dey: Technical note: Complexity–uncertainty curve (c-u-curve)

Figure A1. Normalized streamflow hydrographs and corresponding histograms of three time slices from time series streamflow GR. Each
time slice comprises 60 d. For the histograms, the value range of the normalized streamflow was split into 10 bins of uniform width. Subplots
(a) and (d): time slice 2 October–30 November 1980, entropy= 0 bits. Subplots (b) and (e): time slice 10 October–8 December 1990,
entropy= 0.61 bits. Subplots (c) and (f): time slice 9 March–7 May 2008, entropy= 2.27 bits.

Figure A2. Histogram of entropies from normalized time series streamflow GR split into 206 time slices, each with a width of 60 d.
The entropy for each time slice was calculated from histograms (see Fig. A1). For the histogram, the possible range of entropy values
([0, log2(10)= 3.32] bits) was split into 10 bins of uniform width. The entropy of this histogram of entropies is 2.33 bits (compare Table 1).
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Appendix B: Proof of the existence of an upper bound of
the c-u-curve

For the convenience of the reader, we repeat Theorem 5.12
from Conrad (2022) here and some related explanation in
slightly modified and shortened form, but for the full proof,
the reader is referred to the original publication. In the fol-
lowing, S = {s1, . . .sn} refers to a finite set of discrete, distin-
guishable states of a (physical) system, with the correspond-
ing energy states {E1, . . .,En} and probabilities {p1, . . .pn}

of the system being in a particular state. For each probability
distribution p on S, the corresponding expected value of E
is given by Eq. (B1).

E =
∑

pj ·Ej (B1)

This number is between minEj and maxEj . For a chosen
(a priori known) value of E, the goal is to find the proba-
bility distribution q with the given E and maximum entropy.
For the general case when q is not a uniform distribution,
Theorem 5.12 provides a semi-analytical solution.

Theorem 5.12. If the Ej values are not all equal, then, for
each E between minEj and maxEj , there is a unique prob-
ability distribution q on {s1, . . .sn} satisfying the condition∑
qjEj = E and having maximum entropy. It is given by

the formula

qj =
e−β·Ej∑n
i=1e

−β·Ei
(B2)

for a unique extended real number β in [−∞,∞] that de-
pends on E. In particular, β =−∞ corresponds to E =

maxEj , β =∞ corresponds to E =minEj , and β = 0 (the
uniform distribution) corresponds to the arithmetic mean
E = (

∑
Ej )/n, so β > 0 when E < (

∑
Ej )/n and β < 0

when E > (
∑
Ej )/n. The value of β can be numerically ap-

proximated with an iterative algorithmic recipe and Eqs. (B1)
and (B2) (see example 5.14 in Conrad, 2022).

Code and data availability. The code and data used to con-
duct all the analyses in this paper are publicly available at
https://doi.org/10.5281/zenodo.7276917 (Ehret, 2022).

Author contributions. UE developed the c-u-curve method and
wrote all the related code. UE and PD designed the study together
and wrote the manuscript together.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We gratefully acknowledge support by the
Deutsche Forschungsgemeinschaft (DFG) and the Open Access
Publishing Fund of the Karlsruhe Institute of Technology (KIT). We
thank Philipp Reiser from the University of Stuttgart for pointing us
to Conrad (2022).

Financial support. This research has been supported by the IN-
SPIRE Faculty Fellowship, Department of Science and Technology,
Government of India (grant no. DST/INSPIRE/04/2022/001952,
Faculty Registration No.: IFA22-EAS 114).

The article processing charges for this open-access publica-
tion were covered by the Karlsruhe Institute of Technology
(KIT).

Review statement. This paper was edited by Jim Freer and reviewed
by Jasper Vrugt and one anonymous referee.

References

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N.,
and Clark, M. P.: A Ranking of Hydrological Signatures Based
on Their Predictability in Space, Water Resour. Res., 54, 8792–
8812, https://doi.org/10.1029/2018WR022606, 2018.

Azmi, E., Ehret, U., Weijs, S. V., Ruddell, B. L., and Perdigão,
R. A. P.: Technical note: “Bit by bit”: a practical and gen-
eral approach for evaluating model computational complexity
vs. model performance, Hydrol. Earth Syst. Sci., 25, 1103–1115,
https://doi.org/10.5194/hess-25-1103-2021, 2021.

Bossel, H.: Dynamics of forest dieback: Systems analysis and simu-
lation, Ecol. Model., 34, 259–288, https://doi.org/10.1016/0304-
3800(86)90008-6, 1986.

Bossel, H.: Systems and Models. Complexity, Dynamics, Evolu-
tion, Sustainability, Books on Demand GmbH, Norderstedt, Ger-
many, 372 pp., ISBN 978-3-8334-8121-5, 2007.

Bras, R. L.: Complexity and organization in hydrology:
A personal view, Water Resour. Res., 51, 6532–6548,
https://doi.org/10.1002/2015wr016958, 2015.

Brunsell, N. A.: A multiscale information theory approach to assess
spatial–temporal variability of daily precipitation, J. Hydrol.,
385, 165–172, https://doi.org/10.1016/j.jhydrol.2010.02.016,
2010.

Castillo, A., Castelli, F., and Entekhabi, D.: An entropy-based mea-
sure of hydrologic complexity and its applications, Water Resour.
Res., 51, 5145–5160, https://doi.org/10.1002/2014wr016035,
2015.

Chou, C.-M.: Wavelet-Based Multi-Scale Entropy Analysis of
Complex Rainfall Time Series, Entropy, 13, 241–253, 2011.

Conrad, K.: Probability distributions and maximum entropy, https:
//kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf, last
access: 30 October 2022.

https://doi.org/10.5194/hess-27-2591-2023 Hydrol. Earth Syst. Sci., 27, 2591–2605, 2023

https://doi.org/10.5281/zenodo.7276917
https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.1029/2018WR022606
https://doi.org/10.5194/hess-25-1103-2021
https://doi.org/10.1016/0304-3800(86)90008-6
https://doi.org/10.1016/0304-3800(86)90008-6
https://doi.org/10.1002/2015wr016958
https://doi.org/10.1016/j.jhydrol.2010.02.016
https://doi.org/10.1002/2014wr016035
https://kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf
https://kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf


2604 U. Ehret and P. Dey: Technical note: Complexity–uncertainty curve (c-u-curve)

Costa, M., Goldberger, A. L., and Peng, C. K.: Multiscale Entropy
Analysis of Complex Physiologic Time Series, Phys. Rev. Lett.,
89, 068102, https://doi.org/10.1103/PhysRevLett.89.068102,
2002.

Costa, M., Goldberger, A. L., and Peng, C. K.: Multiscale en-
tropy analysis of biological signals, Phys. Rev. E, 71, 021906,
https://doi.org/10.1103/PhysRevE.71.021906, 2005.

Cover, T. and Thomas, J. A.: Elements of Information Theory, Wi-
ley Series in Telecommunications and Signal Processing, Wiley-
Interscience, https://doi.org/10.1002/0471200611, 2006.

Dey, P. and Mujumdar, P.: On the statistical com-
plexity of streamflow, Hydrol. Sci. J., 67, 40–53,
https://doi.org/10.1080/02626667.2021.2000991, 2022.

Dooge, J. C. I.: Looking for hydrologic laws, Water Resour. Res.,
22, 46S–58S, https://doi.org/10.1029/WR022i09Sp0046S, 1986.

Ehret, U.: KIT-HYD/c-u-curve: Version 1.1 (1.1.0), Zenodo [code/-
data], https://doi.org/10.5281/zenodo.7276917, 2022.

Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schyman-
ski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Kleidon,
A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe,
E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J., van
Beek, L. P. H., van Griensven, A., Westhoff, M. C., and Win-
semius, H. C.: Advancing catchment hydrology to deal with pre-
dictions under change, Hydrol. Earth Syst. Sci., 18, 649–671,
https://doi.org/10.5194/hess-18-649-2014, 2014.

Engelhardt, S., Matyssek, R., and Huwe, B.: Complexity and in-
formation propagation in hydrological time series of moun-
tain forest catchments, Eur. J. For. Res., 128, 621–631,
https://doi.org/10.1007/s10342-009-0306-2, 2009.

Feldman, D. P. and Crutchfield, J. P.: Measures of sta-
tistical complexity: Why?, Phys. Lett. A, 238, 244–252,
https://doi.org/10.1016/s0375-9601(97)00855-4, 1998.

Forrester, J. W.: Principles of Systems, 2nd edn., Productivity Press,
Portland, OR, 391 pp., ISBN 978-1883823412, 1968.

Freedman, D. and Diaconis, P.: On the histogram as a den-
sity estimator: L2 theory, Z. Wahrscheinlichkeit., 57, 453–476,
https://doi.org/10.1007/BF01025868, 1981.

Gell-Mann, M.: What is complexity? Remarks on simplic-
ity and complexity by the Nobel Prize-winning author
of The Quark and the Jaguar, Complexity, 1, 16–19,
https://doi.org/10.1002/cplx.6130010105, 1995.

Guzmán-Vargas, L., Ramírez-Rojas, A., and Angulo-
Brown, F.: Multiscale entropy analysis of electroseismic
time series, Nat. Hazards Earth Syst. Sci., 8, 855–860,
https://doi.org/10.5194/nhess-8-855-2008, 2008.

Hastings, A., Hom, C. L., Ellner, S., Turchin, P., and Godfray, H.
C. J.: Chaos in Ecology – Is Mother Nature a Strange Attractor?,
Annu. Rev. Ecol. Syst., 24, 1–33, 1993.

Hauhs, M. and Lange, H.: Classification of Runoff in Headwater
Catchments: A Physical Problem?, Geography Compass, 2, 235–
254, https://doi.org/10.1111/j.1749-8198.2007.00075.x, 2008.

Jakeman, A. J. and Hornberger, G. M.: How much complexity is
warranted in a rainfall-runoff model?, Water Resour. Res., 29,
2637–2649, https://doi.org/10.1029/93WR00877, 1993.

Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., and Houska, T.: Using
hydrological and climatic catchment clusters to explore drivers
of catchment behavior, Hydrol. Earth Syst. Sci., 24, 1081–1100,
https://doi.org/10.5194/hess-24-1081-2020, 2020.

Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., Mc-
Donnell, J. J., and Villegas, J. C.: Organization of complex-
ity in water limited ecohydrology, Ecohydrology, 5, 184–199,
https://doi.org/10.1002/eco.217, 2012.

Jovanovic, T., Garcia, S., Gall, H., and Mejia, A.: Complexity as a
streamflow metric of hydrologic alteration, Stoch. Env. Res. Risk
A., 31, 2107–2119, https://doi.org/10.1007/s00477-016-1315-6,
2017.

Knuth, K. H.: Optimal data-based binning for histograms and
histogram-based probability density models, Digit. Signal Pro-
cess., 95, 102581, https://doi.org/10.1016/j.dsp.2019.102581,
2019.

Koutsoyiannis, D.: On the quest for chaotic attractors in
hydrological processes, Hydrolog. Sci. J., 51, 1065–1091,
https://doi.org/10.1623/hysj.51.6.1065, 2006.

Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Un-
derstanding hydrologic variability across Europe through catch-
ment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879,
https://doi.org/10.5194/hess-21-2863-2017, 2017.

Ladyman, J., Lambert, J., and Wiesner, K.: What is
a complex system?, Eur. J. Philos. Sci., 3, 33–67,
https://doi.org/10.1007/s13194-012-0056-8, 2013.

Li, Z. and Zhang, Y.-K.: Multi-scale entropy analysis of Mis-
sissippi River flow, Stoch. Env. Res. Risk A., 22, 507–512,
https://doi.org/10.1007/s00477-007-0161-y, 2008.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: To-
ward an integrated data assimilation framework, Water Resour.
Res., 43, W07401, https://doi.org/10.1029/2006WR005756,
2007.

Lloyd, S.: Measures of complexity: a nonexhaus-
tive list, IEEE Contr. Syst. Mag., 21, 7–8,
https://doi.org/10.1109/MCS.2001.939938, 2001.

LopezRuiz, R., Mancini, H. L., and Calbet, X.: A statisti-
cal measure of complexity, Phys. Lett. A, 209, 321–326,
https://doi.org/10.1016/0375-9601(95)00867-5, 1995.

Lorenz, E. N.: Deterministic Nonperiodic Flow, J. At-
mos. Sci., 20, 130–141, https://doi.org/10.1175/1520-
0469(1963)020<0130:Dnf>2.0.Co;2, 1963.

Lorenz, E. N.: Predictability of a flow which possesses many scales
of motion, Tellus, 21, 289–308, 1969.

Moiseev, I.: Lorenz attractor plot, MATLAB Central File Exchange,
https://www.mathworks.com/matlabcentral/fileexchange/
30066-lorenz-attaractor-plot, retrieved: 3 January 2022.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153,
2007.

Neuper, M. and Ehret, U.: Quantitative precipitation estima-
tion with weather radar using a data- and information-
based approach, Hydrol. Earth Syst. Sci., 23, 3711–3733,
https://doi.org/10.5194/hess-23-3711-2019, 2019.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L.
E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J.
R., Hopson, T., and Duan, Q.: Development of a large-sample
watershed-scale hydrometeorological data set for the contiguous
USA: data set characteristics and assessment of regional variabil-
ity in hydrologic model performance, Hydrol. Earth Syst. Sci.,
19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.

Hydrol. Earth Syst. Sci., 27, 2591–2605, 2023 https://doi.org/10.5194/hess-27-2591-2023

https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1002/0471200611
https://doi.org/10.1080/02626667.2021.2000991
https://doi.org/10.1029/WR022i09Sp0046S
https://doi.org/10.5281/zenodo.7276917
https://doi.org/10.5194/hess-18-649-2014
https://doi.org/10.1007/s10342-009-0306-2
https://doi.org/10.1016/s0375-9601(97)00855-4
https://doi.org/10.1007/BF01025868
https://doi.org/10.1002/cplx.6130010105
https://doi.org/10.5194/nhess-8-855-2008
https://doi.org/10.1111/j.1749-8198.2007.00075.x
https://doi.org/10.1029/93WR00877
https://doi.org/10.5194/hess-24-1081-2020
https://doi.org/10.1002/eco.217
https://doi.org/10.1007/s00477-016-1315-6
https://doi.org/10.1016/j.dsp.2019.102581
https://doi.org/10.1623/hysj.51.6.1065
https://doi.org/10.5194/hess-21-2863-2017
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s00477-007-0161-y
https://doi.org/10.1029/2006WR005756
https://doi.org/10.1109/MCS.2001.939938
https://doi.org/10.1016/0375-9601(95)00867-5
https://doi.org/10.1175/1520-0469(1963)020<0130:Dnf>2.0.Co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:Dnf>2.0.Co;2
https://www.mathworks.com/matlabcentral/fileexchange/30066-lorenz-attaractor-plot
https://www.mathworks.com/matlabcentral/fileexchange/30066-lorenz-attaractor-plot
https://doi.org/10.13031/2013.23153
https://doi.org/10.5194/hess-23-3711-2019
https://doi.org/10.5194/hess-19-209-2015


U. Ehret and P. Dey: Technical note: Complexity–uncertainty curve (c-u-curve) 2605

Ombadi, M., Nguyen, P., Sorooshian, S. and Hsu, K.: Complexity of
hydrologic basins: A chaotic dynamics perspective, J. Hydrol.,
597, 126222, https://doi.org/10.1016/j.jhydrol.2021.126222,
2021.

Ossola, A., Hahs, A. K., and Livesley, S. J.: Habitat com-
plexity influences fine scale hydrological processes
and the incidence of stormwater runoff in managed
urban ecosystems, J. Environ. Manage., 159, 1–10,
https://doi.org/10.1016/j.jenvman.2015.05.002, 2015.

Pachepsky, Y., Guber, A., Jacques, D., Simunek, J., Van Genuchten,
M. T., Nicholson, T., and Cady, R.: Information content and com-
plexity of simulated soil water fluxes, Geoderma, 134, 253–266,
https://doi.org/10.1016/j.geoderma.2006.03.003, 2006.

Pande, S. and Moayeri, M.: Hydrological Interpretation of a Sta-
tistical Measure of Basin Complexity, Water Resour. Res., 54,
7403–7416, https://doi.org/10.1029/2018wr022675, 2018.

Pechlivanidis, I. G., Jackson, B., McMillan, H., and Gupta,
H. V.: Robust informational entropy-based descriptors of
flow in catchment hydrology, Hydrolog. Sci. J., 61, 1–18,
https://doi.org/10.1080/02626667.2014.983516, 2016.

Phillips, J. D.: Deterministic chaos and historical geomorphol-
ogy: A review and look forward, Geomorphology, 76, 109–121,
https://doi.org/10.1016/j.geomorph.2005.10.004, 2006.

Prokopenko, M., Boschetti, F., and Ryan, A. J.: An
information-theoretic primer on complexity, self-
organization, and emergence, Complexity, 15, 11–28,
https://doi.org/10.1002/cplx.20249, 2009.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and
Carrillo, G.: Catchment classification: empirical analysis of
hydrologic similarity based on catchment function in the
eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911,
https://doi.org/10.5194/hess-15-2895-2011, 2011.

Scott, D. W.: On optimal and data-based histograms, Biometrika,
66, 605–610, https://doi.org/10.1093/biomet/66.3.605, 1979.

Seibert, S. P., Jackisch, C., Ehret, U., Pfister, L., and Zehe, E.: Un-
ravelling abiotic and biotic controls on the seasonal water bal-
ance using data-driven dimensionless diagnostics, Hydrol. Earth
Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-
2017, 2017.

Shannon, C. E.: A mathematical theory of communication, Bell
Syst. Tech. J., 27, 623–656, 1948.

Singh, V. P.: Entropy Theory and its Application in Environ-
mental and Water Engineering, John Wiley & Sons, Ltd,
https://doi.org/10.1002/9781118428306, 2013.

Sivakumar, B. and Singh, V. P.: Hydrologic system complex-
ity and nonlinear dynamic concepts for a catchment classi-
fication framework, Hydrol. Earth Syst. Sci., 16, 4119–4131,
https://doi.org/10.5194/hess-16-4119-2012, 2012.

Sivakumar, B., Jayawardena, A. W., and Li, W. K.: Hy-
drologic complexity and classification: a simple data re-
construction approach, Hydrol. Process., 21, 2713–2728,
https://doi.org/10.1002/hyp.6362, 2007.

Strogatz, S. H.: Nonlinear Dynamics and Chaos: With ap-
plications to Physics, Biology, Chemistry and Engineering,
Addison-Wesley Publishing Company, Reading, MA, 498 pp.,
https://doi.org/10.1201/9780429492563, 1994.

Sturges, H. A.: The Choice of a Class Interval, J. Am. Stat. Assoc.,
21, 65–66, https://doi.org/10.1080/01621459.1926.10502161,
1926.

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian,
S.: A Shuffled Complex Evolution Metropolis algorithm
for optimization and uncertainty assessment of hydro-
logic model parameters, Water Resour. Res., 39, 1201,
https://doi.org/10.1029/2002WR001642, 2003.

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.:
Equifinality of formal (DREAM) and informal (GLUE) Bayesian
approaches in hydrologic modeling?, Stoch. Env. Res. Risk
A., 23, 1011–1026, https://doi.org/10.1007/s00477-008-0274-y,
2009.

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment
Classification and Hydrologic Similarity, Geography Compass,
1, 901–931, https://doi.org/10.1111/j.1749-8198.2007.00039.x,
2007.

Wu, S.-D., Wu, C.-W., Lin, S.-G., Wang, C.-C., and Lee, K.-Y.:
Time Series Analysis Using Composite Multiscale Entropy, En-
tropy, 15, 1069–1084, 2013.

Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective
global optimization for hydrologic models, J. Hydrol., 204, 83–
97, https://doi.org/10.1016/s0022-1694(97)00107-8, 1998.

Zhou, Y., Zhang, Q., Li, K., and Chen, X. H.: Hydrological
effects of water reservoirs on hydrological processes in the
East River (China) basin: complexity evaluations based on the
multi-scale entropy analysis, Hydrol. Process., 26, 3253–3262,
https://doi.org/10.1002/hyp.8406, 2012.

https://doi.org/10.5194/hess-27-2591-2023 Hydrol. Earth Syst. Sci., 27, 2591–2605, 2023

https://doi.org/10.1016/j.jhydrol.2021.126222
https://doi.org/10.1016/j.jenvman.2015.05.002
https://doi.org/10.1016/j.geoderma.2006.03.003
https://doi.org/10.1029/2018wr022675
https://doi.org/10.1080/02626667.2014.983516
https://doi.org/10.1016/j.geomorph.2005.10.004
https://doi.org/10.1002/cplx.20249
https://doi.org/10.5194/hess-15-2895-2011
https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.5194/hess-21-2817-2017
https://doi.org/10.5194/hess-21-2817-2017
https://doi.org/10.1002/9781118428306
https://doi.org/10.5194/hess-16-4119-2012
https://doi.org/10.1002/hyp.6362
https://doi.org/10.1201/9780429492563
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1029/2002WR001642
https://doi.org/10.1007/s00477-008-0274-y
https://doi.org/10.1111/j.1749-8198.2007.00039.x
https://doi.org/10.1016/s0022-1694(97)00107-8
https://doi.org/10.1002/hyp.8406

	Abstract
	Introduction
	Method
	Method description
	Properties
	Axis units
	Existence of lower and upper bounds for uncertainty
	Existence of lower and upper bounds for complexity
	Invariance under normalization
	Influence of the chosen binning scheme
	No guarantee of continuity
	Influence of time slice positioning
	Influence of errors and trends in the data
	Generalizations and limitations

	Comparison to existing methods

	Application to synthetic and real-world time series
	Time series description
	Results and discussion

	Summary and conclusions
	Appendix A: Histograms for time series streamflow GR
	Appendix B: Proof of the existence of an upper bound of the c-u-curve
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

