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Gut microbiota: a newly
identified environmental factor
in systemic lupus erythematosus
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and Tianbiao Zhou*

Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College,
Shantou, China
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that

predominantly affects women of childbearing age and is characterized by the

damage to multiple target organs. The pathogenesis of SLE is complex, and its

etiology mainly involves genetic and environmental factors. At present, there is

still a lack of effective means to cure SLE. In recent years, growing evidence has

shown that gut microbiota, as an environmental factor, triggers autoimmunity

through potential mechanisms including translocation and molecular mimicry,

leads to immune dysregulation, and contributes to the development of SLE.

Dietary intervention, drug therapy, probiotics supplement, fecal microbiome

transplantation and other ways to modulate gut microbiota appear to be a

potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE,

potential mechanisms linking gut microbiota and SLE, and immune dysregulation

associated with gut microbiota in SLE are summarized.
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Introduction

Systemic lupus erythematosus (SLE), mainly affecting women of childbearing age, is a

chronic autoimmune disease that involves multiple organs such as the skin, joints, kidneys,

and central nervous system (1). The estimated global incidence and prevalence of SLE were

5.14 per 100,000 person-years (1.4 to 15.13) and 43.7 per 100,000 person-years (15.87 to

108.92), respectively (2).

SLE is characterized by immune dysregulation and loss of tolerance to autoantigens (3).

Both innate and adaptive immunity are involved in the pathogenesis of SLE (4).

Autoreactive B cells which are induced by the breakdown of central and peripheral

tolerance mechanisms, occupying a core position in the adaptive immune response of SLE,

produce autoantibodies, present autoantigens and activate autoreactive T cells (4, 5).

CD4+T helper cell subsets such as Th1, Th2, Th17, T follicular helper and regulatory T cells

exist disturbances in number and function. The reduced cytolytic activity of CD8+
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cytotoxic T cells induces higher rates of infection and sustenance of

autoimmunity (6). The population of clusters of double-negative T

cells CD4-CD8- T cells, which can produce inflammatory cytokines

and infiltrate target tissues, is increased in SLE patients (7, 8). In the

innate immune response, abnormal activation or disabled tolerance

of dendritic cells induces abnormal production of type I interferons

and inflammatory mediators, which contributes to pathogenic

innate immunity and autoinflammation (9). In SLE, the defective

clearance of apoptotic material and neutrophil extracellular traps

lead to the exposure of autoantigens and trigger the production of

autoantibodies (10, 11). Local depositions of the immune complexes

that are generated between autoantibodies and autoantigens result

in serious inflammation through activating the complement system

(12, 13).

The etiology of SLE is still not entirely clear. It is now believed

that genetic and environmental factors mainly contribute to the

development of SLE (14). The genome-wide association study has

identified more than 60 risk loci for SLE susceptibility (15).

Individuals with identified genetic polymorphisms have a higher

risk of developing SLE than the general population (16).

Environmental factors including ultraviolet light (17), silica

exposure (18), cigarette smoking (19), viral and bacterial

infections (20), and sex hormones (21) are involved in the

pathogenesis of SLE. Currently, the main therapeutic drugs for

SLE are glucocorticoids, immunosuppressive drugs and

antimalarial drugs, but their use is limited due to serious side

effects (22, 23). Gut microbiota connects some external

environmental effectors with the immune system and supports

the immune system program to tolerate innocent external and

self-antigens (24). However, when the gut microbiota is dysbiotic, it

can disrupt immune function, induce inflammation and immune

system sensitization and lead to autoimmune diseases (25, 26).

Recently, increasing studies have found that gut microbiota as an

environmental factor contributes to the development of SLE (27),

and modulating the gut microbiota appears to be a potential

treatment for SLE (28). In this review, we summarize the

alteration of gut microbiota in SLE, potential mechanisms

connecting gut microbiota to SLE, and immune dysregulation

related to gut microbiota in SLE.
The alteration of gut microbiota
in SLE

The changes of gut microbiota in lupus
mice models

Recently, increasing studies have revealed that dysbiosis of gut

microbiota is associated with SLE. Alteration of the gut microbiota

has been found in various lupus mouse models, as shown in Table 1.

Luo et al. (31) found that the gut microbiota changed significantly

before and after lupus onset in NZB/W F1 mice. Zhang et al. (29)

found that Lactobacillaceae significantly decreased and

Lachnospiraceae significantly increased in lupus-prone MRL/lpr

mice. The decreased abundance of Lactobacillaceae was also
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observed in MRL/lpr mice in another study (36). Increased

intestinal abundance of Lactobacillaceae was associated with

improvement of lupus symptoms, while increased colonization of

Lachnospiraceae was associated with disease progression (29).

Consistently, Mu et al. (30) found that Lactobacillales significantly

depleted in the gut microbiota of MRL/lpr mice and was associated

with improvement of lupus symptoms. However, in another lupus

mice model NZB/W F1 mice, Luo et al. (31) reported that the

greater abundance of a group of Lactobacilli was linked with more

severe clinical signs. Zegarra-Ruiz et al. (32) found that the

abundance of Lactobacill. reuteri increased in TLR7.1 Tg mice

and Lactobacill. reuteri colonization exacerbated systemic

autoimmunity under specific-pathogen-free and gnotobiotic

conditions. In addition, He et al. (34) observed a rise in the

abundance of Bacteroidetes and a reduction in Firmicutes in the

gut microbiota of MRL/lpr mice. Abundant Bacteroidetes and

decreased Firmicutes were also found in NZBWF1 mice, and

increased proportions of Bacteroides were associated with high

blood pressure (35). Abdelhamid et al. (33) found that the

abundance of Bacteroidetes was positively correlated with

glomerular pathological scores. A lower Firmicutes/Bacteroidetes

(F/B) ratio found in 6-week-old MRL/lpr mice might play an

important role in promoting early disease onset (38).

Furthermore, Chen et al. (39) reported that the increased

abundance of genera Candidatus saccharimonas, Desulfovibrio,

Odoribacter and Roseburia in mice treated with HCMVpp65

peptide is significantly correlated with lupus-like effects including

enhanced levels of creatinine, proteinuria, glomerular damage and

anti-dsDNA antibodies. Valiente et al. (40) found that NZM2410

mice colonized with segmented filamentous bacteria showed

worsening glomerulonephritis, deposition of glomerular and

tubular immune complexes, and interstitial inflammation.

Therefore, gut microbiota dysbiosis in lupus mice models could

be characterized by a decrease of beneficial bacteria and an increase

of harmful bacteria and was associated with SLE.

The gut microbiota from lupus patients and mice in recipient

mice can cause the production of autoantibodies and increase the

expression of lupus-related genes. Ma et al. (41) conducted a study

transplanting fecal microbiota from SLE mice to germ free mice and

found that fecal microbiome from SLE mice could induce the

production of anti-dsDNA antibodies and upregulate the

expression of SLE susceptibility genes in germ free mice. Choi

et al. (42) transferred the dysbiotic gut microbiota from triple

congenic lupus-prone mice into germfree congenic C57BL/6

mice, and found that the gut microbiota activated immune cells

and induced the production of autoantibodies in recipient mice. In

a study by Ma et al., when receiving fecal microbiota from SLE

patients, germ-free mice showed increased expression of genes

associated with SLE and a range of lupus-like phenotypic features,

including imbalanced cytokines, elevated serum levels of

autoimmune antibodies, changed the distribution of immune cells

in mucosal and peripheral immune responses (43). In addition,

high blood pressure and vascular complications were found in

germ-free or germ-depleted mice after receiving gut microbiota

from hypertensive NZBWF1 mice (35). These results further
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illustrate that dysbiosis of gut microbiota contributes to the

development of SLE.
The changes of gut microbiota in
SLE patients

It has been reported that patients with extra-intestinal

autoimmune diseases, including multiple sclerosis (44),
Frontiers in Immunology 03
rheumatoid arthritis (45), and type 1 diabetes (46), have distinct

gut microbiota compositions compared to healthy individuals.

Plenty of studies have also shown that gut microbiota altered

significantly in SLE patients compared to healthy controls. Extra-

intestinal autoimmune diseases associated with gut microbiota

dysbiosis are summarized in Figure 1. Hevia et al. (47) performed

a study comparing the fecal microbial profiles between SLE patients

and healthy subjects and published the first report to describe an

SLE-associated intestinal dysbiosis in humans. Wang et al. (48)
TABLE 1 The alteration of gut microbiota in lupus mice models.

Study
(Year)

Mice The alteration of gut microbiota Association Intervention outcome Reference

Zhang, et al.
(2014)

MRL/lpr
mice

Family: Lactobacillaceae ↓, Lachnospiraceae ↑,
Ruminococcaceae ↑, Rikenellaceae (genus
Alistipes)↑

Lactobacillaceae was
negatively correlated
with lupus activity.
Lachnospiraceae was
associated with more
severe lupus symptoms.

Retinoic acid treatment restored
lactobacilli and improved lupus
symptoms.

(29)

B6/lpr
mice

Family: Clostridiaceae ↑, Lachnospiraceae ↑

Mu, et al.
(2017)

MRL/lpr
mice

Family: Lactobacillaceae ↓ Lactobacillales was
associated with the
improvement of lupus
symptoms.

Lactobacillus treatment may correct the
leakiness of gut and attenuate lupus
nephritis by limiting renal deposition of
IgG2a and restoring Treg/Th17 balance.

(30)

Luo, et al.
(2018)

NZB/W
F1 mice

Several species in the genera Clostridium,
Dehalobacterium, Lactobacillus, Oscillospira,
Dorea, Bilophila, and AF12 and an unnamed
genus within the family Ruminococcaceae ↑,
Akkermansia muciniphila and a species within
the genus Anaerostipes ↓

The greater abundance
of a group of lactobacilli
was associated with
more severe clinical
signs.

(31)

Zegarra-
Ruiz, et al.
(2019)

TLR7.1
Tg mice

Family: Rikenellaceae ↑
Genus: Desulfovibrio ↑
Species: Lactobacill. reuteri ↑

Lactobacill. reuteri alone
was sufficient to
exacerbate systemic
autoimmunity.

Resistant starch decreased the abundance
of L. reuteri, gut leakiness, type I IFN
and proinflammatory responses, pDC
infiltrations, and organ pathology,
thereby preventing the development of
systemic autoimmunity.

(32)

Abdelhamid,
et al. (2020)

Balb/c
mice
treated
with
pristane

Order: Bacterodiales ↑
Genus: Lactobacillus ↓, Ruminococcus ↑
Species: Lactobacillus gasseri ↓

The abundance of
Bacteroidetes was
positively correlated
with glomerular
pathological scores.

All-trans-retinoic acid treatment
decreased circulatory and renal
deposition of autoantibodies as well as
suppressed the renal expression of
proinflammatory cytokines and
chemokines.

(33)

He, et al.
(2020)

MRL/lpr
mice

Phyla: Firmicutes ↓, Bacteroidetesma ↑
Class: Clostridia ↓, Bacteroidia ↑
Order: Clostridiales ↓, Bacteroidales ↑
Family: Lachnospiraceae ↓

Butyrate supplementation can ameliorate
gut microbiota dysbiosis and reduce
kidney damage.

(34)

de la
Visitación,
et al. (2021)

NZBWF1
mice

Phyla: Verrucomicrobia, Proteobacteria,
Bacteroidetes and Proteobacteria ↑, Firmicutes ↓
Genus: Parabacteroides, Pedobacter, Olivibacter
and Clostridium ↑

Increased proportions of
Bacteroides were linked
with high blood
pressure.

Antibiotic treatments induced changes in
gut microbiota, and inhibited the
increment of blood pressure, target organ
hypertrophy, renal injury and disease
activity.

(35)

Kim, et al.
(2021)

MRL/lpr
mice

Family: Lactobacillaceae ↓
Genus: Lactobacillus ↓

Lactobacillus acidophilus improved gut
dysbiosis and decreased the renal
inflammation.

(36)

Toumi, et al.
(2022)

BALB/
cByJ mice
treated
with
pristane

Phyla: Tenericutes ↓
Family: Tannerellacea ↑
Genus: Parabacteroides ↑, Bacteroides ↑,
Alistipes ↑

(37)
f

↑, higher abundance or enriched; ↓, lower abundance or depleted.
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compared lupus patients to their healthy family members,

controlling for living conditions and dietary factors, and found

that the gut microbiota of lupus patients still differed from that of

healthy controls. It is known that Bacteroidetes and Firmicutes are

the most abundant components of the human gut microbiota (49).

A significantly lower F/B ratio was observed in SLE patients

compared to healthy subjects (47). Several subsequent studies

conducted in different countries around the world have also

observed a lower F/B ratio in the gut microbiota of lupus patients

compared to healthy people (37, 50–52). Furthermore, Katz-

Agranov and Zandman-Goddard (53) revealed that SLE

individuals even in remission had a significantly lower F/B ratio.

Active SLE patients showed a significantly lower F/B ratio

compared to the inactive SLE group (37). In addition, Gerges

et al. (52) found that the F/B ratio was negatively correlated with

the SLEDAI-2K score. Widhani et al. (54) also reported that SLE

patients with mild disease activity had a higher F/B ratio compared

to patients with moderate or high disease activity. These results

indicate that the lower F/B ratio in SLE patients is independent of

ethnicity, lifestyle as well as disease stage and inversely correlated

with lupus disease activity. However, a lower F/B ratio is not the

specific feature in the alteration of gut microbiota in SLE patients,

and it is also linked to other diseases, such as type 2 diabetes (55),

Crohn’s disease (56) and Parkinson’s disease (57). Reduced

bacterial diversity is another main feature of intestinal dysbiosis

that has been reported by many studies conducted in humans (31,

51, 58–60). Furthermore, patients with a high SLE activity index

had a particularly significant reduction in the species diversity of gut

microbiota (58). In addition, a recent study reported that the gut

microbiota composition of SLE patients with depression was also

different from that of SLE patients without depression (61).
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The indicators commonly used to reflect the disease activity of

SLE patients include SLEDAI, anti-double stranded DNA (anti-

dsDNA), erythrocyte sedimentation rate (ESR), C-reactive protein

(CRP) and complement C3 (62–64). Some biomarkers in the gut

microbiota of SLE patients have been found to be associated with

the disease activity indicators. Bagavant et al. (65) found that higher

titers of anti-E. gallinarum IgG in patients were significantly

correlated with the presence of anti-Ribosomal P, anti-dsDNA

and anti-Sm autoantibodies. Azzouz et al. (58) reported that

Ruminococcus gnavus (RG) showed a mean 5-fold overabundance

in lupus patients compared with healthy controls. And patients with

high disease activity and especially lupus nephritis showed the

greatest expansion of RG. Furthermore, anti-RG antibodies were

directly correlated with anti-DNA levels and SLEDAI scores, while

they were negatively correlated with C3 and C4. Patients with active

nephritis including Class III and IV exhibited the highest levels of

anti-RG strain restricted antibodies in serum. The abundance of

Acholeplasma, Capnocytophaga and Leptotrichia were negatively

correlated with SLEDAI score, and the abundance of Bacteroides,

Ruminococcus and Akkermansia had an inverse correlation with the

serum levels of complement C3 (60). The genus Streptococcus was

associated with the lupus activity (59). These findings suggest that

some biomarkers in the gut microbiota are linked with the disease

activity of SLE patients and have the potential to be used as

indicators to reflect the disease activity of SLE patients. Studies on

the gut microbiota in lupus patients are summarized in Table 2.

In recent years, studies have further confirmed the association

between gut microbiota and SLE, and pointed out a causal

relationship between the two. Xiang et al. (68) performed a meta-

analysis including 11 case-control studies conducted in five

countries and nine cities, and found increased abundance in
FIGURE 1

Gut microbiota dysbiosis and extra-intestinal autoimmune diseases. Gut microbiota dysbiosis is associated with multiple sclerosis, rheumatoid
arthritis, type 1 diabetes and systemic lupus erythematosus. Created by BioRender.com.
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TABLE 2 The alteration of gut microbiota in SLE patients.

Study
(Year)

Human
Subjects

(n)

Region The alteration of gut microbiota Association Reference

Hevia,
et al.
(2014)

SLE (20)
vs. HC
(20)

Spain Phyla: Firmicutes/Bacteroidetes ↓, Bacteroidetes ↑ (47)

He,
et al.
(2016)

SLE (45)
vs. HC
(48)

China Phyla: Bacteroidetes, Actinobacteria and
Proteobacteria ↑, Firmicutes ↓
Genus: Rhodococcus, Eggerthella, Klebsiella,
Prevotella, Eubacterium, Flavonifractor and
Incertae sedis ↑, Dialister and Pseudobutyrivibrio ↓

(50)

Luo,
et al.
(2018)

SLE (14)
vs. HC
(17)

America Lower diversity
Phyla: Proteobacteria ↑
Species: A species in genus Blautia ↑, two species
in genus Odoribacter and an unnamed genus
(family Rikenellaceae) ↓

(31)

van der
Meulen,
et al.
(2019)

SLE (30)
vs. HC
(965)

Netherlands Lower bacterial richness
Phyla: Firmicutes/Bacteroidetes ↓
Species: Bacteroides ↑

(51)

Azzouz,
et al.
(2019)

SLE (61)
vs. HC
(17)

America Species richness diversity ↓
Family: Veillonellaceae ↑, Ruminococcaceae ↓
Genus: Ruminococcus ↑
Species: Ruminococcus gnavus (RG)↑, Bacteroides
uniformis ↓

SLE patients with high disease activity showed
significantly restricted microbiota diversity.
RG relative abundance correlated with lupus disease
activity.
Anti-RG antibodies were directly correlated with
SLEDAI scores and anti-DNA levels, but negatively
correlated with C3 and C4. Patients with active lupus
nephritis showed highest levels of serum anti-RG
antibodies.

(58)

Li, et al.
(2019)

SLE (40)
vs. HC
(22)

China Lower richness
Phyla: Firmicutes / Bacteroidetes ↓, Tenericutes,
Mollicutes, and RF39 ↓
Family: Streptococcaceae and Lactobacillaceae ↑
Genus: Faecalibacterium ↓, Roseburia ↓,
Streptococcus ↑, Lactobacillus ↑, Megasphaera ↑
Species: prausnitzii ↓, Streptococcus. Anginosus ↑,
Lactobacillus. mucosae ↑

The genus Streptococcus was associated with the
activity of SLE.

(59)

Zhang,
et al.
(2019)

SLE (92)
vs. HC
(217)

China Phyla: Proteobacteria, Bacteroidetes and
Actinobacteria ↑, Firmicutes ↓
Family: Lachnospiraceae, Ruminococcaceae and
Veillonellaceae ↓, Bacteroidaceae, Streptococcaceae
↑ Genus: Ruminococcus, Bacteroides, Klebsiella,
Erysipelotrichaceae ↑, Haemophilus,
Faecalibacterium, Clostridium IV ↓

The proportion of Ruminococcus was correlated with
the absolute counts of Tregs and the ratio of Th1/Th2
and Th17/Treg.

(66)

Guo,
et al.
(2020)

SLE-G
(17) vs.
SLE + G
(20) + HC
(20)

China Phyla: Bacteroidetes ↑, Firmicutes/Bacteroidetes ↓
Genus: Gemmiger, Lactococcus, Bifidobacterium,
Streptococcus, and Desulfovibrio ↓

SLE patients treated with glucocorticoid had a similar
gut microbial community with healthy controls.
Bacteroides, Succinivibrio, Bilophila, and
Parabateroides were positively correlated with IL-17,
TWEAK, IL-2R, IL-21, IL-35, IL-10, and IFN-g.
Dialister and Gemmiger were negatively correlated
with immune factors IL-17, IL-2R, and IL-35.

(67)

Gerges,
et al.
(2021)

SLE (20)
vs. HC
(20)

Egypt Phyla: Firmicutes ↓, Bacteroidetes ↑, Firmicutes/
Bacteroidetes ↓
Genus: Lactobacillus ↓

Firmicutes/Bacteroidetes ratio was inversely correlated
with SLEDAI-2K scores for disease activity.

(52)

Liu,
et al.
(2021)

SLE (35)
vs. HC
(35)

China Reduced bacterial richness and diversity
Family: Ruminococcaceae ↓
Genus: Lactobacillus, Prevotella and Blautia ↑,
Bifidobacterium ↓

SLE patients with arthritis showed lack of
Bifidobacterium.
The abundance of Acholeplasma, Capnocytophaga and
Leptotrichia were negatively correlated with SLEDAI
score. The abundance of Akkermansia, Bacteroides,
and Ruminococcus were negatively correlated with the
serum levels of C3.

(60)

(Continued)
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Enterobacteriaceae and Enterococcaceae and decreased abundance

in Ruminococcaceae in the gut microbiota of patients with SLE. This

study added to evidence that dysbiosis of gut microbiota is present

in lupus patients. Furthermore, a two-sample mendelian

randomization study found that Actinobacteria, Bacillales,

Coprobacter and Lachnospira were inversely correlated with the

risk of SLE, and Bacilli, Eggertella and Lactobacillales might be the

risk factors of SLE. More importantly, this study showed causal

effects of gut microbiota on SLE (69).
Potential mechanisms linking gut
microbiota to SLE

Impaired intestinal barrier and pathogen
translocation

The intestinal epithelium not only separates the host from the

external environment, but also acts as a first-line innate immune

defense against the entry of foreign antigens. A normal gut barrier

has size selectivity to prevent the translocation of viable organisms

and several PAMPs, which can trigger the systemic inflammation

(70). When the intestinal barrier is compromised, pathogens can

translocate to systemic circulation and internal organs. It has been

reported that the gut microbiota and leaky gut are related to

autoimmune diseases including type 1 diabetes (71) and multiple

sclerosis (72). Many studies as follow have revealed that intestinal

barrier impairment and pathogen translocation also occurred in

lupus mice and patients.

In lupus mice models, Mu et al. (30) found that endotoxin levels

were significantly higher in the blood of MRL/lpr mice compared to

MRL/MP controls. MRL/Lpr mice had significantly abundant

FITC-dextran in the blood when gavaged with FITC-dextran

compared to MRL/MP mice. Vieira et al. (73) reported that

fluorescein isothiocyanate (FITC)– dextran was found in the

systemic circulation of (NZW × BXSB)F1 hybrid mice after being

taken orally. E. gallinarum was detected in the mesenteric veins,

mesenteric lymph nodes (MLN), spleen, and liver of (NZW ×

BXSB)F1 hybrid mice. Both TLR7.1 Tg and C57Bl/6 mice treated
Frontiers in Immunology 06
with imiquimod showed impaired gut barrier, which was reflected

by leakage of FITC-dextran into the systemic circulation. L. reuteri

was found to translate into the mesenteric lymph nodes (MLN),

spleen, and liver of TLR7.1 Tg mice (32). Toral et al. (74) observed

significantly higher endotoxin levels in plasma in NZBWF1 mice

compared with the control group.

In healthy people, an intact intestinal barrier can prevent

luminal contents and systemic IgG from leaking into the gut

lumen. Calcitonin is a recognized biomarker of intestinal barrier

deficiency (58). In SLE patients, increased fecal albumin and

calprotectin were found in the stool sample (73). Consistently,

Azzouz et al. (58) also observed an increase in IgG and a higher level

of calprotectin in the fecal sample of SLE patients. These results

suggested impaired gut barrier function in SLE patients. E.

gallinarum was detected in liver biopsy samples from both lupus

patients and autoimmune hepatitis patients (73). Elevated serum

soluble CD14 and a1-acid glycoprotein levels were found in lupus

patients, which indicated translocation of the gut microbiota (58).

Gut-leakage is also associated with lupus disease progression.

Thim-Uam et al. (75) used dextran sulfate solution (DSS) to induce

gut-leakage in FcGRIIb-/- mice and found that DSS-induced gut-

leakage induced high anti-dsDNA immunoglobulin in serum,

enhanced lupus features including proteinuria and serum

creatinine, caused the gut translocation of molecular components

of gut pathogens, enhanced MLN apoptosis and induced spleen

apoptosis in FcGRIIb-/- mice. Silverman et al. (76) colonized

C57BL/6 mice with individual Ruminococcus gnavus (RG) strains

from lupus patients, and found that lupus-derived RG strains

enhanced intestinal permeability, elevated serum levels of zonulin

which is a regulator of tight junction formation between cells

forming the intestinal barrier, and translocated to mesenteric

lymph nodes. The level of intestinal permeability induced by RG

has a significant correlation with anti-native DNA autoantibodies

and serum IgG anti RG cell-wall lipoglycan antibodies.

Interestingly, the “leakiness” of the gut epithelium could be

reduced or even reversed, and the translation of gut bacteria could

be suppressed. Antibiotics reduced intestinal leakage and

suppressed microbial translocation (73, 77). Intramuscular

vaccination against E. gallinarum prevented E. gallinarum

translocation into internal organs (73). Resistant starch tightened
TABLE 2 Continued

Study
(Year)

Human
Subjects

(n)

Region The alteration of gut microbiota Association Reference

Wang,
et al.
(2022)

SLE (19)
vs. HC
(19)

China Phyla: Acidobacteria, Gemmatimonadetes,
Planctomycetes↓
Genus: Streptococcus, Veillonella, ClostridiumXI
and Rothia ↑, Acidobacteria_Gp6, Croceibacter,
Bacillariophyta, Acetatifactor, Helicobacter,
Turicibacter, Butyricicoccus and Alloprevotella ↓

Patients with lupus nephritis showed a considerable
increase in Streptococcus and a reduction in
Turicibacter. Clostridium_XlVa,
Lachnospiracea_incertae_sedis and Parasutterella
OTUs mainly covaried with clinical features of SLE.

(48)

Toumi,
et al.
(2022)

SLE (16)
vs. HC
(76)

France Decreased alpha-diversity
Phyla: Firmicutes / Bacteroidetes↓, Tenericutes↓
Family: Tannerellaceae ↑
Genus: Alistipes, Flintibacter and Parabacteroides↑
Species: A. onderdonkii ↑

Active SLE patients had a significantly lower F/B ratio
than inactive SLE group.

(37)
f

↑, higher abundance or enriched; ↓, lower abundance or depleted.
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the gut epithelial barrier and reduced the translocation of L. reuteri

(32). Lactobacillus supplementation enhanced the barrier function

of the intestinal epithelium (74). All-trans-retinoic acid treatment

reversed pristane-induced leaky gut (33). Treatment with larazotide

acetate, a specific molecular antagonist of zonulin, completely

reversed gut permeability (76).

In summary, intestinal microbiota translocates to systemic

circulation and internal organs since the intestinal barrier is

compromised, increases exposure to autoantigens through

inducing or enhancing apoptosis of cells such as splenocytes, and

ultimately leads to increased deposition of immune complexes in

organs then aggravates lupus. Interestingly, some interventions can

reduce or even reverse the intestinal leakage to alleviate lupus.
Molecular Mimicry

Molecular mimicry is another potential mechanism linking gut

microbiota to SLE. Gut microbiota can mimic autoantigens through

their proteins and metabolites (78). In hosts carrying high risk

human leukocyte antigen (HLA) genes, continued colonization of

them with bacteria expressing cross-reactive epitopes may

continuously activate cross-reactive autoreactive T cells in the gut,

especially in the case of impaired intestinal barrier (79). Patients

with SLE produce autoantibodies against Ro60 which is an

evolutionarily conserved RNA binding protein, and the antibody

against Ro60 is the most common and earliest preclinical anti-

nuclear antibody (80). Greiling et al. (80) found that bacteria

expressing Ro60 orthologs was present in the skin, oral, and gut

of both lupus patients and healthy controls. Sera from SLE patients

with positive anti-Ro60 immunoprecipitated commensal Ro60

ribonucleoproteins, and Ro60-containing bacteria from skin and

activated human Ro60 autoantigen-specific CD4 memory T cell

clones. Furthermore, colonization of germ-free mice with

Bacteroides thetaiotaomicron containing Ro60 ortholog caused T

and B cell responses against human Ro60 and glomerular immune

complex deposition (80).

Anti-b2GP1 antibody is also a diagnostic index for SLE. b2GP1
ortholog expressed by E. gallinarum was found to induce anti-

b2GP1 antibody (73). Ruff et al. (81) found that b2GPI-reactive
memory CD4+ memory T cell clones and APS-derived b2GPI
autoantibody cross-reacted with mimotopes expressed by a gut

commensal Roseburia intestinalis. Moreover, oral gavage of (NZW

x BXSB)F1 mice with Roseburia intestinalis led to increased anti-

human b2GPI IgG autoantibodies and thrombotic events.

In addition, Azzouz et al. (58) found that antigen in

Ruminococcus gnavus strain CC55_001C could cross-react with

anti-dsDNA antibodies. The peptide “YLYDGRIFI” similar to

human Sm antigen epitope from Odoribacter splanchnicus

increased secretion of IFN-g and IL-17A. And the peptide

“DGQFCM” mimicking human Fas antigen from Akkermansia

muciniphila specifically binds to the IgG produced by memory B

cells from lupus patients (27).

In conclusion, gut microbiota activates autoreactive T and B

cells and triggers autoimmunity through encoding autoantigen

orthologues and non-orthologous mimotopes of autoantigens,
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thus contributing to the development of SLE. Potential

mechanisms linking the gut microbiota to SLE are shown

in Figure 2.
Immune dysregulation associated with
gut microbiota in SLE

Immune cells dysregulation

The imbalance between anti-inflammatory regulatory T(Treg)

and inflammatory T-helper 17 (Th17) cells plays a significant role

in the pathogenesis of SLE (82, 83). Recently, some studies have

revealed that some specific pathogens contributed to Th17/Treg

imbalance in lupus mice models. Vieira et al. (73) found that Th17

cells were induced in the small intestinal lamina propria and

mesenteric lymph nodes of C57BL/6 mice monocolonized with E.

gallinarum. The induction of Th17 and autoantibodies by E.

gallinarum was eliminated by the administration of a selective

AhR antagonist, which indicates that E. gallinarum promotes

autoimmunity by AhR signaling. Zhang et al. (66) reported that

the proportion of Ruminococcus was associated with the absolute

counts of Treg cells and the ratio of Th17/Treg and Th1/Th2.

NZM2410 mice colonized with segmented filamentous bacteria

(SFB) showed increased Th17 cells in small intestinal lamina

propria (40). Besides, the intestinal microbiota from SLE patients

or mice also induced Th17/Treg imbalance in germ-free mice.

Germ-free mice treated with feces from SLE mice showed

increased B cells and significantly less abundant Treg cells mice

in intestinal mucosa compared to those treated with feces from B6

mice (41). Ma et al. (43) found an increase in the frequency of Th17

cells and a reduction in Treg cells in the spleen of germ-free mice

gavaged with feces from SLE patients. Additionally, the frequency of

Tfh cells in circulation (84) and the Tfh/Tfr ratio (85) are positively

correlated with lupus activity. Choi et al. (42) found that germ-free

B6 mice that received feces from triple congenic lupus-prone mice

exhibited an increased frequency of Tfh cells and a decreased ratio

of Tfr to Tfh.

Interestingly, probiotic treatment could restore the balance

between Treg cells and Th17 cells. Bifidobacterium can maintain

the balance of Treg/Th17/Th1 by suppressing the excessive

activation of CD4+ lymphocytes in SLE patients (86).

Lactobacillus supplement could increase Treg cells and reduce

Th17 cells to restore Th17/Treg balance (30, 74, 87). Bacteroides

fragilis treatment restored the Th17/Treg balance and ameliorated

the lupus activity of MRL/lpr mice (88). Lactobacillus fermentum

CECT5716 and Bifidobacterium breve CECT7263 treatment

restored the Th17/Treg balance in MLNs and reduced vascular

Th1, and Th17 infiltration to restore endothelial function in a

mouse lupus model induced by activating TLR-7 (89). Furthermore,

Kim et al. (36) found that Lactobacillus acidophilus modulated

Th17/Treg balance in MRL/lpr mice by the SIGNR3 pathway. In

addition, regulated B (Breg) cells can exert immunosuppressive

effects and support immune tolerance (90). Mu et al. (91) reported

that oral administration of bacterial DNA could induce Breg cells

and alleviate lupus.
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Cytokines dysregulation

In a series of immune-mediated diseases, cytokines act as

critical mediators of inflammation and tissue damage (92). Many

studies have revealed that T cells produced cytokines abnormally in

SLE patients (93). IL-6, a pro-inflammatory cytokine produced by

activated antigen-presenting cells and T cells, is known to promote

B cells to produce antibodies (94) and suppress Treg cells (95). IL-

17 is dysfunctional in SLE and promotes the disease progression

(96). A meta-analysis displayed that the level of IL-17 has a positive

correlation with lupus activity (97). IL-10 can inhibit kidney

disease by inhibiting IFNg-mediated production of IgG2a, which

is a major immune deposit in the kidney of MRL/lpr mice (98). Mu

et al. (30) found that Lactobacillus treatment decreased IL-6 and

increased IL-10 production in the gut contributing to an anti-

inflammatory environment. In SLE patients, twelve cytokines

including IFN-g, IL-1b, IL-2R, IL-6, IL-8, IL-10, IL-17, IL-21, IL-
22, IL-35, TNF-a and TWEAK displayed higher expression levels

compared to healthy controls . Bacteroides , Bilophila ,

Parabateroides, and Succinivibrio were positively correlated with

IL-2R, IL-10, IL-17, IL-21, IL-35, TWEAK, and IFN-g. Dialister
and Gemmiger had a negative correlation with IL-2R, IL-17, and
Frontiers in Immunology 08
IL-35 (67). Yao et al. (61) also reported that SLE patients displayed

higher serum levels of IL-2 and IL-6. The abundance of Roseburia

and Faecalibacterium was inversely correlated with IL-6, the

abundance of Roseburia had a negative correlation with IL-2,

and the abundance of Bacteroides had a positive correlation with

IL-2. Therefore, gut microbiota dysbiosis is associated with

dysregulated cytokines in SLE. Interestingly, SLE patients treated

with synbiotics had a significant decrease in serum IL-6 (54). Type

I IFN, primarily produced by plasmacytoid dendritic cells, is a

major pathogenic factor in SLE (99, 100). Vieira et al. (73) found

that the presence of E. gallinarum upregulated Enpp3, which can

increase the number of plasmacytoid dendritic cells (pDCs). Both

murine hepatocytes and human hepatocytes induced type I

interferon under the stimulation of E. gallinarum. Under

specific-pathogen-free and gnotobiotic conditions, L. reuteri

colonization increased plasmacytoid dendritic cells and

interferon signaling (32).

To sum up, gut microbiota dysbiosis contributes to the immune

dysregulation in SLE, the immune dysregulation associated with gut

microbiota in SLE occurs not only at the immune cell level but also

at the cytokine level. The immune dysregulation associated with gut

microbiota in SLE is shown in Figure 3.
FIGURE 2

Potential mechanisms linking the gut microbiota to SLE. E. gallinarum and L. reuteri can translocate to internal tissues and organs such as mesenteric
lymph nodes (MLN), liver, and spleen in the case of impaired gut barrier function, increase exposure to autoantigens through inducing or enhancing
apoptosis of cells such as splenocytes, and increase the production of autoantibodies. B. thetaiotaomicron, E. gallinarum, R. int, R. gnavus, O.
splanchnicus and A. muciniphila trigger cross-reactive B cell response through molecular mimicry of human autoantigens by their bacterial
orthologs. Finally, increased circulating immune complexs deposit in organs and exacerbate lupus. IECs, intestinal epithelial cells; MLNs, mesenteric
lymph nodes; B. thetaiotaomicron, Bacteroides thetaiotaomicron; R. int, Roseburia intestinalis; R. gnavus, Ruminococcus gnavus; O. splanchnicus,
Odoribacter splanchnicus; A. muciniphila, Akkermansia muciniphila. Created by BioRender.com.
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Gut microbiota: potential diagnostic
and therapeutic value for SLE
Gut microbiota modulation to treat lupus
mice models

Lactobacillus, known as probiotic, plays an anti-inflammatory

role in autoimmune disease (101). Many studies have shown the

beneficial effects of Lactobacilli supplementation in SLE mice. Hsu

et al. (102) found that supplementary treatment of Lactobacillus

paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri

GMNL-263 mitigated hepatic inflammation and apoptosis in NZB/

W F1 lupus-prone mice. Lactobacillus treatment attenuated lupus

nephritis through reducing renal deposition of IgG2a in MRL/lpr

mice (30). NZBWF1 mice exhibited reductions in blood pressure,

cardiac and renal hypertrophy, splenomegaly and lupus activity

after Lactobacillus fermentum CECT5716 treatment (74).

Manirarora et al. (87) reported that feeding Lactobacilli might

delay lupus progression in BWF1 mice. Lactobacillus acidophilus

improved gut dysbiosis, decreased the renal inflammation and

enhanced the therapeutic effect of tacrolimus in MRL/lpr mice.

However, Luo. et al. (31) found that the greater abundance of a

group of Lactobacilli in NZB/W F1 mice might be linked to more

severe disease. Lactobacillus reuteri can drive autoimmunity in

TLR7-dependent mouse models of SLE (32). Lactobacillus have

different effects on various lupus mice models which represent
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different genetic or environmental conditions, which may indicate

that probiotic supplementation in the treatment of lupus should be

individualized based on genetic and environmental factors.

Some other interventions such as dietary interventions, drug

therapy, vaccination, helminth therapy and fecal microbiota

transplantation have also been shown to modulate gut microbiota

and exert beneficial effects in lupus mice. Zhang et al. (29) found that

retinoic acid treatment restored downregulated Lactobacilli and

improved lupus symptoms in lupus-prone mice. All-trans-retinoic

acid reduced circulatory and renal deposition of autoantibodies and

suppressed the expression of proinflammatory cytokines and

chemokines in kidney in Balb/c mice treated with pristane (33).

Resistant starch decreased the abundance of Lactobacill. reuteri and

prevented the development of systemic autoimmunity in TLR7.1 Tg

mice (32). Johnson et al. (103) treated (SWR×NZB) F1 (SNF1) mice

with acidic pHwater and neutral pH water respectively, and found that

the composition of gut microbiota is significantly different between two

groups of mice. Mice treated with acidic pH water developed nephritis

at a slower pace than those treated with neutral pH water. Low dietary

tryptophan has been reported to prevented autoimmune pathology in

lupus-prone mice (42). He et al. (34) found that butyrate

supplementation could ameliorate gut microbiota dysbiosis and

reduce kidney damage in MRL/lpr mice. Mu et al. (77) found that

antibiotics treatment reshaped the gut microbiota by reducing

potentially harmful bacteria and enriching potentially beneficial

bacteria and ameliorated systemic autoimmunity as well as kidney

histopathology in MRL/lpr mice. In NZBWF1 mice, antibiotics was
FIGURE 3

Immune dysregulation associated with gut microbiota in SLE. The immune dysregulation associated with gut microbiota in SLE occurs not only at
the immune cell level but also at the cytokine level. Immune cells dysregulation includes increased Th17 cells, decreased Treg cells, and increased
Tfh cells, which leads to the Th17/Treg imbalance and the decreased ratio of Tfr to Tfh. E. gallinarum, SFB, and Ruminococcus induce Th17/Treg
imbalance by increasing Th17 cells and decreasing Treg cells. Lactobacillus, Bifidobacterium and Bacteroides fragilis can restore the Th17/Treg
balance. The levels of cytokines associated with gut microbiota IL-2, IL-2R, IL-6, IL-10, IL-17, IL-21, IL-35, TWEAK, IFN-g, and type I IFN are up-
regulated in SLE. E. gallinarum and L. reuteri increase the number of plasmacytoid dendritic cells (pDCs) and promote the expression of type 1
interferon. Lactobacillus treatment can decrease the level of IL-6. pDC, plasmacytoid dendritic cell; SFB, segmented filamentous bacteria; E.
gallinarum, Enterococcus gallinarum; L. reuteri, Lactobacillus reuteri. Created by BioRender.com.
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also found to change the composition of gut microbiota, suppress the

elevation of blood pressure, and reduce renal injury and disease activity

(35). Antioxidant N-acetylcysteine altered the composition of gut

microbiota and alleviated autoimmunity in MRL/lpr mice (38).

(NZW × BXSB) F1 mice showed restored intestinal barrier function

and alleviated lupus after being inoculated with the Enterococcus

gallinarum vaccine (73). It was reported that gastrointestinal

helminth infection could modulate the gut microbiota (104). Olia

et al. (105) found that infection withHymenolepis microstoma inhibited

NZBWF1 mice from developing lupus symptoms including

production of autoantibody, proteinuria, glomerular histopathology,

and splenomegaly. Wang et al. (106) transferred the gut microbiota of

MRL/lpr mice treated with prednisone into the blank MRL/lpr mice,

and found that prednisone-regulated gut microbiota alleviated lupus

but didn’t show side effects as prednisone in MRL/lpr mice. And

prednisone-regulated gut microbiota might alleviate lupus by retaining

the abundance of Lactobacillus and decreasing Ruminococcus and

Alistipes. Therefore, interventions which can modulate the dysbiosis

of gut microbiota, such as dietary interventions, drug therapy,

vaccination, helminth therapy and fecal microbiota transplantation,

could be potential treatments for lupus patients.
Gut microbiota modulation to treat
SLE patients

Drugs can also affect the gut microbiota of lupus patients. Some

studies have reported that the altered gut microbiota in lupus patients

treated with some drugs becomes similar to the gut microbiota of

normal individuals. Guo et al. (67) also found a lower Firmicutes/

Bacteroidetes ratio in SLE patients, and the ratio increased in those

having undergone glucocorticoid treatment. Besides, patients treated
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with glucocorticoids had similar gut microbial community to healthy

controls, which means that changes in the gut microbiome might

represent a return to homeostasis. Li et al. (107) reported that the gut

microbiota of SLE patients treated with proton pump inhibitors (PPIs)

showed increased alpha-diversity and the alpha-diversity became

similar to healthy controls. PPIs use is related to the increased

abundance of beneficial commensals and the decreased abundance

of certain opportunistic pathogenic genera such as Escherichia.

Furthermore, several studies have also attempted to treat SLE

patients by modulating gut microbiota. Huang et al. (28) conducted the

first fecal microbiota transplantation (FMT) clinical trial in active SLE

patients by oral encapsulated fecal microbiome from healthy donors,

and found that FMT treatment significantly reduced the SLEDAI-2K

score and the level of serum anti-dsDNA antibody. They also observed

a marked increase in SCFAs-producing bacterial taxa and a decrease in

inflammation-related bacterial taxa, with CD4+ memory/naïve ratio

and levels of IL-6 decreasing in the peripheral blood and production of

SCFAs increasing in the gut after FMT. It was reported that SCFAs

played a beneficial immune regulatory role in SLE (108). Widhani et al.

(54) found that the supplementation of synbiotics, a combination of

prebiotics and probiotics, suppressed the increase of hs-CRP, reduced

IL-6 expression, increased the Firmicutes/Bacteroidetes ratio, and

improved SLE disease activity index 2K score in SLE patients.

In addition, Li et al. (59) found that the random forest model

could distinguish SLE patients from rheumatoid arthritis patients and

healthy controls and predict the disease activity of SLE patients,

which suggests the potential diagnostic value of gut microbiota as a

potential biomarker. Therefore, the gut microbiota is not only a

potential biomarker for the diagnosis and prognosis of SLE but also a

potential target for the treatment of SLE. Interventions that attempt

to treat SLE in mice models and humans by modulating the gut

microbiota are summarized in Figure 4.
FIGURE 4

Modulation of gut microbiota treats SLE mice and patients. PPI, proton pump inhibitor; GC, glucocorticoid. Created by BioRender.com.
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Conclusion

The alteration in the gut microbiota of lupus mice and SLE

patients is characterized by an increase in detrimental bacteria and a

decrease in beneficial bacteria. Gut microbiota dysbiosis triggers

autoimmunity through the potential mechanisms of translocation

and molecular mimicry, leading to immune cells dysregulation (e.g.,

Th17/Treg imbalance) and cytokines dysregulation (e.g., increased

expression of type I interferon), thereby contributing to the

development and progression of SLE. Some interventions to

modulate gut microbiota, such as dietary intervention, drug therapy

(e.g., antibiotic and antioxidant N-acetylcysteine), probiotic

supplementation, helminth therapy, vaccination and fecal microbiota

transplantation, are potential treatments for SLE. Furthermore, gut

microbiota is not only a potential therapeutic target for SLE but also a

potential biomarker for the diagnosis and prognosis of SLE. However,

there are few studies on the intervention of modulating gut microbiota

such as fecal microbiome transplantation in the treatment of SLE

patients. More studies are needed to verify the feasibility, safety and

effectiveness of this approach.
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Glossary

SLE Systemic lupus erythematosus

Anti-dsDNA Anti-double-stranded DNA

L. reuteri Lactobacillus reuteri

TLR 7 Toll-Like Receptor 7

PH Potential of hydrogen

F/B Firmicutes/Bacteroidetes

SLEDAI Systemic lupus erythematosus disease activity index

ESR Erythrocyte sedimentation rate

CRP C reactive protein

E. gallinarum Enterococcus gallinarum

RG Ruminococcus gnavus

PPIs Proton pump inhibitors

FMT Fecal microbiota transplantation

SCFAs Short-chain fatty acids

Hs-CRP Hypersensitive C-reactive protein

IL Interleukin

MLN Mesenteric lymph node

Ig Immunoglobulin

CD14 Cluster of differentiation 14

HLA Human leukocyte antigen

Tregs Regulatory T cells

Th cells T-helper cells

AhR Aryl hydrocarbon receptor

SFB Segmented filamentous bacteria

Tfh cells T follicular helper cells

Tfr cells Follicular regulatory T cells

Breg cells Regulated B cells

IFN Interferon

TNF Tumor necrosis factor

TWEAK TNF-like weak inducer of apoptosis

pDCs Plasmacytoid dendritic cells
F
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