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Background: Mycophenolic acid (MPA)-induced colitis was still a severe side 
effect and challenge faced by solid transplant recipients. We aimed to explore the 
function and mechanism of probiotics in the treatment of MPA-induced colitis.

Methods: In this study, 15 mice (C57BL/6) were randomly assigned into three 
groups: control (CNTL) group (n =  5), MPA group (n =  5) and the MPA  +  Probiotic 
group (n  =  5). Bifid Triple Viable capsules, which were drugs for clinical use 
and consisted of Bifidobacterium longum, Lactobacillus acidophilus, and 
Enterococcus faecalis, were used in Probiotic group. Body weight change, stool 
scores, colon histopathology and morphology were used to evaluate the disease 
severity. The intestinal mucosal barrier function was assessed by measuring 
the expression level of secretory immunoglobulin A (sIgA), Zonula occludens-1 
(ZO-1) and Occludin. Finally, 16S rDNA sequencing and bioinformatics analysis 
were performed on mice feces to compare the different intestinal microbial 
composition and diversity among three groups.

Results: Compared with the CNTL group, the mice in MPA group showed a 
significantly decreased body weight, increased stool scores, shortened colon 
length and severe colon inflammation. However, probiotics treated MPA mice 
reversed the disease severity, indicating that probiotics ameliorated MPA-induced 
colitis in mice. Mechanistically, probiotics improved the intestinal barrier function 
by up-regulating the expression of sIgA, ZO-1 and Occludin. Moreover, MPA-
induced colitis led to intestinal microbiota dysbiosis, including the change of 
Firmicutes/Bacteroidetes ratio, α- and β-diversity. But probiotic treated group 
showed mild change in these microbial features. Additionally, we  found that 
Clostridiales was the most significantly different microbiota flora in MPA group.

Conclusion: Probiotics treatment ameliorated MPA-induced colitis by enhancing 
intestinal barrier function and improving intestinal microbiota dysbiosis. 
Clostridiales might be the dominant functional intestinal microflora and serve as 
the potential therapy target in MPA-induced colitis.
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1. Introduction

Mycophenolic acid (MPA) is a well-known immunosuppressive 
agent commonly used for prophylaxis of graft rejection following solid 
organ transplants, such as kidney, heart or liver transplant (Aliabadi 
et al., 2012; Di Maira et al., 2020; Jiang and Hu, 2021). However, MPA 
has been reported to have various gastrointestinal side effects, 
including diarrhea and colitis. And the morbidity of watery afebrile 
diarrhea caused by MPA is present in 36% of renal transplant 
recipients (de Andrade et  al., 2014). Despite MPA-induced colitis 
showed relatively less occurrence in renal transplant recipients, there 
are still no well-established guidelines for management or treatment 
(Bani Fawwaz et al., 2021). Meanwhile, constant histologic features 
and diagnostic patterns of MPA-related colitis have not yet been 
established clearly (Liapis et al., 2013). From the clinicopathologic 
features of colitis, impaired intestinal mucosal barrier function and 
microflora have been shown to be  often associated with colitis, 
accompanied by reduced expression levels of secretory 
immunoglobulin A (sIgA) and tight junction proteins (ZO-1 and 
Occludin; Yang et al., 2015; Li et al., 2018; Wang et al., 2019; Fu et al., 
2021). Therefore, it is of great importance to develop effective methods 
to enhance intestinal mucosal barrier function and maintain intestinal 
microflora homeostasis for treatment of MPA-induced colitis.

Probiotics, including bacteria and yeast, are live microorganisms 
that have been largely demonstrated to manifest beneficial effects on 
human intestinal health. The application of probiotics as promise 
adjuvant treatment in various intestinal diseases have been also 
reported (Kim et al., 2019). A previous study revealed that probiotics 
have desirable effects in patients with inflammatory bowel disease 
(IBD), with improvement of both nutritional function and immune 
modulatory effects (Lorea Baroja et al., 2007). The effects of probiotics 
on human health also refer to the treatment of antibiotic-associated 
diarrhea and adjustment of immune system (Hempel et al., 2012; Bae 
et  al., 2018). Moreover, Vibcenzo et  al. reported that probiotics 
exhibited beneficial application in treatment of ulcerative colitis 
(Palumbo et  al., 2016). Bifid Triple Viable capsules, which are 
consisted of Bifidobacterium longum, Lactobacillus acidophilus, and 
Enterococcus faecalis, are the most common probiotics for clinical use, 
especially in treatment of ulcerative colitis (Chen et al., 2019). Bifid 
Triple Viable may protect intestinal mucosa barrier, alleviate metabolic 
endotoxemia, thus improve chronic low-grade inflammation in liver 
and adipose tissue, and partially restore insulin sensitivity in high fat 
die mice by regulating gut microbiota (Lu et al., 2022). Moreover, Bifid 
Triple Viable ameliorate antibiotic-associated diarrhea by regulating 
the composition and structure of the gut microbiota in mice (Yang 
et al., 2022). But, in review of the literatures, the study between the 
probiotics, especially the Bifid triple viable, and MPA-induced colitis 
is limited.

Intestinal microbiota is considered as the largest symbiosis system 
in the body and numerous studies have shown its association with 
immune diseases, such as type II diabetes, IBD and multiple sclerosis 
(Lavelle and Sokol, 2020; Ghezzi et al., 2021; Yang et al., 2021). Several 
studies verified that Rhein and green tea polyphenol had the ability to 
modulate intestinal microbiota, which in turn ameliorated 
experimental-induced colitis (Wu et al., 2020, 2021). Meanwhile, a 
review indicated that probiotics could directly affect the intestinal 
microbiota by modulating its composition and functionality in obesity 
(Fontané et  al., 2018). Therefore, the present study explored the 

relationship between probiotics, intestinal microbiota and 
MPA-induced colitis, providing a novel strategy for the treatment of 
MPA-induced colitis.

2. Materials and methods

2.1. Ethics approval

This research protocol was approved by the Committee on the 
Ethics of Animal. Experiments of the Third Xiangya Hospital (no: 
22207) and was conducted according to the Guidance for the Care and 
Use of Laboratory Animals of the National Institutes of Health.

2.2. Animal model and intervention

A total of 20 male SPF mice (9-week-old, C57BL/6) were provided 
by Hunan SLAC Laboratory Animals (Hunan, China). All mice were 
housed in a standard room with ad libitum water, rodent food and a 
12/12 h light/dark cycle for 2 weeks.

After an acclimatization period, 15 mice were randomly divided 
into three groups: the Control (CNTL) group (n = 5), the MPA group 
(n = 5) and the MPA + Probiotic group (n = 5). In MPA group, 0.2 mL 
MPA solution (0.5 g/kg/day) was given to the mice by gavage at 
8:00 am for 3 weeks, according to a previous study (Watanabe et al., 
2006). In MPA + Probiotic group, 0.2 mL MPA solution (0.5 g/kg/day, 
at 8:00 am) and 0.2 mL Bifid Triple Viable suspension (25 mg/kg/day, 
at 4:00 pm) were given to the mice by gavage for 3 weeks. Bifid Triple 
Viable capsules are purchased from Shanghai Sine Pharmaceutical, 
which are drugs for clinical use and consisted of Bifidobacterium 
longum (≥1 × 107 CFU/g), Lactobacillus acidophilus (≥1 × 107 CFU/g), 
and Enterococcus faecalis (≥1 × 107 CFU/g). In CNTL group, the same 
volume of 0.9% NaCl was given to the mice by gavage for 3 weeks. All 
mice were sacrificed and their colon were collected for further analysis.

2.3. Evaluation of disease severity

The mice were checked daily for MPA-induced colitis based on 
body weight and stool scores. Stool scores were used to assess the 
severity of diarrhea based on the previous study: 0, normal stools; 1, 
slight diarrhea with wet and soft stools; 2, moderate diarrhea with 
unformed stools and mild perianal stains; and 3, severe diarrhea with 
watery stools and severe perianal stains (Yang et al., 2022).

2.4. Colon histopathology and 
hematoxylin–eosin staining

Firstly, the length of colon was measured. Then a colon segment 
was fixed in 10% neutralized buffered formaldehyde at 4°C for 48 h 
and embedded in paraffin. The paraffin blocks were sliced into 4 μm 
sections. Paraffin sections were deparaffinized with xylenes and 
rehydrated by washing through a graded alcohol series to deionized 
water. The sections were stained by hematoxylin for 2 min and eosin 
for 30s and washed by warm water for 5 min. Then the sections were 
dehydrated by washing through a graded alcohol series to xylenes and 
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mounted with cytoseal (8310, Thermo scientific, United States). The 
images were obtained using Leica Microsystems DMI 3000B observer. 
The Chiu’s scores were used to assess the pathological degree of colitis 
according to the previous study (Shin et al., 2014). These criteria were 
scored as follows: inflammation severity (0: none, 1: slight, 2: 
moderate, or 3: severe), extent of injury (0: none, 1: mucosal, 2: 
mucosal and submucosal, or 3: transmural), and crypt damage (0: 
none, 1: damage to the basal third of the crypt, 2: damage to the basal 
two-thirds of the crypt, 3: only surface epithelium intact, or 4: loss of 
entire crypt and epithelium).

2.5. Enzyme linked immunosorbent assay 
for sIgA

Total protein was extracted from the colon samples using a RIPA 
lysis buffer (AWB0139a, Abiowell, Changsha) with protease inhibitors 
cocktail (AWH0644a, Abiowell, Changsha). After detecting protein 
concentration by BCA assay kit, sIgA ELISA kit (CSB-E08413m, 
CUSABIO, Wuhan) was used to measure the concentration of sIgA in 
colons according to the instruction.

2.6. Western blot analysis for ZO-1 and 
Occludin

Total protein was extracted from the colon samples using a 
RIPA lysis buffer with protease inhibitors. The BCA assay kit was 
used to measure protein concentration. Equal amounts of proteins 
were loaded and separated by SDS-Poly-Acrylamide Gel 
Electrophoresis (PAGE). Proteins were transferred to 0.2 μm 
nitrocellulose membrane (1620112, Bio-Rad, United  States). 
Membranes were incubated with Tris buffered saline containing 
0.1% Tween-20 (TBST) and 5% skim milk for 1 h at room 
temperature, followed by an incubation with primary antibodies 
against ZO-1 (21773-1-AP, Proteintech, United States), Occludin 
(13409-1-AP, Proteintech, United States) and β-actin (66009-1-Ig, 
Proteintech, United States) for overnight at 4°C. After washing with 
TBST buffer, the membranes were incubated with secondary 
antibody for 2 h at room temperature on next day. Then the protein 
bands were visualized using an ECL kit by Bio-rad ChemiDoc XRS 
plus an image analyzer (Bio-Rad, Hercules, CA, United States) after 
TBST washing.

2.7. Quantitative real-time polymerase 
chain reaction

Total RNA was extracted from colon tissues using TRIzol reagent 
(Invitrogen, Carlsbad, CA). Extracted total RNA (1,000 ng) was used 
as a template for reverse transcription into cDNA using Reverse 
Transcript Reagents kit (Roche Molecular Systems, Branchburg, NJ). 
Synthesized cDNA was mixed with iTaq Universal SYBR green 
supermix (Bio-Rad Laboratories, Hercules, CA) and amplified by a 
real time ABI 7500 PCR system (Applied Biosystems, Foster City, CA) 
with the primers. The data were analyzed using the 2−ΔΔCt method, 
where the GAPDH was used as an endogenous control gene. The 
primer sequences were listed in the Table 1.

2.8. 16S rDNA sequencing

2.8.1. rDNA extraction
Total genomic DNA from fecal samples was extracted using 

CTAB/SDS method. DNA concentration and purity were measured 
on 1% agarose gels. According to the concentration, DNA was diluted 
to 1 ng/μl using sterile water. Primer:16S V3-V4: 341F-806R, 18S V9: 
1380F-1510R, ITS1: ITS1F- ITS2R. 16S /18S rRNA genes were 
amplified using the specific primer with the barcode. All PCR 
reactions were carried out in 30 μL reactions with 15 μL of Phusion® 
High-Fidelity PCR Master Mix (New England Biolabs), 0.2 μM of 
forward and reverse primers, and about 10 ng template DNA.

2.8.2. PCR products quantification and 
qualification

We mixed the same volume of 1X loading buffer (contained SYB 
green) with PCR products and ran electrophoresis on 2% agarose gel 
for detection. Samples with bright main strip between 400 and 450 bp 
were chosen for further experiments.

2.8.3. Library preparation and sequencing
Sequencing libraries were generated using TruSeq® DNA 

PCR-Free Sample Preparation Kit (Illumina) following manufacturer’s 
recommendations and index codes were added. The library quality 
was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and 
Agilent Bioanalyzer 2,100 system. At last, the library was sequenced 
on an Illumina NovaSeq6000 platform and 250 bp paired-end reads 
were generated.

2.8.4. Sequencing data analysis
Paired-end reads from the original DNA fragments were 

merged using FLASH (Magoč and Salzberg, 2011). Paired-end 
reads were assigned to each sample according to the unique 
barcodes. Sequences analysis were performed by UPARSE software 
package using the UPARSE-Operational Taxonomic Units (OTU) 
and UPARSE-OTUref algorithms (Edgar, 2010; Edgar, 2013). α and 
β diversities were estimated using MOTHUR software (v1.31.2) 
and the QIIME pipeline (v1.8.0), respectively (Schloss et al., 2009; 
Caporaso et  al., 2010). There were six indexes for evaluating 
α-diversity, including Observed Species, Goods coverage, Chao1, 
ACE, Shannon and Simpson. Shannon curves were generated 
based on these indexes. β-diversity analysis was calculated by 
unweighted UniFrac (Lozupone et  al., 2011) and visualized by 
Principal co-ordinates analysis (PCoA) downscaling. LefSe analysis 
was used to count species with significant differences in community 
structure between sample groups and the linear discriminant 

TABLE 1 The primer sequences list of qPCR.

Gene name Note Sequence

ZO-1
Forward 5’-GCCGCTAAGAGCACAGCAA-3’

Reverse 5’-GCCCTCCTTTTAACACATCAGA-3’

Occludin
Forward 5’-TGAAAGTCCACCTCCTTACAGA-3’

Reverse 5’-CCGGATAAAAAGAGTACGCTGG-3’

GAPDH
Forward 5’-GGAGCCAAACGGGTCATCAT −3’

Reverse 5’-CTCGTGGTTCACACCCATCA-3’
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analysis (LDA) score > 2 was considered as significant difference, 
which was used to screen for characteristic biomarkers of the 
intestinal microbiota between groups (Segata et al., 2011; Langille 
et al., 2013).

2.9. Statistical analysis

All data were expressed as mean ± standard error of mean (SEM). 
The comparison between two groups was performed using unpaired 
Student’s t-test. The comparison between multiple groups was 
performed using one-way ANOVA. Receiver operation characteristic 
(ROC) analysis to predict the diagnostic efficiency of the different 
intestinal microbiota was done by SPSS (v 25.0; SPSS, IL, United States). 
The value of p < 0.05 was considered statistically significant.

3. Results

3.1. Probiotics ameliorate MPA-induced 
colitis in mice

We first evaluated the disease severity of MPA-induced colitis 
based on body weight, stool scores, colon length and histopathology. 
According to the body weight results, there was no significant 
difference among three groups on the first 12 days. Subsequently, the 
mice in MPA group exhibited a significantly decreased body weight 
compared with CNTL group from the 15 days (p  = 0.032) and 
probiotics treatment reversed mice phenotype (Figure 1A). From the 
stool scores results, the mice in each group showed the normal stool 
on the first 6 days. Subsequently, the mice in MPA group exhibited a 
significantly increased stool scores compared with CNTL group from 
the 15 days (p  = 0.008), which was also reversed by probiotics 
treatment (Figure 1B).

As shown in Figure  1C, the colon length in MPA group was 
shorter than that in CNTL group (p = 0.006). But the colon length in 
probiotic treatment group became longer than that in MPA group 
(p = 0.015). In addition, the H&E staining showed that MPA induced 
severe colitis, accompanied by damaged colon structure and massive 
infiltration of inflammatory cells. While probiotic treatment improved 
the severity of MPA-induced colitis (Figure 2).

Taken together, our results suggested that probiotics significantly 
ameliorated MPA-induced colitis in mice.

3.2. Probiotics improve the intestinal 
barrier function by up-regulating the 
expression of sIgA, ZO-1 and Occludin

We then examined the expression level of ZO-1, Occludin and 
sIgA to assess the intestinal barrier function. As shown in 
Figures 3A–E, both the protein and mRNA expression level of ZO-1 
and Occludin were decreased in MPA group compared with the 
CNTL group. At the same time, the expression level of sIgA were also 
decreased in MPA group compared with the CNTL group by ELISA 
(Figure 3F). However, probiotic treatment up-regulated the expression 
level of ZO-1, Occludin and sIgA, suggesting the improvement of 
intestinal barrier function.

3.3. Probiotics improve the intestinal 
microbiota dysbiosis in MPA-induced 
colitis

The Shannon curve showed that our 16 s DNA sequencing 
data detected the most microbial information from each sample 
(Figure 4A). Thereafter, we assessed the relative abundance of 
intestinal microbiota among three groups at the phylum levels. 
As shown in Figure  4B and Table  2, and probiotic treatment 
reduced the change of microbial properties as that in MPA group. 
In detail, Bacteroidetes was the most common phyla in CNTL 
group, accounting for 74.4% of abundance. However, the relative 
abundance of Bacteroidetes decreased to 33.6% in MPA group. 
After probiotics treatment, the relative abundance of Bacteroidetes 
increased to 43.1%. Moreover, the relative abundance of 
Firmicutes in MPA group (37.2%) was significantly higher than 
that in CNTL group (19.4%). But the relative abundance of 
Firmicutes in probiotic group decreased to 19.2%. We  also 
evaluated the Firmicutes/Bacteroidetes ratio among three groups, 
which was 0.26 in CNTL group, 1.11 in MPA group and 0.45 in 
Probiotic group.

FIGURE 1

Effects of MPA and probiotic on body weight change (A), stool 
scores (B) and colon length (C). **p <  0.01 (CNTL group vs. MPA 
group); #p <  0.05 and ##p <  0.01 (MPA group vs. MPA  +  Probiotic 
group).
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The α-diversity is the diversity of species within a given 
community, which represented the richness of species in each 
group. Six indexes were used for evaluating α-diversity in our 
data. Our results showed that there were differences on ace index 
(p  = 0.02), chao1 index (p  = 0.017), goods_coverage index 
(p = 0.004) and observed_species index (p = 0.039) among three 
groups (Figure 5A). We further analyzed β-diversity to assess the 
structure of the intestinal microbiota community. As shown in 
Figure  5B, there were significant differences in unweighted 
UniFrac distances analysis among three groups (p = 0.042) and 
probiotics treatment could reduce the difference in unweighted 
UniFrac distances between CNTL and MPA group. In addition, 
the PCoA analysis exhibited the same result among three groups 
(Figure 5B). These data indicated that probiotics treatment could 
reverse the change of intestinal microbiota in MPA-induced 
colitis and probiotics might ameliorate MPA-induced colitis by 
improving intestinal microbiota dysbiosis.

To explore the most significantly different microbiota flora in 
MPA group, we performed LefSe analysis. Compared with the 
CNTL group and Probiotic group, we  found that Clostridiales 
flora, belonging to Firmicutes phylum, was significantly increased 
in MPA group (Figure 6). We also did ROC analysis to explore 
the diagnostic efficiency of the Clostridiales for MPA-induced 

colitis and the area under the curve (AUC) of the Clostridiales 
was 0.920 (Figure 7).

4. Discussion

MPA-induced colitis is still a severe side effect and challenge faced 
by solid transplant recipients, which, to date, was lack of effective 
treatments. Though probiotics exhibit desirable benefits in treatment 
of ulcerative colitis, no reports explore its function in MPA-induced 
colitis. In this present study, we found that probiotics have the ability 
to ameliorate MPA-induced colitis by enhancing intestinal mucosal 
barrier function and improving intestinal microflora dysbiosis.

According to the previous study reported by Watanabe, 
we successfully established the MPA-induced colitis model (Watanabe 
et al., 2006). Compared with CNTL group, the mice in MPA group 
suffered significant body weight loss, increased stool scores and severe 
colitis. However, probiotics treatment reversed these syndromes, 
indicating that probiotics could attenuate the MPA-induced colitis 
in mice.

Increasing evidences demonstrated that intestinal mucosal 
barrier dysfunction was critical in Ulcerative Colitis development 
and tight junction proteins (ZO-1 and Occludin), the key 

FIGURE 2

The H&E staining of colon tissue among three groups. (A) Normal colon tissue in CNTL group; (B) MPA induced severe colitis with structural damage 
and massive inflammatory cell infiltration; (C) Probiotic treatment improved the severity of MPA-induced colitis; (D) The statistical analysis for three 
groups (*p <  0.05, **p <  0.01, Scale bar  =  20  μm).
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components of intestinal barrier, played important roles in the 
maintenance of intestinal permeability and integrity (Tan and 
Zheng, 2018). Our results showed that the expression level of 
ZO-1, Occludin and sIgA were significantly decreased in MPA 
group compared with the CNTL group. However, probiotic 
treatment up-regulated the expression of ZO-1, Occludin and 
sIgA to improve the intestinal barrier function. A previous study 
reported that dietary threonine supplementation enhanced 
intestinal barrier function by regulating the synthesis of intestinal 
tight junction proteins (Azzam et  al., 2011), which was in 
consistent with our results. Another study also reported that 
dietary supplementation with Clostridium butyricum improved 
the intestinal barrier function of weaned piglets upon 
enterotoxigenic Escherichia coli K88 infection. Taken together, 
our results indicated that probiotics could ameliorate 
MPA-induced colitis, but the detailed mechanism awaited 
future investigation.

It has been known that probiotics have the ability to shape the 
intestinal microbiota composition, leading to control of multiple 
intestinal bowel diseases and further affecting the overall host 

health (Kim et al., 2019). Several studies confirmed that intestinal 
microbiota were capable of ameliorating experimental colitis (Wu 
et  al., 2020, 2021). We  found that probiotics ameliorate 
MPA-induced colitis by modulating intestinal microbiota. Our 
results showed that the species composition and relative 
abundance of the intestinal microbiota in MPA group changed 
significantly, including the percentage of Bacteroidetes and 
Firmicutes phylum, α- and β-diversity. While probiotic treatment 
was capable of reducing those changes as that in MPA group. 
Bacteroidetes and Firmicutes are two major phyla in normal 
human intestinal microbiota comprises (Jandhyala et al., 2015). 
A recent study indicated that Bacteroidetes species were correlated 
with disease activity in ulcerative colitis and the loss of key 
Bacteroidetes species might exacerbate ulcerative colitis (Nomura 
et  al., 2021). Moreover, the Firmicutes/Bacteroidetes ratio is 
associated with colitis. For example, Baicalin has been used to 
treat ulcerative colitis by decreasing the Firmicute/Bacteroidetes 
ratio (Zhu et  al., 2020). Clostridium butyricum also decreases 
Firmicutes/Bacteroidetes ratio to reduce colitis associated with 
colon cancer in mice (Liu et  al., 2020). In our study, the 

FIGURE 3

The expression level of ZO-1, Occludin and sIgA among three groups. (A) The representative image of Western blot of ZO-1 and Occludin; (B,C) The 
protein level of ZO-1 and Occludin among three groups by Western blot; (D,E) The mRNA expression level of ZO-1 and Occludin among three groups 
by qPCR; (F) The expression level of sIgA among three groups by ELISA (*p <  0.05, **p <  0.01).
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Firmicutes/Bacteroidetes ratio in MPA group was 1.11, which was 
significantly higher than that in CNTL group (0.26). However, 
the Firmicutes/Bacteroidetes ratio in MPA + Probiotic group 
decreased to 0.45, indicating that probiotics could balance 
intestinal microflora dysbiosis to attenuate MPA-induced colitis 
in mice. Meanwhile, according to LefSe analysis, we also found 
that Clostridiales, belonging to Firmicutes phylum, was the most 
significantly different microbiota flora in MPA group compared 
with CNTL group. In review of literatures, several enteric 
clostridial diseases also found in humans. Of note, the enteric 
infections caused by Clostridium perfringens and Clostridium 
difficile are the most prevalent ones (McConnie and Kastl, 2017; 
Uzal et al., 2018). Therefore, Clostridiales might be the potential 
therapy target in MPA-induced colitis and further studies are 
required to decipher the role of Clostridiales in the development 
of MPA-induced colitis.

FIGURE 4

(A) The Shannon curve from each sample; (B) the relative abundance of intestinal microbiota among three group at the phylum levels.

TABLE 2 The relative abundance of top 10 Phylum groups.

Phylum name CNTL MPA MPA  +  Probiotic

p__Bacteroidetes 0.744 0.336 0.431

p__Firmicutes 0.194 0.372 0.192

p__Proteobacteria 0.034 0.139 0.329

p__Verrucomicrobia 0.001 0.095 0.008

p__Epsilonbacteraeota 0.012 0.041 0.026

p__Actinobacteria 0.002 0.009 0.007

p__Patescibacteria 0.008 0.005 0.001

p__Cyanobacteria 0.001 0.001 0.002

p__Spirochaetes 0.001 0.000 0.002

p__Tenericutes 0.001 0.001 0.001

Others 0.001 0.002 0.002
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FIGURE 5

(A) The α-diversity (ace index, chao1 index, goods_coverage index and observed_species index) among three groups; (B) the β-diversity and PCoA 
analysis in unweighted UniFrac distances among three groups.

Fecal microbiota transplantation (FMT), a treatment aiming to 
restore dysbiosis by transferring stool from a healthy donor into the 
patient, has been reported for the treatment of IBD (Fang et al., 
2018) or ulcerative colitis (Blanchaert et al., 2019; Costello et al., 
2019). FMT could directly change the recipient’s intestinal 
microbiota to normalize the composition and gain a therapeutic 
benefit (Wang et al., 2019), but the potential outcome of FMT on 
MPA-induced colitis have not been explored and elucidated. A 
randomized clinical trial has indicated that FMT is effective in 
preventing recurrent Clostridium difficile diarrhea (Kao et al., 2017); 
Considering that Clostridiales could be the potential therapy target 
in MPA-induced colitis, we believe that FMT will have a satisfactory 
outcome on the treatment of MPA-induced colitis in the future.

5. Conclusion

To our knowledge, this is the first study to explore the relationship 
between probiotics, intestinal microbiota and MPA-induced colitis. 
Our results showed that severe colitis caused by MPA in mice was 
linked with intestinal barrier dysfunction and intestinal microbiota 
dysbiosis. Probiotics could effectively enhance the expression of sIgA, 
ZO-1 and Occludin in colon and improve intestinal microbiota 
dysbiosis to ameliorate MPA-induced colitis. Clostridiales might be the 
dominant intestinal microflora and serve as the potential therapy 
target in MPA-induced colitis. Our findings provide a novel sight into 
the application of probiotics as an effective agent to ameliorate 
MPA-induced colitis.
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FIGURE 6

The LefSe analysis to explore the most significantly different microbiota flora among three groups.
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FIGURE 7

The Receiver operation characteristic (ROC) analysis to predict 
the diagnostic efficiency of the Clostridiales for MPA-induced 
colitis.
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