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Abstract

In the oktoec̄hos tradition, liturgical hymns are sung in eight modes or eight
colours (known as eight ’niram’ in Indian liturgy). In this paper, recurrent neural
network (RNN) models are used for oktoec̄hos genre classification with the help of
musical texture features (MTF) and i-vectors. The performance of the proposed
approaches is evaluated using a newly created corpus of liturgical music in the
South Indian language-Malayalam. Long short-term memory (LSTM)-based and
gated recurrent unit (GRU)-based experiments report an average classification
accuracy of 83.76% and 77.77%, respectively, with a significant margin over
the i-vector-DNN framework. The experiments demonstrate the potential of
RNN models in learning temporal information through MTF in recognising eight
modes of oktoec̄hos system. Furthermore, since the Greek liturgy and Gregorian
chant also share similar musical traits with Syrian tradition, the musicological
insights observed can potentially be applied to those traditions. The generation of
oktoec̄hos genre music style is discussed using an encoder-decoder framework.
The quality of the generated files is evaluated using a perception test.
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1 Introduction

Liturgical music is specifically designed for worship in a religious rite of the Christian community.
Music plays a vital role in the liturgy. Furthermore, the vast diversity of forms, styles, and functions
in liturgical music makes it challenging to categorise various sub-genres. The Western Syriac music
tradition is one of the most ancient ecclesiastical music systems, unique in its richness of literature and
music. It is worth noting that the Greek liturgy and Gregorian chant share some of the musical traits
of the Syrian tradition. This music system has been transferred to the Indian Orthodox (Malankara)
tradition through its relationship with the orthodox church in Syria (Antiochian liturgy). The Indian
Orthodox liturgy, originating from the Syrian liturgy, was transferred to India in the 16th century.

In Syrian liturgical music, melodies are categorised into eight tunes known as eight “colours”
(Palackal, 2004). This is the system of singing the exact text in eight different melodies in an eight-
week cycle and is referred to as “oktoec̄hos”. The musically composed hymns of the ’oktoec̄hos’
system are traditionally used in various feasts and special occasions. Those colours used in the
liturgy for certain special occasions are listed in Table 1. In their musical structure, the colours are
very much related to the rāga system1 of Indian music. They are not at all equal (Vysanethu, 2004).
The ’oktoec̄hos’ musical tradition has been transferred to the Indian Orthodox liturgical music over
centuries in the form of hymns in Malayalam. 2

Music genre classification has been addressed extensively over the last two decades. It has intelligent
search, information retrieval, playlist recommendation and management applications. The particular
category of liturgical music, oktoec̄hos, is considered in the proposed work for analysis. The task

1Rāga is the fundamental melodic framework for both Carnatic and Hindustani traditions.
2https://en.wikipedia.org/wiki/Malayalam.



of the oktoec̄hos genre classification is addressed using RNN models in the paper. Different from
typical music genre classification approaches, the task of oktoec̄hos classification is challenging due
to the segmental similarity and the concept of sharing the same lyrics.

Table 1: Modes for the special occasion

No. Festival Mode/Colour
1 Yaldo Colour:1
2 Denho Colour:2
3 Mayaltho Colour:3
4 Sooboro Colour:4
5 Soolokko Colour:5
6 Feast of Tabernacle Colour:6
7 Shoonoyo Colour:7
8 The Feast of the Cross Colour:8

Figure 1: Mel-spectrogram of a song in colour 1 and in colour 2.

1.1 Syrian Liturgical Music

The Western Syriac music tradition is based on the norms prescribed in “Bethgazzo”.3 The vast
liturgical music repertory may be divided into two main categories: chants that fall under the system
of eight classes of melodies (“oktoec̄hos”), and those that have only a single melody. This study
will focus on the chants in the first category (Palackal, 2004). In the first category, the liturgical
hymns are sung in eight modes, called “oktoec̄hos”. The “oktoec̄hos” system is a group of eight
adaptable melody types, known as eight “colours”, “modes” or “niram” (Vysanethu, 2004). Different
colours embellish the same text differently. Therefore, colours may be considered a vocal music genre
(Palackal, 2004). The eight colours come under different emotional moods. The rhythmic aspect of
melodies in each colour often depends on the poetic meter of the text. None of the Syriac melodies
may cover eight notes in an octave. It may often cover three or four, or five notes. Oktoec̄hos can be
compared to rāga in the sense that they are also creating passion or rasa4 during singing (Vysanethu,
2004). In Indian art music, a hymn in a rāga can be sung or played in another rāga. Similarly, the
liturgical chants are sung using eight tunes on many occasions in the oktoec̄hos tradition.

Oktoec̄hos is considered a cyclic system because it is performed in a cycle of eight weeks with two
colours in a week. The same verbal text is sung in eight-week cycles within the liturgical year. Each
colour begins with the evening prayer of Sunday. If the first colour is used in the evening, the same is
continued for the rest of the day. From Monday evening onwards, the fifth colour is used. On Tuesday,
it is again switched to the first colour. The following Sunday begins with the second colour. It is
continued in the order 1-5; 2-6; 3-7; 4-8; until the fourth Sunday, and on the fifth Sunday onwards,
the order becomes 5-1; 6-2; 7-3; 8-4. Mel-spectrograms of songs sung in two different colours, colour
one and colour two, are shown in Fig. 1.

The objective of the proposed work is to introduce a deep neural network (DNN)-based architecture
for the classification of a given oktoec̄hos music audio file into one of the eight colours of the

3Bethgazzo is a Syriac liturgical book that contains a collection of Syriac chants and melodies.
4a state of emotional attachment to a literary form or a musical work
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music tradition. Sequential processing is an efficient approach to address the challenge of segmental
similarity of the oktoec̄hos music system. We proposed sequential deep learning architectures for the
classification of oktoec̄hos music traditions.

1.2 Related Work

Researchers have used generative and discriminative models for music genre classification (Li et al.,
2003; Shao et al., 2004). An unsupervised approach for learning rhythmic aspects of genres is
explored in (Pesek et al., 2020). In contrast with the standard methods, model-based distances between
time series can take into account the structure of the songs by modelling the temporal dynamics of
the parameter sequence (Garcia-Garcia et al., 2010). More recent deep learning approaches process
spectrograms for the music genre classification task (Choi et al., 2017; Pons et al., 2016). Long
short-term memory (LSTM) networks with and without a soft attention mechanism are utilised for
genre classification in (Irvin et al., 2016). LSTM without attention gives the best accuracy of 79%
in their experiment on the test set. A hierarchical divide-and-conquer strategy to achieve ten genres
classification using the mel-frequency cepstral coefficient (MFCC) is attempted in (Wong et al., 2018).
An average classification accuracy of 52.975% is reported for the work. A hierarchical attention
network (HAN) to exploit the hierarchical layer structure of lyrics for music genre classification can
be seen in (Tsaptsinos, 2017). In addition, it learns the importance of the words, lines, and segments
for genre classification. Some of the previous attempts of “oktoec̄hos” classification can be referred
to in (Rajan and Ayasi, 2022; Rajan et al., 2021).

Multi-modal approaches mostly combine audio and lyrics (Laurier et al., 2008). To produce a
state-of-the-art classifier, it is evident that the classifier must combine lyrics and audio features(Mayer
et al., 2008; Mayer and Rauber, 2011). However, since the same lyrics are used for eight modes in
our task, a fusion algorithm’s design may not benefit from the textual information for the proposed
scheme. The proposed task is similar to music genre classification, but sharing textual content across
modes is one of the specific traits of the oktoec̄hos genre system. Although there has been significant
work in music genre classification, the proposed task of liturgical music genre classification is the
first of its kind.

1.3 Contributions

The major contributions of the proposed work are summarized below.

1. A new dedicated corpus of oktoec̄hos liturgical music is introduced for future research in
this particular music genre category.

2. The efficacy of the sequential deep learning architectures is experimentally proven for the
classification of the oktoec̄hos music tradition.

3. A pilot study on oktoec̄hos music generation from lyrics is carried out, and a subjective
evaluation is performed to evaluate the quality of generated songs.

2 System Description

Timbral, rhythmic and i-vector features are computed in the front end. The classification is performed
using DNN, convolutional neural network (CNN), LSTM and GRU. Each phase is explained in detail
in the following subsections.

2.1 Feature Extraction

2.1.1 Timbral and Rhythmic Features

It has already been proven that the timbral and the rhythmic features are useful in the genre classifica-
tion task (Baniya et al., 2015). The timbral features, namely MFCC and low-level timbral feature-set
(TLF ), are computed in the front end. Spectral centroid, spectral roll-off, spectral flux, and spectral
entropy (Li et al., 2003) are extracted as low-level timbral feature sets.

Timbral features are described below:
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1. MFCC: The efficacy of MFCC as a predictor of perceived similarity of timbre has been
proved in numerous speech and music processing tasks (Richard et al., 2013; Seppanan,
2015). 39 dim MFCCs (13 MFCC, delta, and delta-delta features) are computed using a
frame size of 40 ms and a frame-shift of 10 ms.

2. Spectral centroid: The center of gravity of the magnitude spectrum is indicated by this
measure.

3. Spectral roll-off: Gives the frequency below which 85% of the magnitude distribution is
accumulated.

4. Spectral flux: The squared difference of normalized magnitudes of successive spectral
distribution is computed using spectral flux.

5. Spectral entropy: The spectral power distribution is measured using spectral entropy in
music and speech processing tasks.

Figure 2: Distribution of pulse clarity for the colours

The salient periodicity in the music signal, analysed using the beat histogram is utilised to access
the rhythmic content of the music(Tzanetakis and Cook, 2002). Features, namely, tempo, pulse
clarity, and event density (Lartillot et al., 2008) are computed as rhythmic cues (RF ) for the proposed
experiment. The rhythmic features are described below:

1. Tempo: Tempo measures the pace of the music piece and is measured in beats per minute
(BPM). Tempo is the underlying beat rate of the music.

2. Event density: Event density represents the number of events per unit of time in the music
piece (Madison et al., 2011).

3. Pulse clarity: The latent pulsation in music can be analysed by measuring the pulse clarity
feature. The distribution of pulse clarity for the corpus is shown in Fig.2. It can be seen that
the pulse clarity distribution for niram 1, niram 2 and niram 3 is different from the rest.

Low-level timbral features and rhythmic features are computed using the MIRToolbox. 5

Mel-spectrogram

Visual representation of audio files such as spectrograms is utilised extensively for music genre
classification (Sukhavasi and Adappa, 2019),(Ghosal and Kolekar, 2018). We have also used the
mel-spectrogram-CNN framework for the proposed task. Spectrogram with the Mel frequency scale
results in a mel-spectrogram visual representation. The Mel scale was developed to try and scale
frequency data in a way that more closely resembles how humans perceive sound. Above 500 Hz, the
Mels between pitches perceived as “evenly spaced” increase as frequency increases. Mel-spectrogram
can be treated as a smoothed spectrogram with high sensitivity in the low-frequency region of the
spectrum. It is extracted with a frame size of 40 ms and a hop size of 10 ms with 128 bins.

5https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/
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i-vectors

I-vector subspace modelling has been utilised effectively in numerous speech and music processing
applications (Eghbal-zadeh et al., 2015; Zhong et al., 2017). A low dimensional space maps the
variabilities in the speaker or speech environment(Verma and Das, 2015). “i-vectors” are created
by adopting the popular factor analysis technique. Low-dimensional features are computed from
the Gaussian mixture model (GMM)-supervectors. The efficacy of i-vector modelling in speech
recognition (Eghbal-zadeh et al., 2015; Zhong et al., 2017) motivated us to use the same as a baseline
in the proposed task. The Alize tool kit (Bonastre et al., 2005) is employed in the proposed work to
compute i-vectors.

In the i-vector system (Dehak et al., 2011), high dimensional GMM supervector space (generated
from concatenating the mean values of GMM) is mapped to a low dimensional space called total
variability space. The target utterance GMM is adapted from a universal background model (UBM)
using eigenvoice adaption. The target GMM supervector can be viewed as a shifted version of UBM.
Formally, a target GMM supervector M can be written as:

M = m+ Tw (1)

where m represents the UBM supervector, T is a low dimensional rectangular total variability
(TV) matrix, and w is termed an i-vector. Using training data, the UBM and TV matrix is modeled
by expectation maximization. In the E-step, w is considered as a latent variable with normal
prior distribution N(0, I). Eventually, the i-vectors will be estimated as the mean of the posterior
distribution of w, that is (2011),

w(u) = (I + TT Σ−1.N(u).T )−1TT Σ−1S(u) (2)

where for utterance u, the terms N(u) and S(u) represent zeroth and centralized first-order Baum-
Welch statistics respectively, and Σ is the covariance matrix of UBM. 100-dimensional i-vectors
(iMFCC) are extracted for each song from frame-level computed MFCC using the Alize tool kit
(Bonastre et al., 2005).

2.2 Classification Schemes

We have experimented with four classifiers: DNN, CNN, LSTM and GRU. With the rapid devel-
opment of high-performance and parallel computing, CNN draws more attention from researchers
in numerous image-processing classification schemes. The potential of CNN in multiple image
processing tasks motivated us to apply the same in this music genre classification task. Recurrent
neural networks have been commonly used for language understanding (Geron, 2018) as language
is sequential. The promise of RNN in sequential data processing is explored well in numerous
applications due to the long-term dependency on analyzing data streams.

DNN

DNN accepts a set of inputs, carries out complex calculations, and provides solutions for real-world
problems like classification and regression. The theory of DNN-based processing can be found to in
(Awad and Khanna, 2015). The proposed DNN architecture is based on six hidden layered networks,
which use 64, 128, 256, 512, 1024 and 2048 nodes in successive layers with a dropout of 0.25. The
network is trained with a batch size is 32 for 150 epochs by the AdaMax optimization algorithm. In
addition, ReLU and softmax have been chosen for hidden and output layers, respectively.

CNN

CNN can process an input image to various levels to extract significant features that can be used as
cues to classify multiple images. A typical CNN comprises numerous convolution layers preceding
sub-sampling (pooling) layers, while the ending layers are fully connected. Details related to the
architecture and applications of the convolutional neural network can be accessed in (Alzubaidi et al.,
2021). CNNs have been widely used in image processing and time series analysis. The proposed
CNN has six convolutional layers, followed by max-pooling. We use filters with very small 3×3
receptive fields for a fixed stride of one and increase the number of filters for the layer by a factor of
2 after every layer. Global max-pooling is adopted in the final max-pooling layer, which is then fed
to a fully connected layer. The training is done with 100 epochs using an Adam optimizer with a
learning rate of 0.001.
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LSTM and GRU

LSTMs have the edge over CNN because of their property of selectively remembering patterns for
a long duration of time. LSTM uses the concept of gates to implement calculations that are simple
and effective The theory of LSTM-based sequential processing can be found in (Staudemeyer and
Morris, 2019). LSTM cell corresponds to a node of a recurrent network and has, in addition to the
input and output, a forget gate that avoids overfeeding of the vanishing gradient(Gruber and Jockisch,
2020). The LSTM architecture shown in Table 2 is effectively utilised to track the temporal pattern
embedded in the modes of the music using MTF.

Table 2: LSTM architecture used for the experiment. (46,64): The input feature set to the layer is of
dimension, 46. The output dimension of the feature set is 64

Serial no. Output Size Description
1 (46, 64) LSTM, 64 hidden units
2 (46, 64) Drop out (0.25)
3 (1024) LSTM, 1024 hidden units
4 (1024) Drop-out (0.25)
5 (8) Dense (8 hidden units)

An LSTM can be formulated mathematically as follows:

it = σ(Wxi.xt +Whiht−1 + bi), (3)
ft = σ(Wxf .xt +Whf .ht−1 + bf ), (4)

ut = tanh(Wxu.xt +Whu.ht−1 + bu), (5)
ot = σ(Wxo.xt +Who.ht−1 + bo), (6)

ct = itut + ftct−1, (7)
ht = tanh(ctot), outputclass = σ(ht.Woutpara) (8)

where it, ft, ut, ot, ct, and outputclass represent equations for input gate, forget gate, update gate,
output gate, cell state, and cell output, respectively. Wxu, Wxi, Wxf , Wxo and Whu, Whi, Whf ,
Who, Woutpara are weights, and bu, bi, bf , bo are biases to be computed during training. ht is the
output of a neuron at time t. σ() denotes a sigma function and tanh() represents the tanh function.
The input xt is the feature set at time t. outputclass is the classification output. The LSTM structure
used in the proposed experiment is given in Table 2.

The main difference between GRU and LSTM is that GRU’s architecture has two gates, reset and
update gates, while LSTM has three gates. The advantage of GRU cells is that they are just as
powerful as LSTM cells (Chung et al., 2014) even with small data sets, but they need less computing
power. The LSTM is more complex with its three gates than the two-gated GRU cell. The GRU
architecture shown in Table 3 is used in the proposed task. The training and validation accuracy of
the proposed network during the experimentation is shown in Fig 3.

Table 3: GRU architecture used for the experiment. “None” means the batch dimension is variable.
Any batch size will be accepted. gru29 is the label given for the layer.

Serial No. Layer Output shape
1 gru29(GRU) (None, 46, 8)
2 gru29(GRU) (None, 46, 16)
3 gru29(GRU) (None,32)
4 dropout9(Drop out) (None, 32)
5 dense10 (Dense) (None, 8)
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Figure 3: Training and validation accuracy

Table 4: Overall classification accuracy for the experiments

Serial No. Feature Method Accr.(%)
1 MFCC + TLF + RF DNN 48.70
2 iMFCC + TLF + RF DNN 50.00
3 Mel-spectrogram CNN 52.60
4 MFCC + TLF + RF LSTM 83.76
5 MFCC + TLF + RF GRU 77.77

3 Performance Evaluation

3.1 Database

A database is created in a studio environment, consisting of eight nirams (colours), with 384 audio
tracks of duration, 25 to 35 sec per file. A total of 15 professional singers in the age group 12 to 50
participated in the data recording, and the whole session was recorded at 44.1kHz. All the singers were
familiar with singing modes in “oktoec̄hos”. Malayalam hymns were collected from the liturgical book
of the Indian Orthodox church. The recordings were made in successive sessions using a high-quality
microphone. A few audio files can be accessed at https://sites.google.com/view/audiosamples-2020/.
During experimentation, 60% files of the dataset are used for training, 10% is used for validation and
the rest for testing.

3.2 Experimental set-up

MFCCs (39 dim comprising 13 dim MFCC, delta, and delta-delta features), timbral (TLF , four
dimensions), rhythmic (RF , three dimensions) are frame-wise computed with a frame width of 40
ms and frame-shift of 10 ms and fused at feature-level to obtain 46-dimensional MTF. In the i-vector
experimental phase, 100-dimensional i-vectors are computed using 128 mixture GMM from MFCC
using Alize tool-kit (Bonastre et al., 2005). The UBM model is trained using features derived from
an auxiliary database comprising audio files other than the files in the corpus. The auxiliary database
comprising 300 audio files (duration of 25 to 35 sec) was prepared in a studio environment. The
songs from the training data are used for modelling the total variability matrix T by eigenvoice
adaption. In the fusion scheme, track-level aggregated timbral (TLF ) and rhythmic (RF ) features are
concatenated with track-level computed i-vectors. The precision, recall, and the F1 measure are used
as performance metrics.

4 Results and Analysis

The results are tabulated in Table 4. As per the table, the average classification accuracies of 48.70%,
50.00%, 52.60%, 83.76%, and 77.76% are reported for DNN, i-vector framework, Mel-spectrogram-
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Figure 4: Accuracy with varying number of layers

Figure 5: Normalized Confusion Matrix for MTF-LSTM

CNN, LSTM, and GRU, respectively. It is worth noting that the RNN models outperform other
approaches by a significant margin. It is reasonable to say that a time pattern capturing scheme is
required to recover more relevant information from temporal embedded musical traits (Garcia-Garcia
et al., 2010). The experiments show that the RNN approach is promising for the given task, improving
on cases where the temporal dynamics are not considered, and a stationary characterization of the
sequences is employed. LSTM utilised musical textural features to capture song temporal dynamics
effectively to perform oktoec̄hos classification.

It is important to note that LSTM, with its memory, could capture more information than the GRU. It is
well established that the LSTM unit works well on sequence-based tasks with long-term dependencies.
The GRU involves fewer parameters than LSTM, and the GRU trains faster than the LSTM.

I-vector subspace modelling reports an accuracy of 50.00% for eight classes in the experiment. It
is shown in (Dai et al., 2017) that the relevant music elements can be captured by i-vectors and
may potentially benefit the classification of the music signal. A possible cause of the low value
of accuracy in the given experimental set-up may potentially be due to the inability to capture the
temporal dynamics well with the given UBM framework. Besides this, aggregation of musical texture
features at the track level might have deteriorated the performance.

The performance with the varying number of layers of the network is shown in Fig. 4. For the CNN
framework, the result is saturated beyond six layers due to overfitting. As the number of layers,
n, increases, the model grows in-depth, and the upper layers find efficient feature representations
invariant to small perturbations leading to better model generalization. The authors in (Liua et al.,
2021) emphasize the need for more training data in the visual representation-based approaches for
the genre classification task. As seen in many image processing tasks, CNN needs enormous data
to produce reliable results (Kaya and Bilge, 2019). Data augmentation is widely used for creating
additional training data during classification experiments.

During the LSTM approach, the maximum accuracy is obtained for two layers, as seen in Fig. 4.
The proposed experiment validates the claim that the MTF-LSTM framework has effectively learned
temporal information. The performance of sequential data processing can be improved by efficiently
designing the temporal architecture (Pons and Serra, 2019).
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Figure 6: Normalized Confusion Matrix for MTF-GRU
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Figure 7: Class-wise performance for all phases of the experiments

The normalized confusion matrices of LSTM and GRU are given in Fig. 5 and 6, respectively. The
class-wise classification accuracy of all nirams is greater than 70% for LSTM. Niram 5 and niram 7
report accuracy greater than 90%. Two classes, namely niram 4 and 5, report accuracy less than 50%
for GRU, even though, GRU achieves comparable overall accuracy as that of LSTM. The class-wise
accuracy can be analysed using Fig. 7. The significant improvement in the class-wise accuracy
for nirams 1, 3, 7, and 8 for RNN models over the CNN-based framework can be seen from the
plot. However, the performance can be improved using data augmentation and proper choice of
architecture. The performance metrics precision, recall, and F1 score for all five approaches are
given in Table 5. Average F1 measures of 0.50, 0.50, 0.52, 0.84, and 0.77 are reported for DNN,
i-vector-DNN, CNN, LSTM, and GRU, respectively. The high precision, recall, and F1 scores show
the significance of RNN models for the proposed task.

t-distributed stochastic neighbor embedding (t-SNE) is used to visualize the high dimensional data in
lower dimensions. Fig. 8 and Fig. 9 visualize the output vectors produced by the snippets for the last
dense layer of the trained LSTM and GRU networks using t-SNE. Note that there is good clustering
(represented with colour) and a general separation of various classes for LSTM. It is important to note
the effectiveness of LSTM in the proposed task without using any modelling data or augmentation
data as that of i-vector or CNN methodologies.

5 Generation Aspects of Oktoechos Music

A survey of deep learning methods of singing voice synthesis can be found in (Cho et al., 2021).
Deep learning-based architectures such as DNN (Nishimura et al., 2016), CNN (Nakamura et al.,
2019), a recurrent neural network with LSTM (Kim et al., 2018), and generative adversarial networks
(GAN) (Hono et al., 2019) have been successfully utilised for the task. Recent works include
transformer-based (Vaswani et al., 2017) XiaoicSing (Lu et al., 2020), HifiSinger (Chen et al., 2020),
and DiffSinger (Liu et al., 2021). The main experimental limitation of the recent models is that those
models require a large corpus for training.

A pilot study was conducted to generate oktoechos music genres by extending the framework
discussed in (Parekh et al., 2020). The system generates music from the lyrics of a song. An
encoder-decoder framework (2020) with spectra-to-spectra conversion is utilised for singing voice
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Figure 8: t− SNE plot from LSTM

Figure 9: t− SNE plot from GRU

generation as illustrated in Fig 10. A vocal melody extractor (Su, 2018), is used to extract melody
contour from the inputted target melody, either humming or reference singing. The melodic pitch
contours extracted for some of the modes are shown in Fig. 11. The short-time energy threshold is
set at 40 dB below the maximum energy frame to identify silent frames. Any set of three or more
consecutive silent frames with 50 ms duration is removed. Later, the speech signal is time-stretched
to the same length as its target F0 contour. The log magnitude spectrogram of the speech input is
computed using a phase vocoder (McFee et al., 2015).

An encoder-decoder-based deep learning framework (Parekh et al., 2020) produces two encodings,
one for speech and another for the target melody obtained in the pre-processing stage. Using these
encodings together, a sung version of the speech is produced using a U-net (Ronneberger et al.,
2015)-based network architecture. The decoder synthesizes the singing voice by concatenating these
two encodings with skip connections from the encoder.

Finally, the GriffinLim algorithm (Griffin and Jae Lim, 1983) is employed to reconstruct the waveform
from the log magnitude spectrogram. We use the NUS-48E corpus(Duan et al., 2013), which consists
of 48 songs sung by twelve male and female singers and an auxiliary corpus for training the STS
module.

A fully convolutional architecture (ID) is utilised to handle the variable length signals with the help of
GRU recurrent layers. A down-sampling factor of eight is used on the encoder side and up-sampled
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Figure 10: Generation of oktoec̄hos music system
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Figure 11: Melodic pitch computed for four nirams; (a) niram-1, (b) niram-2, (c) niram-3, (d) niram-4.

by the same factor on the decoder side. Skip connections between encoder E1 and decoder D are
introduced to control the gradient vanishing problem and to train deeper networks (Parekh et al.,
2020). The intelligibility is enhanced using a style-transfer-based module (Gatys et al., 2016).

The lyrics to generate a song is shown in Fig. 12 upper pane. The spectrogram of reading out the lyrics
without any intonation is shown in Fig 12 (a), and the spectrogram of the music generated from the
model is given in Fig. 12 (b). The generated song is of 25 to 35-sec duration. The sample-generated
audio file can be accessed at https://sites.google.com/view/audiosamples-2020/home.

We evaluated the subjective quality of the synthesised songs using a mean opinion score (MOS) from
10 listeners. Two perceptual metrics are measured: song adaptation to the target melody and singing
quality. Adapting a song to the target melody measures how well the synthesised song adapts to the
target melody. Singing quality mainly investigates the quality of the synthesised voice by considering
factors such as noise degradation and noticeable breaks. Each metric is measured using five opinion
grades, namely excellent (5), very good (4), good (3), fair (2) and poor (1). Listeners were asked
to grade the quality and MOS is computed by taking the average of the scores. A score of 3.64 is
obtained for the synthesised samples. The performance can be improved by tuning the parameters of
the encoder-decoder framework.
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Figure 12: Lyrics of song segment (Upper pane). Lower pane, (a) mel-spectrogram of audio with lyrics reading
out. Lower pane, (b) mel-spectrogram of generated music of audio file(niram 1).

6 Conclusion

Oktoec̄hos classification is addressed in this paper. The performance of the proposed approaches
is evaluated using a newly created corpus of liturgical music in Malayalam. The evaluation shows
the potential of the MTF-RNN framework in oktoec̄hos classification with an average classification
accuracy of 83.76% and 77.77% for LSTM and GRU, respectively. Since the Greek liturgy and
Gregorian chant also share similar musical traits with the Syrian tradition, the musicological insights
observed can potentially be applied to those traditions. Some songs are synthesised using the encoder-
decoder framework and a perception test is also conducted to analyse the quality of the generated
songs.
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